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1. Introduction.

The present paper is concerned with the proof of first-order necessary optimality conditions for multidimen-

sional control problems of Dieudonné-Rashevsky type:

F (x, u) =

∫
Ω

f(s, x(s), u(s)) ds −→ inf ! ; (x, u) ∈W 1,p
0 (Ω,Rn) × L

p
(Ω,Rnm) ; (1.1)

Jx(s) =

 ∂x1(s)/∂s1 ... ∂x1(s)/∂sm
...

...
∂xn(s)/∂s1 ... ∂xn(s)/∂sm

 = u(s) for almost all s ∈ Ω ; (1.2)

u(s) ∈ A ⊂ Rnm for almost all s ∈ Ω (1.3)

with n, m > 2, Ω ⊂ Rm, m < p <∞ and a compact set A ⊂ Rnm with nonempty interior. In the case of a

convex integrand f(s, ξ, · ) and a convex restriction set A = K, the global minimizers of (1.1) − (1.3) satisfy

optimality conditions in the form of Pontryagin’s principle 01) even though the usual regularity condition for

the equality operator (1.2) fails. 02) The question arises whether the Pontryagin principle and its proof can

be extended to situations where the usual convexity of the data is replaced by generalized convexity notions.

An answer to this question is of conceptual interest since the classical proof of the Pontryagin principle is

based on an implicit convexification of the integrand as well as of the set of feasible controls. 03)

Within the hierarchy of the generalized convexity notions, 04) polyconvexity is the closest one to usual con-

vexity. In short, a polyconvex function arises as a composition of the vector of all minors of a matricial

argument with a convex function. Appearing e. g. in problems from material science, 05) hydrodynamics 06)

and mathematical image processing, 07) objectives with polyconvex integrands are of considerable practical

importance. In the present paper, it will be shown that the proof of Pontryagin’s principle for the problem

(1.1)− (1.3) can be maintained if the integrand f(s, ξ, v) is polyconvex with respect to v while the control

restriction set A = K is still convex (Theorems 4.3., 4.4. and 4.11.). To the best of the author’s knowledge,

a proof of optimality conditions, which makes explicit use of the polyconvex structure of the integrand, is

still missing in the literature.

A next step comprises the incorporation of polyconvex gradient restrictions into the proof scheme. Such

restrictions frequently originate from volumetric constraints. A nice illustration is given if the function

01) [Wagner 09 ] , p. 549 f., Theorems 2.2. and 2.3.
02) Cf. [ Ioffe/Tichomirow 79 ] , p. 73 f., Theorem 3, Assumption c), and [ Ito/Kunisch 08 ] , p. 5 f.
03) See [Ginsburg/Ioffe 96 ] , p. 92, Definition 3.2., and p. 96, Theorem 3.6. (“local relaxability” of the problem), as

well as [ Ioffe/Tichomirow 79 ] , pp. 201 ff.
04) [Dacorogna 08 ] , p. 156 f.
05) [Lubkoll/Schiela/Weiser 12 ] , p. 12 f. (deformation of a compressible Ogden-type material).
06) [Kunisch/Vexler 07 ] , p. 1371, (1.9), and p. 1376 f., (2.8) (vortex reduction for instationary flows).
07) [Burger/Modersitzki/Ruthotto 13 ] , [Droske/Rumpf 04 ] and [Wagner 10 ] , p. 5, (2.16) (hyperelastic image

registration).
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x ∈W 1,∞
(Ω,Ω) within the transformation formula for multiple integrals 08)∫

Ω

I(s) ds =

∫
Ω

I
(
x(s)

)
·
∣∣det Jx(s)

∣∣ ds (1.5)

is considered as an unknown. 09) In order to keep the formula applicable, we must ensure that det Jx(s) 6= 0

a. e. Consequently, we obtain a polyconvex gradient restriction for x, e. g. |det Jx(s) | > 0 or det Jx(s) > 0.

In the literature, an explicit statement of polyconvex restrictions is often avoided. Instead, the objectives

are augmented with corresponding regularization terms. 10) Assuming that the restriction set A = K ∩ P

can be represented as the intersection of a compact convex set K with nonempty interior and a polyconvex

set P, we may introduce an exact penalty term corresponding to P. Then the proof technique works as in

the former case, and we obtain a set of necessary optimality conditions in the form of Pontryagin’s principle

again.

The structure of the paper is as follows: After closing this section with some remarks about notation, we

turn in Section 2 to the description of polyconvexity. In Section 3 , we state the control problem, collect all

basic assumptions and provide existence theorems for global minimizers (Theorems 3.2., 2) and 3.5., 2) ).

