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Abstract

These notes are based on a series of lectures given at the meeting
Journées EDP in Roscoff in June 2015 on recent developments con-
cerning weak solutions of the Euler equations and in particular recent
progress concerning the construction of Hölder continuous weak solu-
tions and Onsager’s conjecture.
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1 Introduction

The incompressible Euler equations describe the motion of a perfect incom-
pressible fluid. Written down by L. Euler over 250 years ago, these are the
continuum equations corresponding to the conservation of momentum and
mass of arbitrary fluid regions. In Eulerian variables they can be written as

∂tv + (v · ∇)v +∇p = 0,

div v = 0,
(E)

where v = v(x, t) is the velocity and p = p(x, t) is the pressure. In this note
we will focus on the 3-dimensional case with periodic boundary conditions.
In other words we take the spatial domain to be the flat 3-dimensional torus
T3 = R3/Z3.

A classical solution on a given time interval [0, T ] is defined to be a pair
(v, p) ∈ C1(T3 × [0, T ]). Despite the rich geometric structure underlying
these equations (see e.g. [32] and references therein), little is known about
smooth solutions except (i) local well-posedness (i.e. existence and unique-
ness for short time) in Hölder spaces C1,α, α > 0 [65] or Sobolev spaces
Hs, s > 5/2 [49, 60] and (ii) the celebrated blow-up criterion of Beale-
Kato-Majda [6] and its geometrically refined variants, see e.g. [34]. As a
consequence of this deadlock and also motivated by physical applications,
several weaker notions of solution have been proposed in the literature.

1.1 Notions of solutions

Although distributions were not yet developed in the 1920s, it was certainly
recognized already at that time that one needs a notion of solution that
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allows discontinuities in the vorticity (vortex patches) and in the velocity
(vortex sheets). Accordingly, weak solutions of (E) are defined in [65] as
a pair (v, p) ∈ C(T3 × [0, T ]) such that, for any simply connected region
U ⊂ T3 with C1 boundary and any t ∈ (0, T ),

ˆ
U
v(x, t) dx−

ˆ
U
v(x, 0) dx+

ˆ t

0

ˆ
∂U
v(v · ~n) + p dAds =0,

ˆ
∂U
v · ~n dA(x) =0,

(W)

where ~n is the unit outward normal to U . It is easy to see that if (v, p) ∈ C1

is a solution of (W) then it is a classical solution of (E). Indeed, the deriva-
tion of (E) proceeds precisely this way: from the principles of continuum
mechanics and the conservation laws of momentum and mass applied to ar-
bitrary fluid regions U one obtains (W), and if in addition (v, p) ∈ C1, the
divergence theorem and a standard localization argument leads to (E).

This definition still includes the pressure. On the other hand it is well
known (see e.g. [77]) that the pressure can be recovered (uniquely, upto an
additive constant) from (E) via the equation

−∆p = div div (v ⊗ v).

Therefore one can eliminate the pressure from the equation by projecting
the first equation of (E) onto divergence-free fields. In order to then define
distributional solutions, one makes use of the following identity, which uses
that div v = 0:

(v · ∇v)k =

(∑
i

vi
∂

∂xi

)
vk =

∑
i

∂

∂xi
(vivk) = [div (v ⊗ v)]k

for any k = 1, 2, 3. One then obtains from (E)

ˆ T

0

ˆ
T3

∂tϕ · v +∇ϕ : v ⊗ v dxdt+

ˆ
T3

ϕ(x, 0) · v0(x) dx = 0 (D)

for all ϕ ∈ C∞(T3 × [0, T );R3) with divϕ = 0. Accordingly, the weakest
possible notion of solution of (E) is given by a vectorfield v ∈ L2(T3×(0, T ))
with div v = 0 in the sense of distributions such that (D) holds.

A stumbling block in obtaining a satisfactory existence theory of weak
solutions is the lack of sufficiently strong a priori estimates. To overcome
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this difficulty, two “very weak” notions have been proposed in the literature,
both based on considering weakly convergent sequences of Leray solutions of
Navier-Stokes with vanishing viscosity: dissipative solutions of P. L. Lions
[66] and measure-valued solutions of R. DiPerna and A. Majda [47]. The
latter are based on the notion of Young measure and can be described as
follows: Given a sequence of velocity fields vk(x, t), it is known from classical
Young measure theory (see e.g. [80, 2, 67]) that there exists a subsequence
(not relabeled) and a parametrized probability measure νx,t on R3 such that
for all bounded continuous functions f ,

f(vk(x, t))
∗
⇀ 〈νx,t, f〉 weakly* in L∞(T3 × (0, T )), (1)

where 〈·, ·〉 denotes the duality bracket for C∗0 (R3) = M(R3). One can in-
terpret the measure νx,t as the probability distribution of the velocity field
at the point x at time t when the sequence (vk) exhibits faster and faster
oscillations as k → ∞. Since the only known a priori estimate on solu-
tions of the Euler equations is the energy bound, i.e. vk ∈ L∞(0, T ;L2(T3)),
concentrations could occur for unbounded f , in particular for the energy
density f(v) = 1

2 |v|
2. DiPerna and Majda addressed this issue in [47], pro-

viding a framework in which both oscillations and concentrations can be
described. Following [1] the generalized Young measure can be written as
a triple (ν, λ, ν∞), where ν = νx,t is a parametrized probability measure on
R3 as before (the oscillation measure), λ is a Radon measure on T3 × (0, T )
(the concentration measure) and ν∞ = ν∞x,t is a parametrized probability
measure on S2 defined λ-a.e. (the concentration-angle measure). Then (1)
can be replaced by

f(vk)dxdt
∗
⇀ 〈ν, f〉dxdt+ 〈ν∞, f∞〉λ (2)

in the sense of measures for every continuous f : R3 → R that possesses
an L2-recession function f∞ (i.e. such that f∞(θ) = lims→∞ s

−2f(sθ) exists
and is continuous). Note that for bounded f the formula in (2) reduces to
(1) because f∞ = 0 in this case.

In particular (ν, λ, ν∞) is able to record oscillations and concentrations in
the quadratic term v⊗v of the Euler equations (D). Denote by id the identity
map ξ 7→ ξ and set σ(ξ) = ξ ⊗ ξ, ξ ∈ R3. Noting that σ∞ = σ, a measure-
valued solution of the Euler equations is defined to be a generalized Young
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measure (ν, λ, ν∞) such that div 〈ν, id〉 = 0 in the sense of distributions and

ˆ T

0

ˆ
T3

∂tφ · 〈ν, id〉+∇φ : 〈ν, σ〉 dxdt+
¨

T3×(0,T )
∇φ : 〈ν∞, σ〉λ(dxdt)

= −
ˆ
T3

φ(x, 0)v0(x) dx

(M)

for all ϕ ∈ C∞c (T3 × [0, T );R3) with divϕ = 0 .

Observe that (M) is simply a constraint on the first and second moments
of the generalized Young measure, i.e. on

v = 〈νx,t, id〉, v ⊗ v = 〈νx,t, σ〉+ 〈ν∞x,t, σ〉λ(dxdt).

In particular a measure-valued solution merely gives information on one-
point statistics, in the sense that there is no information about the corre-
lation between the “statistics” of vj at different points (x, t) and (x′, t′).
Moreover there are no microscopic constraints, that is, constraints on the
distributions of the probability measures. This is very different from other
contexts where Young measures have been used, such as conservation laws
in one space dimension [46, 76], where the Young measures satisfy additional
microscopic constraints in the form of commutativity relations (for instance
as a consequence of the div-curl lemma applied to the generating sequence).
Consequently, although the existence of measure-valued solutions for arbi-
trary initial data is guaranteed [47], there is a huge scope for unnatural
non-uniqueness.

1.2 Non-uniqueness

In contrast with the local well-posedness for classical solutions of (E), so-
lutions of (D) (or of (W), as we shall see) are in general quite “wild”, and
exhibit a behaviour which is very different from classical solutions. This
behaviour is referred to as a form of h-principle.

Theorem 1.1. (i) [70, 71, 41] There exist infinitely many non-trivial
weak solutions v ∈ L∞(T3×R) of (D) which have compact support in
time.

(ii) [78] For any solenoidal v0 ∈ L2(T3) there exist infinitely many global
weak solutions v ∈ L∞(0,∞;L2(T3)) of (D).
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(iii) [75] For any measure-valued solution of (M) there exists a sequence
of weak solutions vk ∈ L2(T3× (0, T )) of (D) generating this measure-
valued solution, in the sense that (2) holds.

Part (i) was proved first by V. Scheffer [70] in two dimensions for v ∈
L2
loc(R2 × R), A. Shnirelman [71] subsequently gave a different proof for

v ∈ L2(T2 × R). The statement for arbitrary dimension d ≥ 2 for bounded
velocities was obtained in [41]. Part (iii) shows that solutions of (D) and
solutions of (M) are on the same level in terms of their “wild” behaviour.

1.3 Admissibility

It is a classical fact that C1 solutions of (E) satisfy the following identity,
which expresses the conservation of the kinetic energy in a local form:

∂t
|v|2

2
+ div

((
|v|2

2
+ p

)
v

)
= 0 . (3)

Indeed, this follows from the following calculation:

v · (v · ∇)v =
∑
k,i

vkvi
∂

∂xi
vk =

∑
k,i

vi
∂

∂xi

v2
k

2
= div

(
v
|v|2

2

)
.

Integrating (3) in space we arrive at the conservation of the total kinetic
energy

d

dt

ˆ
T3

|v(x, t)|2 dx = 0 . (4)

In the previous section we have seen that solutions of (D) are in general
highly non-unique and need not satisfy the energy conservation (4). It is
therefore quite remarkable that, despite this high flexibility, the additional
requirement that the energy

E(t) :=
1

2

ˆ
T3

|v(x, t)|2 dx

be non-increasing already suffices to single out the unique classical solution
when it exists.

Theorem 1.2 (Weak-strong uniqueness). Let v ∈ L∞([0, T ), L2(T3)) be a
solution of (D) with the additional property that ∇v +∇vT ∈ L∞. Assume
that (ν, λ, ν∞) is a solution of (M) satisfying the energy inequality

1

2

ˆ
T3

ˆ
R3

|ξ|2dνx,t(ξ) dx+
1

2

ˆ
T3

dλt(x) ≤
ˆ
T3

|v0|2(x) dx for a.e. t.

(5)
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Then (ν, λ, ν∞) coincides with v as long as the latter exists, i.e.

νx,t = δv(x,t) for a.a. (x, t) ∈ T3 × (0, T ) and λ ≡ 0 on T3 × (0, T ).

This theorem was proved in [15], building upon ideas of [14, 16], where
the authors dealt with the energy of measure-valued solutions to the Vlasov-
Poisson system. More precisely, the proof of [15] yields the following infor-
mation: if νx,t satisfies (5), then

v̄(x, t) :=

ˆ
R3

ξ dνx,t(ξ) (= 〈ξ, νx,t〉)

is a dissipative solution of the Euler equations in the sense of P. L. Lions
(see [66]). In fact, Lions introduced the latter notion to gain back the weak-
strong uniqueness while retaining the weak compactness properties of the
DiPerna-Majda solutions. Theorem 1.2 shows that this can be achieved in
the framework of DiPerna and Majda by simply adding the natural energy
constraint (5).

The energy conservation for classical solutions expressed in (4) and the
weak-strong uniqueness result Theorem 1.2 suggest that the notion of weak
solution to (W) or (D) should be complemented with an additional admis-
sibility criterion, which could be one of the conditions below:

(a) ˆ
|v(x, t)|2 dx ≤

ˆ
|v0(x)|2 dx for a.e. t.

(b) ˆ
|v(x, t)|2 dx ≤

ˆ
|v(x, s)|2 dx for a.e. t > s.

