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1. The regularity result.

n [WAGNER 09] and [WAGNER 14], it has been shown that global as well as strong local minimizers

(z*,u*) of multidimensional control problems of Dieudonné-Rashevsky type

F(x,u) / f(s,2(s),u(s))ds — infl;  (z,u) € WP(Q,R™) x LP(Q,R™™); (1.1)
Ox1(s)/0s1 ... 0x1(s)/0sm

Jz(s) = : : —u(s) = ozr; u(s) e ACR"™ fora.a seQ; (1.2)
0xn(8)/0s1 ... Oxp(s)/0sm

with n, m > 2, Q C R™, m < p < oo and a compact set A C R™™ with nonempty interior satisfy necessary
optimality conditions in the form of Pontryagin’s principle provided that the data of (1.1) — (1.2) fit into
a convex or polyconvex framework, cf. [ WAGNER 09], p. 549, Theorem 2.2., and [ WAGNER 14], p. 9,
Theorem 4.3., and p. 21, Theorem 5.4. In particular, this set of conditions contains a canonical equation in
integrated form involving multipliers Ao > 0 and y € LP/ P~V (Q, R™), which reads as follows:

v 3 [ sa e o)eds + 5 5 [ Eueds =0 veewirory.  13)
=1 Qagz

=1 j=1 85]

Inserting vector functions, which differ from o in a single component only, we find that (1.3) implies n
first-oder PDE’s

m ayf)])

pe(n @), 0) = ~(3 T ) VeeCTRR), 1<i<n, (1.4

(Ao
in which the partial derivatives of yflj) have to be understood in the sense of Schwartz distributions.
With regard to applications of (1.1) — (1.2) in mathematical imaging (see [ BRUNE/MAURER/WAGNER 09],
[FRANEK/FRANEK/MAURER/WAGNER 12] and [ WAGNER 12]), we prove a refinement of the maximum
principle, claiming that the multipliers y(*) can be chosen from an appropriate Sobolev space rather than from
LP/®=1(Q R™), thus ensuring within (1.4) the separate existence of the generalized derivatives 3y§,lj) /0s;
as L"-functions. Since the divergence as their sum may be an element of an L"-space but the summands do
not (cf. [ BOURDAUD/WOJCIECHOWSKI 00], p. 326), the proof of this claim is nontrivial. For simplicity, we
state the theorem in a special case only, assuming dimensions n = m = 2, polyconvexity of the integrand f
(cf. [DACOROGNA 08], p. 156 f., Definition 5.1.(iii) ) and convexity of the restriction set A. The extension
of the theorem and its proof to the general case covered in [ WAGNER 09] and [ WAGNER 14 ] is obvious.

Theorem 1.1. Consider the problem (1.1) — (1.2) with n = m = 2 under the assumptions mentioned in
[WAGNER 14], p. 18, Theorem 4.11., and choose for the polyconvex integrand f(s,&,v) a convexr represen-
tative g(s,&,v,ws) in accordance with these assumptions. Further, let A = K C R* be a compact, convex

set with o € int (K). If (z*,u*) is a global minimizer of the problem then there exist multipliers Ao > 0,



gy e WP ETDHQ RY) and y@ € L P7D(Q R) such that the mazimum condition [WAGNER 14], p. 9,

(4.6), is satisfied together with the canonical equations

(X), div yil)(s) = Ao %(s,x*(s),u*(s),det u*(s)) for almost all s € Q; (1.5)
1

(XK), div yél)(s) = Ao g?g(s,x*(s),u*(s),det u*(s)) for almost all s € . (1.6)
2

2. Proof of Theorem 1.1.

Let g1 = p/(p—1) and g2 = p/(p—2). The proof of the maximum principle is based on the separation of two
convex variational sets C and D within the space R x L (€, R*) x P (Q,R), cf. [ WAGNER 14], pp. 10 — 16.
The desired gain of regularity for the multiplier y(*) will be obtained by replacing L” (Q, IR4), the original
target space of the state equation (1.2), by the dual space (Wl’q1 (Q, R )* < (L™ (Q,RY) )* =~ IP(Q,RY).
It turns out that the separation argument still works in this extended framework. Recall that any functional
S (Wl’ql(Q, R) )* may be represented as