(c) If in addition v ∈ L3
loc, then

∂t
|v|2

2
+ div

((
|v|2

2
+ p

)
v

)
≤ 0

in the sense of distributions (note that, since −∆p = div div (v ⊗ v),
the product pv is well-defined by the Calderon-Zygmund inequality).

Condition (c) has been proposed by Duchon and Robert in [48] and it re-
sembles the admissibility criteria which are popular in the literature on
hyperbolic conservation laws.
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Next, denote by L2
w(T3) the space L2(T3) endowed with the weak topol-

ogy. We recall that any weak solution of (D) in the energy space

L∞(0, T ;L2(T3))

can be modified on a set of measure zero so that v ∈ C([0, T ), L2
w(Rn)) (this

is a common feature of evolution equations in conservation form; see for
instance Theorem 4.1.1 of [38]). Consequently v has a well-defined trace at
every time and the requirements (a) and (b) can therefore be strengthened
in the following sense:

(a’) ˆ
|v(x, t)|2 dx ≤

ˆ
|v0(x)|2 dx for every t.

(b’) ˆ
|v(x, t)|2 dx ≤

ˆ
|v(x, s)|2 dx for every t > s.

Observe that the weak continuity in time and the energy inequality as above
comes naturally when considering the inviscid limit. Indeed, it is not difficult
to show that if {vk}k is a sequence of Leray weak solutions of the Navier-
Stokes equations on some time interval [0, T ] with viscosity νk → 0, and if
vk ⇀ v in L∞(0, T ;L2(T3)), then v ∈ C([0, T ), L2

w(Rn) and satisfies (b’).
However, none of these criteria restore the uniqueness in general.

Theorem 1.3 (Non-uniqueness of admissible weak solutions). Let n ≥
2. There exist initial data v0 ∈ L∞ ∩ L2 for which there are infinitely
many bounded solutions of (D) which are strongly L2-continuous (i.e. v ∈
C([0,∞), L2(Rn))) and satisfy (a’), (b’) and (c).

The conditions (a’), (b’) and (c) hold with the equality sign for infinitely
many of these solutions, whereas for infinitely many other they hold as strict
inequalities.

This theorem is from [42]. The second statement generalizes the intricate
construction of Shnirelman in [72], which produced the first example of a
weak solution in T3 × [0,∞[ of (D) with strict inequalities in (a) and (b).

The initial data v0 as in Theorem 1.3 are obviously not regular, since for
regular initial data the local existence theorems and the weak-strong unique-
ness (Theorem 1.2) ensure local uniqueness under the very mild condition
(a). Nevertheless, the set of such “wild” initial data is dense in L2:
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Theorem 1.4 (Theorem 2 in [75]). The set of initial data v0 for which the
conclusion of Theorem 1.3 hold is dense in the space of L2 divergence-free
vector fields.

The non-uniqueness for admissible weak solutions seems to be closely
related to strong instabilities in the Euler equations. In particular, consider
the following solenoidal vector field in T2, related to the well-known Kelvin-
Helmholtz instability:

v0(x) =

{
(1, 0) if θ2 ∈ (−π, 0),
(−1, 0) if θ2 ∈ (0, π).

(6)

Theorem 1.5 ([73]). For v0 as in (6) there are infinitely many solutions of
(D) on T2 × [0,∞) which satisfy (b’).

See also [4] for another example of non-uniqueness which is also based on
the instability of shear layers. We also refer to [43] for a discussion regarding
possible selection criteria, a natural question in light of such examples of
non-uniqueness.

1.4 Onsager’s conjecture

Leaving the non-uniqueness aside, let us now turn to the question of energy
conservation. As mentioned above in (3)-(4), for classical solutions (i.e. if
v ∈ C1) the energy is conserved in time, whereas part (i) of Theorem 1.1
shows that for weak solutions the energy need not be conserved. Neverthe-
less, it turns out that the question of energy conservation for weak solutions
does have some physical relevance.

One of the cornerstones of three-dimensional turbulence is the so-called
anomalous dissipation. This experimentally observed fact, namely that the
rate of energy dissipation in the vanishing viscosity limit stays above a cer-
tain non-zero constant, is expected to arise from a mechanism of transport-
ing energy from large to small scales (known as an energy cascade) via the
nonlinear transport term in the Navier-Stokes equations, rather than the
(dissipative) viscosity term. Motivated by this idea, L. Onsager stated in
1949 [69] the following:

Conjecture 1.6. Consider solutions (v, p) of (W) satisfying the Hölder
condition

|v(x, t)− v(x′, t)| ≤ C|x− x′|θ, (7)

where the constant C is independent of x, x′ ∈ T3 and t. Then
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(a) If θ > 1
3 , any solution (v, p) of (W) satisfying (7) conserves the energy;

(b) For any θ < 1
3 there exist solutions (v, p) of (W) satisfying (7) which

do not conserve the energy.

This conjecture is also very closely related to Kolmogorov’s famous K41
theory [62] for homogeneous isotropic turbulence in three dimensions. We
refer the interested reader to [53, 52, 51].

Part (a) of the conjecture is by now fully resolved: it has first been
considered by Eyink in [51] following Onsager’s original calculations and
proved by Constantin, E and Titi in [33]. Slightly weaker assumptions on
v (in Besov spaces) were subsequently shown to be sufficient for energy
conservation in [48, 25]. In the following, we recall the beautiful argument
of [33].

We start with some estimates on convolutions. Let ϕ ∈ C∞c (R3) be
a symmetric, non-negative mollifying kernel such that

´
ϕ = 1, and set

ϕ`(x) = `−3ϕ(x` ). Given v ∈ C(T3) define

v`(x) := v ∗ ϕ`(x) =

ˆ
R3

v(x− y)ϕ`(y) dy.

Lemma 1.7. Assume v ∈ Cθ(T3). Then we have

‖v − v`‖0 ≤ C`θ[v]θ, (8)

‖∇v`‖0 ≤ C`θ−1[v]θ, (9)

‖(v ⊗ v)` − v` ⊗ v`‖0 ≤ C`2θ[v]2θ. (10)

Proof. For (8) observe that

|v`(x)− v(x)| =
∣∣∣∣ˆ ϕ`(x− y)(v(y)− v(x)) dy

∣∣∣∣
≤
∣∣∣∣ˆ ϕ`(x− y)|y − x|θ dy

∣∣∣∣ [v]θ.

For obtaining (9) we simply write

∇v`(x) =

ˆ
∇ϕ`(x− y)v(y) dy =

ˆ
∇ϕ`(x− y)(v(y)− v(x)) dy.

10



Finally, for (10) note that

(v ⊗ v)`(x) =

ˆ
ϕ`(x− y)v(y)⊗ v(y) dy

=

ˆ
ϕ`(x− y)(v(y)− v(x))⊗ (v(y)− v(x)) dy+

+ v(x)⊗ v`(x) + v`(x)⊗ v(x)− v(x)⊗ v(x).

Hence

(v ⊗ v)`(x)− v`(x)⊗ v`(x) =

ˆ
ϕ`(x− y)(v(y)− v(x))⊗ (v(y)− v(x)) dy−

− (v(x)− v`(x))⊗ (v(x)− v`(x)).

Therefore (10) follows from (8).

Next, let (v, p) be a Hölder-continuous solution of (W). Then div v` = 0
and

∂tv` + v` · ∇v` +∇p` = −divR`,

where
R` = (v ⊗ v)` − v` ⊗ v`.

Proceeding as in (3)-(4) we obtain the energy balance

dE`
dt

=

ˆ
∇v` : R` dx,

where E` = 1
2

´
|v`(x)|2 dx. From Lemma 1.7 it follows that, for any T > 0,

|E`(T )− E`(0)| ≤
ˆ T

0

ˆ
T3

`3θ−1[v(t)]3θ dxdt.

Consequently, as `→ 0 we obtain E(T ) = E(0), provided

ˆ T

0
[v(t)]3θ dx <∞ for some θ > 1/3. (11)

This proves in particular part (a) of the conjecture. For sharper conditions,
formulated in terms of the Littlewood-Paley decomposition of v, we refer to
[25].

Concerning point (b) of Conjecture 1.6, the first mathematical statement
in that direction is the theorem of V. Scheffer, formulated in part (i) of
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Theorem 1.1 concerning solutions of (D). In recent years a series of results
concerning continuous solutions of (W) appeared, starting with [44]. Having
fixed a certain specific space of (continuous) functions X, these results can
be classified in the following two categories:

(A) There exists a nontrivial weak solution v ∈ X of (E) with compact
support in time.

(B) Given any smooth positive function E = E(t) > 0, there exists a weak
solution v ∈ X of (E) with

ˆ
|v(x, t)|2 dx = E(t) ∀ t.

Obviously both types lead to non-conservation of energy and would there-
fore conclude part (b) of Onsager’s conjecture if proved for the space X =
L∞(0, T ;C1/3(T3)). So far the best results are as follows.

Theorem 1.8.

• Statement (A) is true for X = L1(0, T ;C1/3(T3)).

• Statement (B) is true for X = L∞(0, T ;C1/5−ε(T3)).

Statement (B) has been shown forX = L∞(0, T ;C1/10−ε) in [45], whereas
P. Isett in [57] was the first to prove Statement (A) forX = L∞(0, T ;C1/5−ε),
thereby reaching the current best “uniform” Hölder exponent for Part (b)
of Onsager’s conjecture. Subsequently, T. Buckmaster, the two authors and
P. Isett proved Statement (B) for X = L∞(0, T ;C1/5−ε) in [20]. Finally,
Statement (A) for X = L1(0, T ;C1/3(T3)) has been proved very recently in
[21].

The basic construction underlying all these results was first introduced
in [44]. In these lectures this basic scheme will be presented in Section 3.
The proof of Statement (B) will then be explained in Sections 4.1 and 4.2
and finally the key ideas towards Statement (A) will be outlined in Section
4.4.

2 The h-principle

The homotopy principle was introduced by M. Gromov [54] as a general
principle encompassing a wide range of existence problems in differential
geometry. Roughly speaking, the h-principle applies to situations where
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the problem of existence of a certain object in differential geometry can be
reduced to a purely topological question and thus treated with homotopic-
theoretic methods. We quote Gromov [55]:

The infinitesimal structure of a medium, abiding by this principle does not
effect the global geometry but only the topological behaviour of the medium.

In a sense the h-principle is the opposite of the classical local-to-global
principle, where global behaviour is directly affected by infinitesimal laws.
A paradigm example where the interaction of both principles can be seen
is that of isometric embeddings. To fix ideas, let us consider embeddings of
the standard 2-sphere S2 into R3, i.e. maps

u : S2 ↪→ R3.

A continuous map u is said to be isometric if it preserves the length of
curves:

`(u ◦ γ) = `(γ) for all rectifiable curves γ ⊂ S2. (12)

If u is continuously differentiable, i.e. u ∈ C1(S2;R3), this condition is
equivalent to preserving the metric, which in local coordinates amounts to
the system of partial differential equations

∂iu · ∂ju = gij i, j = 1, 2, (13)

with gij being the metric on S2. The equivalence of (12) and (13) is a
first simple instance of the local-to-global principle: the length of a curve (a
global quantity) can be obtained from the metric (an infinitesimal quantity)
by integrating.

It is easy to construct Lipschitz isometric embeddings of S2 which are
not equivalent to the standard embedding: consider reflecting a spherical
cap cut out by a plane slicing the standard sphere. More generally, one
can imagine a sphere made out of paper, and crumpling it. This process
will necessarily create creases, meaning that the associated embedding is
only Lipschitz but not C1. Nevertheless, such maps will still easily satisfy
both (12) and also (13) almost everywhere. Indeed, if u is merely Lipschitz,
the system (13) still makes sense almost everywhere, since by Rademacher’s
theorem u is differentiable almost everywhere. However, in this case (13)
a.e. is not equivalent to (12) – see (iii) in the theorem below.

As the preceeding discussion indicates, the class of isometric embeddings
very much depends on the regularity assumption on u:
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Theorem 2.1. (i) Rigidity. [56] [30] If u ∈ C2 is isometric, then u is
equal to the standard embedding of S2 ⊂ R3, modulo rigid motion.

(ii) h-principle. [68], [63] Any short embedding can be uniformly approx-
imated by isometric embeddings of class C1.

(iii) Lipschitz maps. [54, p218] There exist u ∈ Lip such that (13) is
satisfied almost everywhere, but (12) fails: certain curves on S2 get
mapped to a single point.

A short embedding is simply one that shrinks the length of curves, i.e.
`(u ◦ γ) ≤ `(γ) for all rectifiable curves γ ⊂ S2.

The rigidity statement (i) is a prominent example of the local-to-global
principle in geometry: a local, differential condition leads to a strong restric-
tion of the global behaviour. The theorem of Nash-Kuiper in (ii) signifies
the failure of this local-to-global principle if u is not sufficiently differen-
tiable, whereas (iii) shows that for Lipschitz maps satisfying (13) almost
everywhere even the simple local-to-global principle on the length of curves
fails.

2.1 Relaxation and residuality

The h-principle amounts to the vague statement that local constraints do
not influence global behaviour. In differential geometry this leads to the
fact that certain problems can be solved by purely topological or homotopic-
theoretic methods, once the ”softness” of the local (differential) constraints
has been shown. In turn, this softness of the local constraints can be seen
as a kind of relaxation property.

In order to gain some intuition let us again look at the system of partial
differential equations (13) with some fixed smooth g, and consider a sequence
of (smooth) solutions {uk}k, uk : S2 → R3. Then the sequence of derivatives
|∂iuk|2 = gii is uniformly bounded, hence by the Arzelà-Ascoli theorem there
exists a subsequence uk′ converging uniformly to some limit map u. The
limit u must be Lipschitz and an interesting question is whether u is still a
solution (i.e. isometric). This would follow from some better convergence,
for instance in the C1 category. If the metric g has positive curvature and
the maps uk are sufficiently smooth, their images will be convex surfaces:
this, loosely speaking, amounts to some useful information about second
derivatives which will improve the convergence of uk and result in a limit u
with convex image.
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If instead we only assume that the sequence uk consists of approximate
solutions, for instance in the sense that

∂iu
k · ∂juk − gij → 0 uniformly,

then even if g has positive curvature and the uk are smooth, their images
will not necessarily be convex. Let us nonetheless see what we can infer
about the limit u. Consider a smooth curve γ ⊂ S2. Then uk ◦ γ is a C1

Euclidean curve and our assumption implies

`(uk ◦ γ)→ `(γ). (14)

On the other hand the curves uk ◦ γ converge uniformly to the (Lipschitz)
curve u ◦ γ and it is well-known that under such type of convergence the
length might shrink but cannot increase. We conclude that

`(u ◦ γ) ≤ `(γ) , (15)

in other words the map u is short. Recall that, by Rademacher’s theorem, u
is differentiable almost everywhere: it is a simple exercise to see that, when
(15) holds for every (Lipschitz) curve γ, then

∂iu · ∂ju ≤ gij a.e., (16)

in the sense of quadratic forms. Thus, loosely speaking, one possible in-
terpretation of Theorem 2.1 (ii) is that the system of partial differential
inequalities (16) is the “relaxation” of (13) with respect to the C0 topology.

2.2 Differential inclusions

In order to explain this better, let us simplify the situation further, and
consider the case Ω ⊂ R2 with the flat metric gij = δij , to be embedded
isometrically into R3. Then the system (13) is equivalent to the condition
that the full matrix derivative Du(x) is a linear isometry at every point x,
i.e. that

Du(x) ∈ O(2, 3) (17)

for every x. Note also that the inequality (16) is similarly equivalent to

Du(x) ∈ co O(2, 3), (18)

where, for a compact set K we denote by co K its convex hull.
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Let
X =

{
u ∈ Lip(Ω;R3) : Du(x) ∈ co O(2, 3) a.e. x

}
.

The discussion in the previous paragraph amounts to the statement that,
equipped with the topology of uniform convergence X is a compact metric
space. The local aspect of the h-principle expressed in Theorem 2.1 (ii) can
then be stated as follows: The set{

u ∈ C1(Ω;R3) : Du(x) ∈ O(2, 3) for all x
}

is dense in X.

The functional analytic background behind this kind of statement can
be viewed as a version of the Krein-Milman theorem. Indeed, consider the
following one-dimensional version, the inclusion problem

u′(x) ∈ {−1, 1} a.e. in (0,1).

Of course C1 solutions need to have constant derivative ±1, but Lipschitz
solutions may be rather wild. In fact, it is not difficult to show that the
closure in C0 of the set S := {u ∈ Lip(0, 1) : |u′| = 1 a.e. } coincides with
the convex hull R := {u ∈ Lip(0, 1) : |u′| ≤ 1 a.e. }. Since the topology of
uniform convergence in this setting (uniform Lipschitz bound) is equivalent
to weak* convergence of the derivative in L∞, the latter statement can
be interpreted as a form of the Krein-Milman theorem. Moreover, it was
observed in [22] that R \ S is a meager set in the Baire Category sense, cf.
also [17].

More generally, as an illustration of the methods and ideas involved, let
us treat the same problem in general dimensions m ≥ n. Thus, let Ω ⊂ Rn
be a bounded open set, Γ ⊂ Ω a closed set of zero Lebesgue measure, and
define, for

X0 =
{
u ∈ C1(Ω;Rm) : DuTDu(x) < Id for all x ∈ Ω and u|Γ = 0

}
and let X be the closure of X0 with respect to the topology of uniform
convergence. Note that the inequality in the expression for X0 is again
interpreted in the sense of quadratic forms, and amounts to the geometric
statement that u should be strictly short.

Theorem 2.2. The set

S =

{
u ∈ X : Du(x) ∈ O(n,m) a.e. x ∈ Ω and u|Γ = 0

}
is residual in X in the sense of Baire category.
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Observe that Theorem 2.2 essentially provides a proof of part (iii) of
Theorem 2.1.

Before giving the proof, we start with a few preliminary remarks. As
in the previous example, X is a (non-empty) compact metric space. Since
elements of X are differentiable almost everywhere, we can consider the
gradient operator as a map

∇ : X → L1(Ω).

Lemma 2.3. The map ∇ : X → L1(Ω) is of class Baire-1, i.e. the pointwise
limit of continuous mappings.

Proof. Consider Fδ(u) := ∇(u ∗ ϕδ) = u ∗ ∇ϕδ, where ϕδ is a standard
mollifying kernel and the convolution is defined by extending u outside Ω by
zero. Obviously Fδ : X → L1(Ω) is continuous. Furthermore, for any u ∈ X
we have that Fδ(u)→ ∇u in L1(Ω) as δ → 0. Therefore ∇ is Baire-1.

Although a Baire-1 mapping need not be continuous, it is continous in
some sense at “most” points of X. More precisely, the set of continuity
points is a residual set in X (i.e. the complement of a meager set, hence
in particular dense). On the other hand, intuitively we would not expect
∇ : X → L1(Ω) to be continuous anywhere, since on X we put the uniform
topology. A typical example of a sequence of functions uk : (0, 1) → R
converging uniformly to zero, but whose derivatives ∇uk do not converge to
zero, is

uk(x) =
1

k
sin(kx).

It is not difficult to construct similar examples for mappings Ω ⊂ Rn →
Rm. The apparent contradiction between the intuition coming from such
examples and the statement of Lemma 2.3 is that elements u ∈ X satisfy
a uniform bound for the gradient: DuTDu ≤ Id. For elements, where this
bound is saturated everywhere (e.g. convex extreme points of X), the above
simple construction fails. This is quantified in the following lemma:

Lemma 2.4. For all α > 0 there exists ε = ε(α) > 0 such that, for all δ > 0
and all matrices A ∈ Rm×n with ATA < Id and λmax(Id− ATA) ≥ α there
exists w ∈ C1

c (B1(0);Rm) such that

(i) (A+Dw(x))T (A+Dw(x)) < Id for all x;

(ii) supx |w(x)| ≤ δ;

(iii)
´
|Dw| dx ≥ ε.
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Proof. Let A as in the Lemma so that, by assumption, there exists a unit
vector ξ ∈ Rn, |ξ| = 1 such that

Id−ATA ≥ αξ ⊗ ξ. (19)

Let η ∈ C∞c (B1(0)) be a cut-off function, i.e. such that 0 ≤ η ≤ 1, and let
ζ ∈ Rn a unit vector such that AT ζ = µξ for some µ ∈ R. Such ζ always
exists, since either kerAT 6= {0} (in which case we set µ = 0) or AT is
invertible (and m = n). Moreover, |µ| = |ξ · AT ζ| = |Aξ · ζ| ≤ |Aξ| ≤ 1.
Then, define w : Rn → Rm for some λ� 1 by

w(x) =
ε

λ
η(x) sin(λx · ξ)ζ.

Since

(A+Dw(x))T (A+Dw(x)) =

= ATA+ 2εµη(x) cos(λx · ξ)ξ ⊗ ξ + ε2η(x)2 cos(λx · ξ)2ξ ⊗ ξ +O

(
1

λ

)
,

it follows from (19) that condition (i) is satisfied for λ sufficiently large,
provided

ε(2µ cos(s) + ε cos2(s)) ≤ α/2 for all s.

Condition (ii) is easily satisfied by choosing λ sufficiently large, and condition
(iii) by choosing η appropriately and observing that

´
|Dw| dx is bounded

below independently of λ.

Proof of Theorem 2.2. Being a Baire-1 mapping, we know that the set of
continuity points of ∇ is a residual set in X. Therefore, in order to prove
the theorem it suffices to show that continuity points of ∇ : X → L1(Ω)
are contained in S. We argue by contradiction and assume that u ∈ X is a
point of continuity for ∇ such that the set{

x : Ω : DuTDu 6= Id
}

has positive Lebesgue measure. Then there exists α > 0 and β > 0 such
that

Ln
(
{x ∈ Ω : λmax(Id−DuTDu) ≥ 2α}

)
≥ β.

Let ε = ε(α) be the constant from Lemma 2.4. Since ∇ is assumed to be
continuous at u ∈ X, there exists δ > 0 such that

‖Du−Dũ‖L1 <
1

2
εβ whenever ‖u− ũ‖C0 < δ. (20)
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Next, using the density of X0 ⊂ X with respect to uniform convergence,
combined with Egorov’s theorem and the fact that u is a point of continuity
for ∇ : X → L1, we can find v ∈ X0 such that

U := {x ∈ Ω : λmax(Id−DvTDv) > α and v|Γ = 0}

satisfies
Ln (U) ≥ β/2

and moreover

‖u− v‖C0 < δ/2, ‖Du−Dv‖L1 ≤ εβ/2.

Now we can apply Lemma 2.4 and a simple covering argument in the open set
U (i.e. filling up U with rescaled and translated copies of the perturbation w
from the lemma) to obtain a mapping w ∈ C1

c (Ω\Γ) such that ũ := v+w ∈
X0 but

‖w‖C0 < δ/2 and ‖Dw‖L1 ≥ 2εβ.

This contradicts (20), thereby concluding the proof.

Baire category arguments for differential inclusions have a long history,
see [39, 22] for ordinary differential inclusions and [24, 36, 61] for partial
differential inclusions. We also refer to the survey [23].

Note that the Lipschitz solutions produced by such methods are in gen-
eral highly non-smooth, e.g. nowhere C1, c.f. [61, Proposition 3.35]. For
the weak isometric map problem corresponding to Theorem 2.2, solutions
can also be constructed by folding [37], but such maps have an altogether
different structure both from the Nash-Kuiper C1 solution and from typical
solutions produced by the Baire category method. In this example the mere
existence of many Lipschitz solutions is not surprising. Next, we discuss
the Euler equations, where already a weak form of the h-principle is rather
striking.