(Z, %) wray—wra :/Q( ZoY + 2y g—i + Zs g—i )ds with Zo, Zy, Z> € (L‘“(Q,]R))* ~ [P(Q,R), (2.1)
cf. [ADAMS/FOURNIER 07 ], p. 62 f., Theorem 3.9.. Consequently, L”(Q, R*) may be continuously imbedded
into (WH(Q,RY)" = ((L™(Q, RY))" )3 ~ (LP(Q, RY) )3 by z — (z,0,0). Since 1 < ¢1 < o0,
(Wl’(h(Q, R*) )* is a reflexive Banach space. In relation to a global minimizer (z*,u*) of (1.1) — (1.2), we
define the sets

C={(021,2)€eRx (LP(Q,]R4) N (W““(Q,IR“))*) x LP2(Q,R)  with (2.2)
o=¢+ D, Ga", v, w")(x —2%) + D,G(z",u", w*)(u — u*) + Dy G(z*, u™, w" ) (w — w*); (2.3)
n=Jr—Jz* —(u—u"); 2= (w2—w;)— Dydet(u*)(u—u"); (2.4)
>0, ze WP(QR"), ueU, wy e L’*(Q,R)}; (2.5)

Cp={(0, 21, 22) €ERx (WH(QRY)" x (W'(Q,R))"  with (2.6)
2 =Jr—Ja" = (u—u"), |21 llgpray. <n; (2.7)
29 = (wy — wh) — Dydet(u™)(u—u*), || 22 [(wiazy <13 (2.8)
x € WoP(Q,R?), uwe U +K(o,n) ¢ (WH(Q,RY)", we e (WH(QR))"}, n>0; (2.9)

D = {(0 21, 2)€Rx (W QR x L”*(Q,R) with (2.10)
0<0; a1 €K(o,3]el/Ko)C (W' (QRY)": 2 € Ko, 5|o|/Ko) € L"*(QR) } (2.11)

where
U= {z €L’ (QR") | 2z(s) € A=K for almost all s € Q}, (2.12)
Up = UnN {z € LP(QRY) |3z e WyP(Q,R?) such that 2; = Jo } (2.13)

and D, det(u*): (V[/l’q1 (Q7IR4))* — (I/Vl’q2 (Q,IR4))* is the natural extension of the linear, continuous
Gateaux derivative operator D, det(u*): LP(Q,R*) — L”*(Q, R). For given Z € (Wha(Q, RY))", Z =
(Zo,Z1,22) € (LP(Q, R*) )3, the output of D, det(u*) (Z) acts as a linear, continuous functional on ¢ €
W% (Q, R*) in the following way:



<DuT2(u*) (Z) B w >(W1,q2 )*7wl,q2 = <l~)uT2(U*)(Zo, Z17 ZQ) 5 ’(/J >(W1,q2 )*7W1,q2 (214)
= / (u4 ZO,I P — Us ZO’Q o — Ug Z()’3 s + uq Z0’4 ¢4) ds + / (’u,4 Zl,l ﬂ — uj Zl,2 ﬂ
Q Q (951 351
O3 Oy / Oy by O3 Oy
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R ) s+ Q(“4 21 g, U225 T f2s gt 220 0 ) iy

Ko > 0 is chosen according to the following assertion (ii). It holds still true that (i) C and D are nonempty,
convex variational sets with int (D) # @, cf. [ WAGNER 14 ], p. 10, Proposition 4.5.; (ii) (g, 21, 22) eCn 67}
implies that ¢ > —Kyn where Ky > 0 is a constant independent of 7, cf. [ WAGNER 14], p. 11, Proposition
4.7., and (iii) D is a subset of C,, with n = 1| 0|/Ko, cf. [WAGNER 14], p. 11, Proposition 4.6.

Consequently, C N D= @, and C and D may be weakly separated within the space R x (Wl’q1 (Q, IR4) )* X
LP/? (2, R) by a nontrivial linear, continuous functional (Ao, y",5®)). Thus y(!) gains the claimed Sobolev

regularity. m

Remark 2.1. The nonexistence case from [ BOURDAUD/WOJCIECHOWSKI 00] cannot occur since the as-
sumed growth condition [ WAGNER 14 ], p. 17, (4.96), guarantees that dg(s, z*, u*,det u* )/0¢; € Lp/(p_l)(Q7
R),1<i<2, withl <p/(p—1) < 0.
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