2.3 Euler Subsolutions

We start by recalling the concept of Reynolds stress tensor. It is generally ac-
cepted that the appearance of high-frequency oscillations in the velocity field
is the main reason responsible for turbulent phenomena in incompressible
flows. One related major problem is therefore to understand the dynamics of
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the coarse-grained, in other words macroscopically averaged, velocity field.
If v denotes the macroscopically averaged velocity field, then it satisfies

∂tv + div (v ⊗ v +R) +∇p = 0

div v = 0,
(21)

where
R = v ⊗ v − v ⊗ v = w ⊗ w (22)

and
w = v − v (23)

is the “fluctuation”. The symmetric 2-tensor R is called Reynolds stress and
arises because the averaging does not commute with the nonlinearity v⊗ v.
On this formal level the precise definition of averaging plays no role, be
it long-time averages, ensemble-averages or local space-time averages. The
latter can be interpreted as taking weak limits. Indeed, weak limits of Leray
solutions of the Navier-Stokes equations with vanishing viscosity have been
proposed in the literature as a deterministic approach to turbulence (see
[3, 5, 29, 64]).

A slightly more general version of this type of averaging follows the
framework introduced by L. Tartar [76] and R. DiPerna [46] in the context
of conservation laws. We start by separating the linear equations from the
nonlinear constitutive relations. Accordingly, we write (21) as

∂tv + div u+∇q = 0

div v = 0,

where u is the traceless part of v ⊗ v +R. Since R = w ⊗ w can be written
as an average of positive semidefinite terms, it is clear that R ≥ 0, i.e. R
is a symmetric positive semidefinite matrix. In terms of the coarse-grained
variables (v, u) this inequality can be written as

v ⊗ v − u ≤ 2
3e Id,

where Id is the 3× 3 identity matrix and

e = 1
2 |v|2

is the macroscopic kinetic energy density. Motivated by these calculations,
we define subsolutions as follows. Since they will appear often, we introduce
the notation S3×3

0 for the vector space of symmetric traceless 3×3 matrices.
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Definition 2.5 (Subsolutions). Let e ∈ L1(T3 × (0, T )) with e ≥ 0. A
subsolution to the incompressible Euler equations with given kinetic energy
density e is a triple

(v, u, q) : T3 × (0, T )→ R3 × S3×3
0 × R

such that{
∂tv + div u+∇q = 0
div v = 0,

in the sense of distributions; (24)

and
v ⊗ v − u ≤ 2

3e Id a.e. . (25)

Observe that subsolutions automatically satisfy 1
2 |v|

2 ≤ e a.e. (the in-
equality follows from taking the trace in (25)). If in addition we have the
equality sign 1

2 |v|
2 = e a.e., then the v component of the subsolution is in

fact a weak solution of the Euler equations. As mentioned above, in pass-
ing to weak limits (or when considering any other averaging process), the
high-frequency oscillations in the velocity are responsible for the appear-
ance of a non-trivial Reynolds stress. Equivalently stated, this phenomenon
is responsible for the inequality sign in (25).

In terms of the relaxation as in the previous section, we can view (24)-
(25) as the analogue of short maps, i.e. the relaxation of the Euler equations
(E). Indeed, the analogy can be made even more direct by noting that (13)
can be written for the gradient mapping A := Du as

ATA = g and curlA = 0,

whereas (E) with the extra condition 1
2 |v|

2 = e can be written for the vari-
ables (v, u, q) as

v ⊗ v − u = 2
3e Id and (24).

Observe also that (24) can be written as

Div(x,t)

(
v ⊗ v + qId v

vT 0

)
= 0,

where Div(x,t) means applying the divergence on each row of the matrix and
treating t as the 4th variable.

The corresponding “weak h-principle statement”, i.e. the analogue of
Theorem 2.2 is the following (see [41], and [42] for more refined versions):
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Theorem 2.6. Let e ∈ C∞ ∩ L1(T3 × (0, T )) and (v, u, q) be a subsolution
with kinetic energy e. Then there exists a sequence of bounded weak solutions
(vk, pk) of (D) on T3 × (0, T ) such that

1
2 |v

k|2 = e for almost every (x, t) (26)

and vk ⇀ v weakly in L2(T3 × (0, T )).

In analogy with the proof of Theorem 2.2, proving Theorem 2.6 involves
defining the space of smooth, strict subsolutions X0, i.e.

X0 =

{
(v, u) ∈ C∞ : (24) holds for some q; v⊗v−u < 2

3eId in T3×(0, T )

}
,

equipped with the topology of weak convergence in L2(T3 × (0, T )), and
define X to be the closure of X0. Since the inequality (25) implies a uniform
bound on v and u, the set X is bounded on L2 and hence the weak topology
is metrizable, with metric dweak. The analogue of Lemma 2.4 is the following
“perturbation property”, which we state for simplicity for the case e ≡ 3

2 :

Lemma 2.7. For all α > 0 there exists ε = ε(α) > 0 such that, for all δ > 0
and all constant (v, u) ∈ R3 ×S3×3

0 with v ⊗ v − u < Id and λmax(Id− (v ⊗
v − u)) ≥ α there exists (v, u, q) ∈ C1

c (B1(0);R3 × S3×3
0 × R) such that

(i) (v + v)⊗ (v + v)− (u+ u) < Id for all (x, t);

(ii) dweak

(
v, 0
)
≤ δ;

(iii)
´
|v|2 dx dt ≥ ε.

For the proof and for the general formulation encompassing both Theo-
rem 2.2 and Theorem 2.6 we refer to the lecture notes [74] and the survey
[43].

2.4 The Nash-Kuiper construction

In this section we provide a sketch proof of the Nash-Kuiper theorem, already
alluded to in Theorem 2.1 (ii). For convenience of the reader we restate it
in the following general form:

Theorem 2.8 (Nash-Kuiper). Let (Mn, g) be a smooth compact manifold,
m ≥ n+ 1 and u : Mn → Rm a short immersion. Then u can be uniformly
approximated by C1 isometric immersions. If in addition u is an embedding,
then the approximation also holds with embeddings.
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Recall that a C1 map u is an immersion if the total derivative Du(x) has
full rank at every x. The Nash-Kuiper theorem seems not to be accessible by
Baire category arguments. Although the mappings obtained are still highly
irregular, a constructive scheme with estimates on the C0 and C1 norms is
necessary. For a comprehensive proof of Theorem 2.8 we refer to [50] and
[74]. Here we merely explain the main analytic ideas involved.

Let Ω ⊂ Rn be an open and bounded set with C1 boundary, which we
can think of as a coordinate patch on Mn, let g be a smooth metric on Ω
and consider immersions u : Ω→ Rn+2 - codimension 2 and higher was the
case dealt with by Nash in [68], the case of embeddings u : M ↪→ Rn+1

requires a modification [63].
Given a strictly short map uq, q ∈ N, a better approximation will be

obtained with the perturbation

ũq(x) = uq(x) +
aq(x)

λq+1

(
sin(λq+1x · νq)ηq(x) + cos(λq+1x · νq)ζq(x)

)
, (27)

where aq is an amplitude, λq+1 a (large) frequency, νq is a unit coordinate
direction and ηq, ζq are normal vector fields to the image uq(Ω) ⊂ Rn+2. A
short calculation gives

∂iũq · ∂j ũq = ∂iuq · ∂juq + a2
qν
i
qν
j
q +O(λ−1

q+1), (28)

so that, choosing the frequency λq+1 sufficiently large, one can achieve a

correction to the metric by a2
q(x)νiqν

j
q plus a small error. On the other hand

a decomposition of the metric error as

(g −DuTq Duq)(x) =
∑
k

aq,k(x)νk ⊗ νk (29)

allows one to choose νq and aq at each step q ∈ N suitably to achieve an
iterative correction of the error. Such a decomposition (where the unit
vectors νk do not depend on x) can be obtained from the following lemma
from [68], giving a kind of partition of unity on P, the space of positive
definite matrices.

Lemma 2.9 (Decomposing the metric error). There exists a sequence {ξk}
of unit vectors in Rn and a sequence γk ∈ C∞c (P; [0,∞)) such that

A =
∑
k

γ2
k(A)ξk ⊗ ξk ∀A ∈ P,

and there exists a number n∗ ∈ N depending only on n such that, for all
A ∈ P at most n∗ of the γk(A) are nonzero.
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With this lemma at hand, we can define

aq,k(x) = γk

(
g(x)−Duq(x)TDuq(x)

)
,

so that (29) holds. Observe that the sum in (29) is finite consisting of, say,
N terms, and for any x there are at most n∗ nonzero terms. Then, define
inductively

uq,k+1(x) = uq,k(x) +
aq,k(x)

λq,k

(
sin(λq,kx · νk)ηq,k(x) + cos(λq,kx · νk)ζq,k(x)

)
,

where uq,0 = uq, ηq,k, ζq,k are the unit normal vector fields to uq,k(Ω) and
λq,k is chosen inductively so that the error terms in (28) remain small. After
finite number of steps we arrive at uq+1, which satisfies

DuTq+1Duq+1 = g +
N∑
k=1

O(λ−1
q,k).

By iterating the previous construction, we can successively remove the error
and arrive at an isometric map u.

The final map will have the form

u(x) =
∞∑
q=0

N∑
k=1

1

λq,k
wq,k(x, λq,kx),

where each wq,k is one such spiral. Ensuring that the final map is C1

then just requires controlling the amplitudes δ
1/2
q := supx,k |wq,k| so that∑

q δ
1/2
q < ∞. Such control is possible since the amplitude supx |wq,k| ∼

supx |aq,k| only depends on the metric error at step q through the decompo-
sition (29), but not on the frequency λq,k. We refer to the lecture notes [74]
for a detailed expository proof.

Recently the construction of Nash (more precisely the construction of
Kuiper, where the spiral from (27) needs to be replaced by a corrugation)
has been visualized for the flat 2-torus in [13], where beautiful pictures
showing the fractal nature of the construction have been presented.

2.5 C1,θ isometric embeddings

In light of part (i) and (ii) of Theorem 2.1 an interesting question, that
has been raised in several places ([54], [79]) is what happens with isometric
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immersions of S2 of class u ∈ C1,θ. Yu. F. Borisov investigated isometric
embeddings of class u ∈ C1,θ. He showed in [9, 10] the validity of the rigidity
statement (i) in Theorem 2.1 for u ∈ C1,θ with θ > 2/3. The Nash-Kuiper
construction has been revisited in [11, 12, 35], where sharper estimates on the
approximating sequence have been obtained. In particular, it can be shown
that one can additionally ensure that (i) N = n∗ and (ii) the estimate

δ1/2
q . λ

− 1
1+2n∗

q,k (30)

holds for all k. Such an estimate immediately leads to an improved regular-
ity:

Theorem 2.10 ([12, 35]). For any positive definite g0 ∈ Rn×n there exists
r > 0 such that the following holds: For any smooth bounded Ω ⊂ Rn
equipped with a smooth Riemannian metric g such that ‖g − g0‖C0 ≤ r,
there exists a constant δ0 > 0 such that, if u ∈ C2(Ω;Rn+1) is such that

‖DuTDu− g‖0 ≤ δ0

then for any θ < 1
1+2n∗

there exists v ∈ C1,θ(Ω;Rn+1) with

DvTDv = g

and moreover
‖v − u‖C1 ≤ C ‖DuTDu− g‖1/2

C0 .

The condition (i) above is achieved by ensuring that the metric error
g−DuTq Duq is contained in a single patch of the decomposition in Lemma 2.9
(namely the patch containing g0 in the theorem), and (ii) requires estimating
the O(λ−1

q,k) terms in (28). Even if condition (i) is not satisfied, one can
adapt the construction above so that the number of terms in the sum (29)
is bounded by a fixed number depending only on the dimension n. In this
way one is lead to the following global version of Theorem 2.10.

Theorem 2.11 ([35]). The Nash-Kuiper theorem remains valid for isomet-
ric embeddings of class C1,θ with θ < 1

1+2(n+1)n∗
.

Observe that for n = 2 we have n∗ = 3, so that Theorem 2.10 guarantees
the existence of local isometric maps (i.e. for instance non-trivial bendings
of convex surfaces) of class C1,θ with θ < 1/7. It turns out that, by utilizing
conformal coordinates the exponent in this case can be improved to θ < 1/5,
thereby confirming a conjecture of Borisov from [11]:
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Theorem 2.12 ([40]). Let g be a C2 metric on D1, the unit disc in R2 and
u ∈ C1(D1,R3) a short embedding. For every θ < 1/5 and δ > 0 there exists
an isometric embedding v ∈ C1,θ of (D1, g) into R3 such that ‖u−v‖C0 < δ.

In the case of isometric embeddings there does not seem to be a univer-
sally accepted sharp exponent θ0 separating cases (i) and (ii) of Theorem
2.1 (see Problem 27 in [79]), even though 1/2 and 1/3 both seem relevant
(compare with the discussion in [12]). For instance, consider an isometric
map u ∈ C1,θ with θ > 1/2 and fix a symmetric mollifying kernel ϕ as in
Lemma 1.7. Since DuTDu = g, analogously to estimate (10) one obtains

‖DuT` Du` − g`‖1 ≤ C`2θ−1[Du]2θ,

where u` = ϕ` ∗u. By considering the expression for the Christoffel symbols
of a Riemannian manifold in terms of the metric, we then deduce that

(Γ`)
i
jk → Γijk uniformly,

where Γ` denotes the Christoffel tensor for the induced surface by u` and Γ
denotes the Christoffel tensor corresponding to the metric g. In turn, this
implies that (extrinsic) parallel transport on the embedded C1,θ surface can
be defined via the (intrinsic) metric g (corresponding to the results of Borisov
in [7, 8]) and hints at the absence of h–principle for C1,1/2+ε immersions. One
might further notice that the regularity C1,1/3+ε is still enough to guarantee
a very weak notion of convergence of the Christoffel symbols.

3 The Euler-Reynolds system

In the remaining sections we show the key ideas leading to the proofs of
Theorem 1.8. Although the basic scheme follows the one introduced in [44],
the presentation here uses crucial ideas that were introduced subsequently
in the PhD Theses of T. Buckmaster [18] and of P. Isett [57].

The construction of continuous and Hölder-continuous solutions of (W)
follows the basic strategy of Nash in the sense that at each step of the it-
eration, a highly oscillatory correction as the spiral in (27) is added. Note
that both (E) and the equation of isometries (13) is quadratic – the oscilla-
tory perturbation is chosen in such a way as to minimize the linearization,
making the quadratic part of leading order. In turn, a finite-dimensional
decomposition of the error (c.f. (29)) is used to control the quadratic part.
There are, however, two important differences:
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• The linearization of (13) is controlled easily by using the extra codi-
mension(s) in the Nash proof. For Euler, the linearization of (E) leads
to a transport equation, which is very difficult to control over long
times and leads to a kind of CFL condition, c.f. Lemma 4.1 below.
This issue is still the main stumbling block in the full resolution of
Onsager’s conjecture and is the subject of Section 4 below.

• The exponent 1/3 of Onsager’s conjecture requires a sufficiently good
correction of the error at each single step, whereas in the Nash iteration
several steps (n∗ steps) are required – this leads to the exponent (1 +
2n∗)

−1 in Theorem 2.10. Consequently one-dimensional oscillations,
as used in the Nash-Kuiper scheme and, more generally, in convex
integration, cannot be used1 for part (b) of Conjecture 1.6. Thus,
instead of convex integration, we use Beltrami flows, a special family
of periodic stationary flows, as the replacement of (27) (compare (29)
with (56)).

3.1 Inductive estimates

In analogy with the Nash-Kuiper construction explained in Section 2.4, we
construct a sequence of triples (vq, pq, R̊q), q ∈ N, solving the Euler-Reynolds
system (see [44, Definition 2.1]):

∂tvq + div (vq ⊗ vq) +∇pq = −div R̊q,

div vq = 0 ,
(31)

where (vq, pq) is an approximate solution and R̊q is a traceless symmetric 3×3
tensor, i.e. R̊q(x, t) ∈ S3×3

0 . Here (vq, pq) is thought of as the approximation
(corresponding to Duq in Section 2.4) and R̊q is the analogue of the metric
error g −DuTq Duq.

Observe that, in terms of approximations, we have written the error in
the right hand side as the divergence of a traceless symmetric tensor. That
this involves no loss of generality is the consequence of the following lemma:

Lemma 3.1 (The operator div−1). There exists a homogeneous Fourier-
multiplier operator of order −1, denoted

div−1 : C∞(T3;R3)→ C∞(T3;S3×3
0 )

such that, for any f ∈ C∞(T3;R3) with average
ffl
T3 f = 0 we have

1However, see also [59], where one-dimensional oscillations more closely following the
Nash iteration are used for a general class of active scalar equations, albeit leading to
suboptimal Hölder exponents.
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(a) div−1f(x) is a symmetric trace-free matrix for each x ∈ T3;

(b) div div−1f = f .

Proof. The proof follows from direct calculation by defining div−1 as

div−1f :=
1

4

(
∇Pg + (∇Pg)T

)
+

3

4

(
∇g + (∇g)T

)
− 1

2
(div g)Id,

where g ∈ C∞(T3;R3) is the solution of ∆g = f −
ffl
T3 f in T3 and P is the

Leray projector onto divergence-free fields with zero average.

The size of the perturbation

wq := vq − vq−1

will be measured by two parameters:

amplitude: δ
1/2
q , frequency: λq,

where, along the iteration, we will have δq → 0 and λq →∞ at a rate that is
(at least) exponential. For the sake of definiteness and for comparison with
the Littlewood-Paley approach to turbulence (see [31, 26]) we may think

λq ∼ aq for some a > 1,

(although in the actual proofs a slightly super-exponential growth is re-
quired). Here and in what follows, A . B means that A ≤ cB for some
universal constant c, and A ∼ B if A . B and B . A. Then, up to con-
trollable errors, wq will be a function with Fourier-support localized at fre-
quencies comparable to λq (in other words a single Littlewood-Paley piece).
The more precise formulation is that, denoting the sup-norm by ‖ · ‖0,

‖wq‖0 . δ
1/2
q , (32)

‖∇wq‖0 . δ
1/2
q λq , (33)

and similarly,

‖pq − pq−1‖0 . δq , (34)

‖∇(pq − pq−1)‖0 . δqλq . (35)
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In constructing the iteration, the new perturbation wq+1 will be chosen so
as to balance the previous Reynolds error R̊q, in the sense that (cf. equa-
tion (22)) we have ‖wq+1 ⊗ wq+1‖0 ∼ ‖R̊q‖0. In terms of estimates this is
formalized as

‖R̊q‖0 . δq+1 , (36)

‖∇R̊q‖0 . δq+1λq , (37)

We might think of wq as a mathematical realization of the concept of
eddy in phenomenological descriptions of turbulence, c.f. [53, Ch 7]. Then,
corresponding to eddies at “scale q” we have the following characteristic
scales:

• Eddy length scale: Lq ∼ 1
λq

;

• Eddy velocity scale: Uq ∼ δ1/2
q ;

• Eddy time scale: Tq =
Lq
Uq
∼ 1

δ
1/2
q λq

.

To see that this is consistent with our estimates above, observe that from
(31) we obtain (∂t + vq · ∇)vq = div R̊q −∇pq. Hence, using (35) and (37),

‖(∂t + vq · ∇)vq‖0 . (δq+1 + δq)λq . δqλq,

which agrees with
Uq
Tq

. Similarly, we will also impose the estimate

‖(∂t + vq · ∇)R̊q‖0 . δq+1δ
1/2
q λq . (38)

The idea to control the transport derivative (∂t + vq · ∇) instead of the pure
time derivative ∂t of (vq, pq, Rq) was introduced to the scheme by P. Isett in
[57].

On the one hand (32), (34) and (36) will imply the convergence of the
sequence vq to a continuous weak solution of the Euler equations. On the
other hand the precise dependence of λq on δq will determine the critical
Hölder regularity, similarly to the Nash-Kuiper scheme and Theorem 2.11
above. Finally, control on the energy will be ensured by∣∣∣∣e(t)(1− δq+1)−

ˆ
|vq|2(x, t) dx

∣∣∣∣ ≤ 1

4
δq+1e(t) . (39)
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3.2 Conditions on the fluctuation

We define

ρq(t) =
1

3(2π)3

(
e(t)(1− δq+1)−

ˆ
|vq|2(x, t) dx

)
(40)

and
Rq(x, t) = ρq(t)Id + R̊q(x, t). (41)

It is not difficult to check that (39) ensures

ρq(t) ∼ δq+1e(t), (42)

so that ‖Rq‖0 ∼ δq+1 (c.f. with (36)). Moreover, since ρq is a function of
time only, we can write the Euler-Reynolds system (31) as

∂tvq + div (vq ⊗ vq) +∇pq = −divRq,

div vq = 0

in analogy with the Reynolds-averaged system (21). Our aim is to choose
the next perturbation wq+1 in such a way as to model the fluctuation w
in (23) leading to the Reynolds stress. Following the idea of Nash and the
spiral from (27) we make the ansatz

wq+1(x, t) = W
(
vq(x, t), Rq(x, t), λq+1x, λq+1t

)
+ wcorrector(x, t). (43)

The corrector wcorrector is added to ensure that divwq+1 = 0, but for the
sake of not overburdening this exposition with technicalities, we will assume
it to be negligible subsequently. The key point is how to choose the function
W = W (v,R, ξ, τ).

We make the following assumptions on W :

• ξ 7→W (v,R, ξ, τ) is 2π-periodic with vanishing average, i.e.

〈W 〉 :=
1

(2π)3

ˆ
T3

W (v,R, ξ, τ) dξ = 0; (H1)

• The average stress is given by R, i.e.

〈W ⊗W 〉 = R (H2)

for all R in a suitable cone containing the identity matrix;
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• The “cell problem” is satisfied:

∂τW + v · ∇ξW + div ξ(W ⊗W ) +∇ξP = 0,

div ξW = 0 ,
(H3)

where P = P (v,R, ξ, τ) is a suitable pressure;

• W is smooth in all its variables and satisfies the estimates

|W | . |R|1/2, |∂vW | . |R|1/2, |∂RW | . |R|−1/2. (H4)

Observe that (H1)-(H2) correspond to (22), (H3) arises from plugging the
ansatz (43) into Euler, and (H4) are estimates consistent with (H2).

As a consequence of (H1)-(H2) we obtainˆ
T3

|vq+1|2 dx ∼
ˆ
T3

|vq|2 dx+

ˆ
T3

〈|W |2〉 dx =

ˆ
T3

|vq|2 dx+ 3(2π)3ρq(t),

so that (39) can be ensured inductively. The main issue is therefore to show
that indeed, δq → 0 with q → ∞ (so that the scheme converges) and to
obtain a relationship between δq and λq. More precisely, we are aiming at a
relationship of the form

δ
1/2
q ∼ λ−θ0q for all q ∈ N

since, comparing with (32)-(33), this implies that the limit function v =
limq→∞ vq will be Hölder continuous with any exponent θ < θ0 (c.f. (30)
and Theorem 2.11 above). In order to obtain such a relationship, we need
to estimate the new “Reynolds stress” R̊q+1.

3.3 Estimating the new Reynolds stress

Assuming the existence of a function W satisfying (H1)-(H4) above, we can
use the ansatz from (43) to obtain an estimate on the new “Reynolds stress”
R̊q+1. Indeed, since vq+1 = vq + wq+1, we have

R̊q+1 = div−1
[
∂tvq+1 + div (vq+1 ⊗ vq+1) +∇pq+1

]
= div−1

[
∂twq+1 + vq · ∇wq+1

]
(44)

+ div−1
[
div (wq+1 ⊗ wq+1 −Rq) +∇(pq+1 − pq)

]
(45)

+ div−1
[
wq+1 · ∇vq

]
(46)

= R̊
(1)
q+1 + R̊

(2)
q+1 + R̊

(3)
q+1 , (47)
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where div−1 is the operator of order −1 from Lemma 3.1.
Consider first the term (46) (and remember that we ignore the corrector

wcorrector). Recalling condition (H1) on W , we can expand ξ 7→W (v,R, ξ, τ)
in a Fourier-series and write

R̊
(3)
q+1 = div−1

[
W · ∇vq

]
= div−1

∑
k∈Z3,k 6=0

ak(x, t)e
iλq+1k·x, (48)

where, using (H2)

‖ak‖0 . ‖W‖0‖∇vq‖0 . ‖Rq‖1/20 ‖∇vq‖0.

Since ak depends on vq and Rq, which, owing to our inductive estimates
are localized in frequency space to frequencies ∼ λq, and since we assume
λq+1 � λq, one may hope for an estimate from (48) of the type∥∥∥div−1

[
ak(x, t)e

iλq+1k·x]∥∥∥
0
.

1

λq+1
‖ak‖0, (49)

provided k 6= 0 (since in that case |k| ≥ 1, there is no issue about small divi-
sors). This estimate can be made rigorous in Hölder spaces using stationary
phase arguments, essentially using integration by parts and Schauder esti-
mates (see [44]). For the sake of simplicity in the presentation, let us assume
that (49) is correct. Using our inductive estimates we then obtain

‖R̊(3)
q+1‖0 .

δ
1/2
q+1δ

1/2
q λq

λq+1
.

Next, consider (44)-(45). Here one needs to differentiate W in x and
t, and one needs to differentiate between “slow” and “fast” derivatives –
where we refer to “fast derivatives” if the term involves a factor of λq+1. For
instance

∂tW = ∂vW∂tvq + ∂RW∂tRq︸ ︷︷ ︸
slow

+λq+1∂τW︸ ︷︷ ︸
fast

.

However, owing to condition (H3) (the “cell problem”) the fast derivatives

in R̊
(1)
q+1 + R̊

(2)
q+1 vanish identically. Hence, by some abuse of notation, we

may replace (44) and (45) by

R̊
(1)
q+1 = div−1

[
(∂t + vq · ∇)slowW

]
, (50)

R̊
(2)
q+1 = div−1

[
div slow(W ⊗W −Rq)

]
. (51)
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Observe that the expression in (50) is linear in W , hence the same stationary
phase argument as above applies. We calculate:

(∂t + vq · ∇)slowW = ∂vW (∂t + vq · ∇)vq + ∂RW (∂t + vq · ∇)Rq

so that, writing as before,

R̊
(1)
q+1 = div−1

∑
k∈Z3,k 6=0

bk(x, t)e
iλq+1k·x

for some bk. Using (H4), we have

‖bk‖0 . ‖Rq‖1/20 ‖(∂t + vq · ∇)vq‖0 + ‖Rq‖−1/2
0 ‖(∂t + vq · ∇)Rq‖0.

From the inductive estimates on vq and Rq in Section 3.1 we then deduce

‖R̊(1)
q+1‖0 .

1

λq+1

(
δ

1/2
q+1δqλq + δ

1/2
q+1δ

1/2
q λq

)
.
δ

1/2
q+1δ

1/2
q λq

λq+1
.

Finally, observe that in (51) we have 〈W ⊗W 〉 = Rq because of condition
(H2), so that once more, in the expansion of W as a Fourier-series in ξ there
is no term k = 0. Hence the same stationary phase estimate can be applied
once more. Writing

R̊
(2)
q+1 = div−1

∑
k∈Z3,k 6=0

ck(x, t)e
iλq+1k·x

and using (H4) we have the estimate

‖ck‖0 . ‖W‖0‖∂vW‖0‖Dvq‖0 + ‖W‖0‖∂RW‖0‖DRq‖0
. ‖Rq‖0‖Dvq‖0 + ‖DRq‖0,

so that

‖R̊(2)
q+1‖0 .

1

λq+1

(
δq+1δ

1/2
q λq + δq+1λq

)
.
δq+1λq
λq+1

.

(52)

Summarizing, we obtain

‖R̊q+1‖0 .
δ

1/2
q+1δ

1/2
q λq

λq+1
. (53)
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Of course, this is just one of the inductive estimates in Section 3.1, similar
estimates should be obtained for all the other quantities (32)-(38). However,
this estimate already implies a relationship between δq and λq. Indeed,
comparing (36) and (53), the inductive step requires

δq+2 ∼
δ

1/2
q+1δ

1/2
q λq

λq+1
.

Assuming λq ∼ λq for some fixed λ� 1, this would lead to

δ1/2
q ∼ λ−q/3 ∼ λ−1/3

q , (54)

which, comparing with (32)-(33), precisely gives exponent 1/3 as the critical
Hölder regularity. Unfortunately, there are several assumptions made in the
derivation above. Most importantly, we have assumed the existence of W
with properties (H1)-(H4).

3.4 Beltrami flows

The estimates in the preceeding section were based on the existence of a
“fluctuation profile” W = W (v,R, ξ, τ) satisfying the conditions (H1)-(H4).
In order to construct such a fluctuation profile, our starting point is the class
of Beltrami flows. These are a special class of stationary flows in T3 based
on the identity

div (W ⊗W ) = W × curlW − 1
2∇|W |

2.

In particular any eigenspace of the curl operator, i.e. solution space of the
system

curlW = λ0W

divW = 0

leads to a linear space of stationary flows. These can be written as∑
|k|=λ0

akBke
ik·ξ (55)

for normalized complex vectors Bk ∈ C3 satisfying

|Bk| = 1, k ·Bk = 0 and ik ×Bk = λ0Bk,
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and arbitrary coefficients ak ∈ C. Choosing B−k = −Bk and a−k = ak
ensures that W is real-valued. A calculation then shows

〈W ⊗W 〉 =
1

2

∑
|k|=λ0

|ak|2
(

Id− k ⊗ k
|k|2

)
. (56)

This identity leads to the following version of Lemma 2.9:

Lemma 3.2. For every N ∈ N we can choose 0 < r0 < 1 and λ̄ > 1 with
the following property. There exist pairwise disjoint subsets

Λj ⊂ {k ∈ Z3 : |k| = λ̄} j ∈ {1, . . . , N}

and smooth positive functions

γ
(j)
k ∈ C

∞ (Br0(Id)) j ∈ {1, . . . , N}, k ∈ Λj

such that

(a) k ∈ Λj implies −k ∈ Λj and γ
(j)
k = γ

(j)
−k;

(b) For each R ∈ Br0(Id) we have the identity

R =
1

2

∑
k∈Λj

(
γ

(j)
k (R)

)2
(

Id− k

|k|
⊗ k

|k|

)
∀R ∈ Br0(Id) . (57)

There are two differences to Lemma 2.9. First of all, Lemma 3.2 pro-
vides several “independent” decompositions of R, corresponding to the N
families (γjk)k, j = 1 . . . N . We will return to the significance of this in the
next section. Secondly and more importantly, the decomposition in (57) is
valid only in the r0-neighbourhood of the identity matrix. This corresponds
to a single patch of the decomposition in Lemma 2.9 – compare with the
discussion in Section 2.4 concerning the estimate (30).

This lemma, taken from [44] (see also [57] for a geometric proof) allows
us to choose the amplitudes as

ak = ρ
1/2γk

(
R

ρ

)
,

where we write (c.f. (41)) R = ρId + R̊ (i.e. ρ = 1
3trR). Observe that the

restriction to lie in Br0(Id) then translates into

|R̊| ≤ r0ρ.
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In light of the assumption (36) and the choice of ρq (see (42)) this require-
ment can be satisfied by an appropriate choice of constants.

With this choice of ak = ak(R), W = W (R, ξ) defined by the Beltrami-
flow (55) satisfies (H1), (H2), (H4). Moreover, (H3) is also valid for v = 0,
but the transport part of the cell problem (i.e. the term ∂τ + v · ∇ξ) poses
problems if v 6= 0.

4 The role of time

In Section 3.4 we showed that an appropriate family (given by the decom-
position of Lemma 3.2) of stationary Beltrami flows can be used to define
a fluctuation profile W = W (R, ξ) as in (55), for which (H1), (H2) and
(H4) are satisfied. The key point remaining is to modify W so that also
(H3) holds. Unfortunately it turns out that this is not possible without
modifications and additional error terms. Before discussing these modifica-
tions, let us take a second look at (H3). The difficulties are caused by the
linear part of the equation, namely the term (∂t + v · ∇)W , representing
the linearization of the Euler equations. As pointed out at the beginning
of Section 3, the convex integration method relies on oscillatory perturba-
tions, where the quadratic term will be of leading order and the linear term
will be small - at variance to the Newton scheme. This can be seen very
clearly in the proof of the Nash-Kuiper theorem, compare with (27) and
(28). However, a key point is to use an ansatz for the perturbation which
also guarantees smallness of derivatives of the perturbation appearing lin-
early in the equation. In the isometric embedding problem this is achieved
by the choice of normal vectorfields in (27). For the Euler equations the
corresponding term (∂t+v ·∇)W is more difficult to control, and this seems
to be the central obstruction in the construction of 1/3-Hölder continuous
weak solutions. Nevertheless, the time-dependence helps to at least in some
sense distribute the error – indeed, the methods below do not work for the
stationary Euler equations, whereas there are analogous “weak h-principle”
results to Theorem 2.6 for the stationary case, see [28].

4.1 Approximate Galilean transformations

In [44, 45] a “phase function” φk(v, τ) was introduced to deal with the
transport in the cell problem. By considering W of the form∑

|k|=λ0

ak(R)φk(v, τ)Bke
ik·ξ (58)
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the cell problem in (H3) leads to the equation

∂τφk + i(v · k)φk = 0.

However, the exact solution

φk(v, τ) = e−i(v·k)τ , (59)

which would correspond to a Galilean transformation, is incompatible with
the requirement (H4) because |∂vφk| ∼ |τ | is unbounded. Instead, an ap-
proximation is used2 such that

∂τφk + i(v · k)φk = O
(
µ−1
q

)
, |∂vφk| . µq

for some parameter µq. This leads to the following corrections to (H3) and
(H4): (H3) is only satisfied approximately:

∂τW + v · ∇ξW + div ξ(W ⊗W ) +∇ξP = O(µ−1
q )

and in (H4) the second inequality is replaced by

|∂vW | . µq|R|1/2.

Carrying out the calculations in Section 3.3 with these corrections leads to3

‖R̊(1)
q+1‖0 .

δ
1/2
q+1

µq
+
δ
1/2
q+1µqδqλq

λq+1

whereas

‖R̊(2)
q+1‖0 .

δq+1λq + δq+1µqδ
1/2
q λq

λq+1
.

The term (46) remains as before

‖R̊(3)
q+1‖0 .

δ
1/2
q+1δ

1/2
q λq

λq+1
.

2To be precise, the approximation involves a partition of unity over the space of veloc-
ities with 8 families.

3In [45] it was not used that estimating (∂t + vq · ∇)vq (by using the equation) is
better than estimating separately ∂tvq and vq · ∇vq. Therefore the estimate in [45] is

R̊
(1)
q+1 .

δ
1/2
q+1

µq
+

δ
1/2
q+1µqδ

1/2
q λq

λq+1
.
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By assuming δq+1 ≤ δq, we can easily identify the worst error terms (both
coming from (44)) as

‖R̊q+1‖0 .
δ

1/2
q+1

µq
+
δ

1/2
q+1µqδqλq

λq+1

instead of (53). We can optimize in µq by setting

µq = δ−
1/2

q λ−
1/2

q λ
1/2
q+1,

since this choice minimizes the right hand side. Comparing then with the
inductive estimate as in Section 3.3 one arrives at

δ
1/2
q ∼ λ−

1/6
q , (60)

corresponding to Hölder exponents θ < 1/6 (in fact θ < 1/10 in [45] because

of the worse estimate for ‖R̊(1)
q+1‖0).

4.2 Transporting microstructure

One can obtain an improvement on the previous estimate (60) by realizing
that it is better to make an error in the quadratic term of (H3) rather than
the linear transport term. This was one key new idea in [57] and, following
[20] leads to the modified ansatz (c.f. (43))

wq+1(x, t) = W
(
Rq(x, t), λq+1Φq(x, t)

)
+ wcorrector(x, t), (61)

where Φq(x, t) is the solution of

∂tΦq + vq · ∇Φq = 0, (62)

with Φq(x, 0) = x. Recall that Φq(·, t) above is the inverse flow of vq,
i.e. Φq(·, t) = X−1

q (·, t), where Xq is the flow generated by vq, i.e.

d

dt
Xq = vq(Xq, t)

with Xq(x, 0) = x. Applying formula (61) to the Beltrami flows leads to a
fluctuation of the form∑

k

ak
(
Rq(x, t)

)
Bke

iλq+1k·Φq(x,t) =
∑
k

ak
(
Rq(x, t)

)
φk(x, t)Bke

iλq+1k·x,
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where the new phase function is given by

φk(x, t) = eiλq+1k·(Φq(x,t)−x).

Observe that

Φ(x, t)− x = −vq(x, 0)t+O(t2) as t→ 0

so that this ansatz is another way of approximating (59). However, now we
have abandoned the idea that the phase φ should depend explicitly in vq
and t, and abandoned the original ansatz (43), where W was a function of
vq, Rq, ξ, τ . Now the dependence on vq is through the equation (62), i.e. via
Lagrangian rather than Eulerian coordinates.

By defining wq+1 via the formula (61), we automatically take care of the
transport part of the cell problem (i.e. the “fast derivatives”). On the other
hand there will be a new error to the quadratic part of the cell problem due
to the deformation matrix DΦq. Furthermore, as we expect vq to converge to
a Hölder continuous flow with ‖Dvq‖0 →∞ as q →∞, one only has control
over DΦq for very short times. Indeed, we have the following well-known
lemma, whose proof is a simple application of Gronwall’s inequality.

Lemma 4.1. Let v ∈ C∞(T3 × R;R3) be a smooth vectorfield and Φ(t, ·)
the solution of

∂tΦ + v · ∇Φ = 0,

Φ(x, t0) = x

for some t0. Then

‖DΦ(t)− Id‖0 ≤ e
(t−t0)‖Dv‖0 − 1.

To handle this problem we consider a partition of unity (χj)j on the time
interval [0, T ] such that the support of each χj is an interval Ij of size 1

µq
for some µq � 1. In each time interval Ij we set Φq,j to be the solution of
the transport equation (62) which satisfies

Φq,j(x, tj) = x,

where tj is the center of the interval Ij . Recalling that ‖Dvq‖0 . δ
1/2
q λq,

Lemma 4.1 leads to

‖DΦq,j‖0 = O(1) and ‖DΦq,j − Id‖0 .
δ
1/2
q λq
µq

(63)
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provided
µq ≥ δ

1/2
q λq, (64)

an estimate we will henceforth assume. Observe also that |∂tχj | . µq.
The new fluctuation will take the form

wq+1(x, t) =
∑
j

χj(t)
∑
|k|=λ0

akj(Rq)Bke
iλq+1k·Φq,j(x,t) + wcorrector(x, t)

=
∑
j

χj(t)
∑
|k|=λ0

akj(Rq)φkj(x, t)Bke
iλq+1k·x + wcorrector(x, t).

Actually, in order to make sure that (56) holds in overlapping temporal
regions of the form Ij ∩ Ij+1, we make use of two families of Beltrami flows
Λeven and Λodd (c.f. Lemma 3.2) and set

akj(Rq) = ρ
1/2
q γ

(j)
k

(
Rq
ρq

)
if k ∈ Λeven for j even, or if k ∈ Λodd for j odd, and akj(Rq) = 0 otherwise.
Recall also that Rq and ρq are as in (40) and (41). In this way we can
ensure that, modulo terms involving the corrector (which we again choose
to ignore),

wq+1 ⊗ wq+1 ∼
1

2

∑
j,k

χ2
j |akj |2

(
Id− k ⊗ k

|k|2

)
+

+
∑

j,j′,k+k′ 6=0

χjχj′akjak′j′φkjφk′j′Bk ⊗Bk′eiλq+1(k+k′)·x

= Rq +
∑
k′′ 6=0

ck′′(x, t)e
iλq+1k′′·x .

(65)

This way we recover condition (H2), which was the crucial point in the

calculations for R̊
(2)
q+1 in Section 3.3 leading up to estimate (52).

We are now in a position to estimate R̊q+1 given in (44)-(47). Note that,
due to (39), (42) and (36) we have

‖akj‖0 . δ
1/2
q+1,

in agreement with (H4). Therefore it is easy to see that the term (46) will
be exactly as in Section 3.3, leading to

‖R̊(3)
q+1‖0 .

δ
1/2
q+1δ

1/2
q λq

λq+1
. (66)
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Next, consider the linear transport term (44): we obtain

(∂t + vq · ∇)wq+1 =
∑
j,k

χ′jakjφkjBke
iλq+1x·k+

+
∑
j,k

χj∇akj(∂t + vq · ∇)RqφkjBke
iλq+1x·k,

owing to (62). Using the stationary phase estimate (49) leads to

‖R̊(1)
q+1‖0 .

δ
1/2
q+1µq

λq+1
+
δ
1/2
q+1δ

1/2
q λq

λq+1

.
δ
1/2
q+1µq

λq+1
,

(67)

where the second line follows by using (64).
Finally, for the quadratic term (45) we obtain, using (51) and (65)

div slow(wq+1 ⊗ wq+1 −Rq) =
∑
k′′ 6=0

div ck′′(x, t)e
iλq+1x·k′′ ,

where

ck′′ =
∑
j,j′

∑
k+k′=k′′

χjχj′akj(Rq)ak′j′(Rq)φkjφk′j′Bk ⊗Bk′ .

Using (37) and (63) we obtain from the stationary phase estimate (49)

‖R̊(2)
q+1‖0 .

δq+1λq
λq+1

+
δq+1δ

1/2
q λq

µq
. (68)

Thus, overall we obtain

‖R̊q+1‖0 .
δ

1/2
q+1δ

1/2
q λq

λq+1
+
δ

1/2
q+1µq

λq+1
+
δq+1δ

1/2
q λq
µq

(69)

instead of (53). Optimizing in µq leads to the choice

µq = δ
1/4
q λ

1/2
q δ

1/4
q+1λ

1/2
q+1,

which is precisely the geometric mean between the “C1-norms” δ
1/2
q λq and

δ
1/2
q+1λq+1, hence satisfies

δ
1/2
q λq � µq � δ

1/2
q+1λq+1.
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This is consistent with (64). Comparing with the inductive estimate as in
Section 3.3 one arrives at

δ
1/2
q ∼ λ−

1/5
q (70)

and the Hölder exponent θ < 1/5.

4.3 Scholia

Up to now we have been deliberately been sloppy and ignored certain details.
First of all, we have ignored the corrector term wcorrector. Secondly, in
the previous sections we have shown how to obtain estimates for ‖R̊q+1‖0
from the inductive estimates (32)–(38) and deduced a relationship linking
δq and λq, leading in turn to a certain Hölder exponent. However, to close
the induction we need to in addition verify all of the inductive estimates
(32)–(38) for q + 1. But note that, for instance ‖R̊q+1‖0 already required
knowledge of ‖R̊q‖1, and similarly, estimating ‖R̊q+1‖1 requires knowledge
of ‖R̊q‖2 and so on. In order to avoid this “loss of derivative”, we need to
mollify (vq, pq, R̊q) at each step.

In order to rigorously carry out the construction with all estimates, we
need to make certain assumptions on the parameters (δq, λq). Given b > 1
and θ < 1/5 we will call a sequence (δq, λq), q ∈ N, (b, θ)-admissible if the
inequalities

δq+1 ≤ 1
2δq, λ

b+1
2

q ≤ λq+1, 1 ≤ δ1/2q λθq ≤ 2 (71)

are satisfied for any q ∈ N. It is easy to see (c.f. [20, Section 6]) that if

δq = a−b
q
, acb

q+1 ≤ λq ≤ 2acb
q+1
, (72)

for some c > 5/2 and a, b > 1, then (δq, λq) is (b, θ)-admissible for

θ =
1

2bc
<

1

5
,

provided a � 1 is sufficiently large (depending only on b > 1). Note that,
at variance with the calculations in previous sections (see in particular the
end of Section 3.3), here the sequence of frequencies λq is required to grow
slightly super-exponentially (only slightly, because b → 1 and c → 5/2 as
θ → 1/5). The main reason is technical, because the estimate (49) is not
valid as stated. However, it is valid with an ε-loss in the exponent due to
the use of Schauder estimates4 . More precisely, we have

4In fact a better choice of right-inverse div−1 than the one in Lemma 3.1 can be used
to avoid this loss, see [58].
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Lemma 4.2. Let k ∈ Z3/{0} be fixed. For a smooth vector field a ∈
C∞(T;R3), let F (x) := a(x)eiλk·x. Then, for any ε > 0 we have

‖div−1(F )‖ε ≤
C

λ1−ε ‖a‖0 +
C

λm−ε
[a]m +

C

λm
[a]m+ε,

where C = C(ε,m).

Next, we introduce a strengthening of the notion of subsolution:

Definition 4.3 (Strong subsolutions). A strong subsolution is a triple

(v, p,R) : T3 × (0, T )→ R3 × R× S3×3

such that {
∂tv + div v ⊗ v +∇p = −divR
div v = 0,

(73)

and moreover ρ(t) := 1
3trR is a function of t only and satisfies

|R(x, t)− ρ(t)Id| < r0ρ(t) for all (x, t). (74)

Here r0 is the radius from Lemma 3.2 for N = 2. We make two remarks
about this definition.

(i) Since r0 < 1, the inequality (74) implies thatR(x, t) is positive definite,
in agreement with (21). Furthermore, setting e(x, t) := 1

2(ρ(t) + |v|2)
and

u = R− 2

3
ē Id + v ⊗ v, q = p+

2

3
ē

we obtain a subsolution (v, u, q) with kinetic energy density e. There-
fore the notion of strong subsolution is a strenthening of the notion of
subsolution from Definition 2.5. This definition also agrees with the
notion of strong subsolution introduced in [27].

(ii) If (vq, pq, R̊q) is a solution of (31) and Rq is defined by (41), then
(vq, pq, Rq) will be a strong subsolution provided the constants in (42)
and (36) are chosen appropriately, depending on mint e(t) and r0.

Carrying out the construction with all estimates sketched in the previous
sections (in particular Section 4.2), we arrive at the following (c.f. Sections
2-5 in [20]) proposition:
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Proposition 4.4. Fix b > 1, θ < 1/5 and let (δq, λq)q∈N be a (b, θ)-admissible
sequence. Let (vq, pq, Rq) be a smooth strong subsolution on T3×(0, T ). Fur-
thermore, let M0 > 0 be such that

‖vq‖1 ≤M0δ
1/2
q λq, ‖pq‖1 ≤M0δqλq

and

ρq(t) ≤ δq+1, ‖Rq‖1 ≤M0δq+1λq, ‖(∂t + vq · ∇)Rq‖0 ≤M0δq+1δ
1/2
q λq.

Then, for any ε > 0 there exists smooth solution (vq+1, pq+1, R̊q+1) of (31)
on T× (0, T ) such that

‖vq+1 − vq‖0 ≤Mδ
1/2
q+1 , ‖vq+1 − vq‖1 ≤Mδ

1/2
q+1λq+1

‖pq+1 − pq‖0 ≤M2δq+1 , ‖pq+1 − pq‖1 ≤M2δq+1λq+1

with
M = M + Cλ−βq+1

and

‖R̊q+1‖0+
1

λq+1
‖R̊q+1‖1+

1

δ
1/2
q+1λq+1

‖(∂t+vq+1·∇)R̊q+1‖0 ≤ Cδ
3/4
q+1δ

1/4
q λ

1/2
q λ

ε−1/2
q+1 .

In the above C = C(b,M0, ε), β = β(b) and M is a universal constant.

In fact M is determined by the C0 norm of the Beltrami flow W in (61),
hence determined by the number of modes in Λeven∪Λodd and the C0 norms

of the functions γ
(j)
k from Lemma 3.2.

Choice of parameters. Next, observe that, due to (71), we have that

δ
1/2
q λq ∼ λ1−θ

q and λ1 < λ2 < λ3 < . . . . Hence, by choosing λ1 sufficiently
large, we can ensure that

Cλ−βq ≤M and

q∑
j=1

δ
1/2
j λj ≤ 2δ

1/2
q λq,

where C = C(b, 4M, ε). This will ensure that M ≤ 2M and hence that
(vq+1, pq+1) will satisfy the same estimates with q + 1 as (vq, pq), with con-
stant M0 = 4M . In order to close the induction it remains then to verify
that

Cδ
3/4
q+1δ

1/4
q λ

1/2
q λ

ε−1/2
q+1 ≤ δq+2.
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Fixing δq > 0 and λq ∈ N as in (72), we see that this inequality is equivalent
to

C ≤ a
1
4
bq(1+3b−2cb+(2c−4−4εc)b2),

which, since b > 1, is satisfied for all q ≥ 1 for a sufficiently large fixed
constant a� 1, provided(

1 + 3b− 2cb+ (2c− 4− 4εc)b2
)
> 0.

Factorizing, we obtain the inequality (b − 1)((2c − 4)b − 1) − 4εcb2 > 0. It
is then easy to see that for any b > 1 and c > 5/2 there exists ε > 0 so
that this inequality is satisfied. In this way we can choose ε > 0 depending
on b and c. Consequently, this choice will determine C = C(b,M0, ε) and,
as argued above, we then choose a � 1 (and hence λ1 � 1) sufficiently
large. This way the induction step can be closed, leading to a valid iteration
for the construction of the sequence (vq, pq, R̊q). In the limit we obtain
v = limq→∞ vq ∈ C([0, T ];Cθ(T3)).

4.4 Time-dependent estimates

So far all estimates used in the construction, including the inductive esti-
mates (32)–(38) in Section 3.1 and the stationary phase estimate (49) have
been understood to be uniform in time, although in principle we could treat
them as being spatial norms depending on time t, e.g.

‖vq(t)‖0 := sup
x∈T3

|vq(x, t)|, ‖vq(t)‖1 := sup
x∈T3

(|vq(x, t)|+ |Dvq(x, t)|) , .

The time dependence as an additional degree of freedom was exploited in
[19, 18] and subsequently in [21] to show that, after minor modifications of
the construction presented above, one obtains weak solutions of (W) which
have better, Onsager-critical spatial regularity at the expense of a worse
temporal dependence of the spatial norms. More precisely, statement (A)
in Theorem 1.8, namely the existence of (nontrivial) weak solutions with
compact support in time was obtained, so that the solution v satisfies (i)
[v(t)]C1/3−ε(T3) < ∞ for almost every t [19], and (ii) t 7→ [v(t)]C1/3−ε(T3) is
integrable [21]. In this final section we would like to give the basic idea in
the proof of these results.

1/3-Hölder continuity for almost every time t. Let us return to the
construction in Section 4.2 and the form of the new Reynolds error term
in (69). In deriving (69), only spatial norms and estimates have been used.
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Consequently, let us from now on fix λq, q ∈ N, as before, but treat δq = δq(t)
as functions of time in estimates (32)–(38) in Section 3.1. Observe that in
(69) the term

δq+1µq
λq+1

arises from the time derivative of the cut-off functions χj . The basic idea is
to treat these “cut-off regions” as bad regions and the complement, where
χj is constant, as “good regions”. Thus, instead of optimizing in µq for the
expression in (69), we will fix µq so that (64) is satisfied for all t (remember
that δq = δq(t) now), and try to minimize the size of “bad regions” by
choosing steeper cut-off functions. More precisely, introduce another large
parameter ηq � 1, with (super-)exponential growth as q →∞, such that the
partition of unity in Section 4.2 is carried out with cut-off functions (χj)j
such that

• each χj is supported on an interval of length µ−1
q ;

• the derivative χ′j is supported on an interval of length (µqηq)
−1;

• supt |χ′j(t)| . µqηq.

Given the whole iteration for obtaining the sequence vq as above, the set of
“good times” will be defined as the set of times t ∈ [0, T ], which are included
in a cut-off region for only a finite number of iteration steps. That is, the
set of “good times” is the complement of

V :=
⋂
q∈N

⋃
q′≥q

{
cut-off region in step q′

}
.

Lemma 4.5. The set V ⊂ [0, T ] has zero Lebesgue measure5.

Proof. Observe that the cut-off region at a single step q′ is the union of
∼ 2µq′ intervals of size ∼ (µq′ηq′)

−1. Hence this set has measure ∼ η−1
q′ .

Since we have chosen the sequence ηq → ∞ to have as least exponential
growth, we obtain∣∣∣∣∣∣

⋃
q′≥q

{
cut-off region in step q′

}∣∣∣∣∣∣ .
∑
q′≥q

1

ηq′
∼ 1

ηq
.

This implies that V has zero measure.

5In fact one can also show that dimH V < 1, see [19].
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In other words almost every t ∈ [0, T ] is a good time. For each such
t /∈ V there exists a step q0 = q0(t) such that, for every later step q ≥ q0 the
time t does not belong to the cut-off region. Consequently

‖R̊q+1(t)‖0 .
δq+1(t)1/2δq(t)

1/2λq
λq+1

+
δq+1(t)δq(t)

1/2λq
µq

for all q ≥ q0. The two terms on the right hand side are not balanced. How-
ever, assuming that the second term is larger for some step q, the iteration
will give

δq+2(t) ∼ δq+1(t)δq(t)
1/2λq

µq
. (75)

If µq is chosen so that µq � maxt δq(t)
1/2λq (such a choice is possible, as

shown in Section 4.2 just below (69)), then (75) will lead to rapid (super-
exponential) decay since the right-hand side in (75) is superlinear in δ. Con-
sequently, eventually the first term will be dominating. On the other hand
the iteration

δq+2(t) ∼ δq+1(t)1/2δq(t)
1/2λq

λq+1

is consistent with Hölder-exponent 1/3, c.f. (53) in Section 3.3. Thus v is
Hölder continuous with exponent 1/3 for almost every time (more precisely
1/3− ε, taking into account the corrections in Section 4.3).

Convergence in L1(0, T ;C1/3−ε(T3)).
In order to obtain an estimate on the Hölder seminorm [v(t)]C1/3−ε(T3),

we need to know q0(t) for “good times” t, i.e. the step when t was part of a
cut-off region for the last time. This requires a more detailed book-keeping
of the whole iteration and a partition of time into intervals whose length
also depends on time.

It will be convenient to record all parameters δq, µq and ηq in terms of
powers of λq. Therefore we will fix a sequence λq which satisfies

λq+1 ∼ λbq for all q

for some b > 1 and write
δq(t) = λ

−2βq(t)
q .

Thus, βq(t) denotes the “local Hölder exponent” at iteration step q, c.f. (54),
(60) and (70). Setting

µq = λγq+1, ηq = λωq+1
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for some constants γ, ω > 0 leads to the estimates in (69), as before. Since
the three terms are in general not balanced, each of the three terms gives rise
to an inequality relating βq+2 to βq+1 and βq, corresponding to the inductive
inequality ‖R̊q+1(t)‖0 ≤ δq+2. By taking a logarithm of base λq we arrive at
the three inequalities

βq+2 ≤ 1

2b
βq+1 +

1

2b2
βq +

1

2b2
(b− 1) (76)

βq+2 ≤ 1

2b
βq+1 +

1

2b
(1− γ − ω) (77)

βq+2 ≤ 1

b
βq+1 +

1

2b2
βq −

1

2b2
(1− bγ). (78)

Let us denote the right hand sides of the previous inequalities as N(βq, βq+1),
C(βq, βq+1) and Q(βq, βq+1), so that N,C,Q are functions of βq and βq+1.
The iteration on the set of estimates is as follows: given a partition of unity
{χj} in time, there will be a cut-off region, defined by the set of times⋃
j suppχ′, and the complement, referred to as the set of good times. If

the cut-off functions χj are supported on intervals of length µ−1
q and χ′j

supported on intervals of length (µqηq)
−1, then we essentially obtain

βq+2(t) ∼

{
C(βq, βq+1) if t is in the cut-off region,

min
{
N(βq, βq+1), Q(βq, βq+1)

}
otherwise.

In other words we can view the inductive estimates as a dynamical system
on functions of t of the type

T : (βq, βq+1) 7→ βq+2.

We are interested in the integrability of the spatial 1/3-Hölder norm, i.e. in

ˆ 1

0
λ

1/3−βq(t)
q dt (79)

in the limit q → ∞. In order to explain how one should proceed, let us
simplify further, and consider the dynamical system given by

T : βq 7→ βq+1 =

{
C(βq) if t is in the cut-off region,

min
{
N(βq), Q(βq)

}
otherwise,
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where N,C,Q are the linear functions

N(β) :=
1

2b
β +

1

2b2
β +

1

2b2
(b− 1)

C(β) =
1

2b
β +

1

2b
(1− γ − ω)

Q(β) =
1

b
β +

1

2b2
β − 1

2b2
(1− bγ).

The map T can be best explained in Figure 1 below.

Figure 1: The temporal region {t : βq(t) = β} is split into a cut-off region of
size η−1

q where βq+1 := β− and the complement (the “good region”), where
βq+1 := β+.

In fact T really acts on the distribution function of βq(t), that is, on
mq(β) defined by

λ
−mq(β)
q :=

∣∣{t ∈ (0, T ) : βq(t) < β}
∣∣.

In terms of mq(β) the integral (79) can be written as

ˆ 1

0
λ

1/3−βq(t)
q dt =

ˆ 1/3

βmin

λ
1/3−mq(β)−β
q dβ.
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Thus, essentially we would like to verify

mq(β) >
1

3
− β for all q. (80)

One can proceed inductively, based on the rule induced by T above.
Of course, as in Section 3 we have performed many simplifications here

which cannot be justified, and ignored several details. Moreover, it turns
out that (80) fails if N,C,Q are defined as above, i.e. with constant γ, ω.
In fact we need to allow for cut-off functions, whose parameters depend on
t, in the form γ = γ(β) and ω = ω(β). This in turn leads to a much more
complicated partition of unity {χj} on (0, T ). However, the details of the
proof exceed the scope of these notes, and we refer to the paper [21].
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(Sept. 2011), 727–730.

[79] Yau, S. T. Open problems in geometry. Differential geometry. Proc.
Sympos. Pure Math, 1993.

[80] Young, L. C. Lecture on the Calculus of Variations and Optimal
Control Theory. American Mathematical Society, 1980.

56


	Introduction
	Notions of solutions
	Non-uniqueness
	Admissibility
	Onsager's conjecture

	The h-principle
	Relaxation and residuality
	Differential inclusions
	Euler Subsolutions
	The Nash-Kuiper construction
	C1, isometric embeddings

	The Euler-Reynolds system
	Inductive estimates
	Conditions on the fluctuation
	Estimating the new Reynolds stress
	Beltrami flows

	The role of time
	Approximate Galilean transformations
	Transporting microstructure
	Scholia
	Time-dependent estimates