In Section 4 , Pontryagin’s principle is derived in the case of a polyconvex integrand and a convex gradient

restriction. We start with the formulation of the theorems in the special case of dimensions n = m = 2.

Then we state and prove the first-order necessary optimality conditions in full generality as our main result

(Theorem 4.3.) and provide an a. e. pointwise reformulation of the maximum condition (Theorem 4.4.). In

Section 5, we describe how the theorems and the proof scheme can be carried over to control problems with

polyconvex gradient restrictions (Theorems 5.4. and 5.6.). In the final Section 6 , we outline an application

of our theorems to a problem of hyperelastic image registration. The revised version of the paper combines

and replaces the separate preprints [Wagner 13a ] and [Wagner 13b ] .

Notations.

Let Ω ⊂ Rm be the closure of a bounded Lipschitz domain (in strong sense). Then C
k
(Ω,Rr) denotes

the space of r-dimensional vector functions f : Ω → Rr, whose components are continuous (k = 0) or k-

times continuously differentiable (k = 1, ... , ∞), respectively; L
p
(Ω,Rr) denotes the space of r-dimensional

vector functions f : Ω → Rr, whose components are integrable in the pth power ( 1 6 p < ∞) or are

measurable and esentially bounded (p =∞). W
1,p
0 (Ω,Rr) denotes the Sobolev space of r-dimensional vector

functions f : Ω→ Rr with compactly supported components, possessing first-order weak partial derivatives

and belonging together with them to the space L
p
(Ω,R) ( 1 6 p < ∞). W

1,∞
0 (Ω,Rr) is understood as the

Sobolev space of all r-vector functions f : Ω → Rr with Lipschitz continuous components and boundary

values zero. 11) Jx denotes the Jacobi matrix of the vector function x ∈ W
1,p
0 (Ω,Rr). The abbreviation

“(∀) s ∈ A” has to be read as “for almost all s ∈ A” or “for all s ∈ A except a Lebesgue null set”. Finally,

the symbol o denotes, depending on the context, the zero element or the zero function of the underlying

space. The notion of a polyconvex function will be precisely stated in the following section.

2. Polyconvex functions and polyconvex sets.

In order to describe polyconvexity, we introduce first the following notation for the vector of the minors of

a matricial argument. 12)

08) [Elstrodt 96 ] , p. 208, Corollary 4.9.
09) Cf. also [Pedregal 08 ] .
10) See e. g. the discussion of the hyperelastic registration problem from [Burger/Modersitzki/Ruthotto 13 ] in

Section 6 below.
11) [Evans/Gariepy 92 ] , p. 131, Theorem 5.
12) For all notations related to matricial arguments and polyconvexity, we adopt the conventions from [Dacorogna

08 ] .
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Definition 2.1. (The operator T ) Let n, m > 1 and denote Min(n,m) = n ∧m.

1) We consider elements v ∈ Rnm as (n,m)-matrices and define T (v) =
(
v, T2v, T3v , ... , T(n∧m)v

)
∈

Rτ(n,m) = Rσ(1)×Rσ(2)×Rσ(3)× ... ×Rσ(n∧m) as the row vector consisting of all minors of v: T2v = adj2v,

T3v = adj3v, ... , T(n∧m)v = adj(n∧m)v. Consequently, we have σ(k) =
(
n
k

)
·
(
m
k

)
, 1 6 k 6 n ∧m. The sum

of the dimensions is denoted by τ(n,m) = σ(1) + ... + σ(n ∧m).

2) Let (m ∧ n) 6 p 6 ∞. We consider elements u ∈ Lp(Ω,Rnm) as (n,m)-matrix functions and define the

operator T : L
p
(Ω,Rnm) → L

p
(Ω,Rσ(1) ) × L

p/2
(Ω,Rσ(2)) × Lp/3(Ω,Rσ(3)) × ... × Lp/(n∧m)

(Ω,Rσ(n∧m))

by u 7−→ Tu =
(
u, T2u, T3u , ... , T(n∧m)u

)
with T2u = adj2u, T3u = adj3u, ... , T(n∧m)u = adj(n∧m)u.

Now we may state the definition of a polyconvex function.

Definition 2.2. (Polyconvex function) 13) Consider elements v ∈ Rnm as (n,m)-matrices and elements

V ∈ Rτ(n,m) as row vectors. A function f(v) : Rnm → R ∪{ (+∞) } is called polyconvex iff there exists a

convex function g(V ) : Rτ(n,m) → R ∪{ (+∞) } such that f(v) = g
(
T (v)

)
∀ v ∈ Rnm. The function g is

called a convex representative for the polyconvex function f .

Note that a polyconvex function may possess more than one convex representative. To a given polyconvex

function f , we may associate the special convex representative 14)

g(V ) = inf
{ τ(n,m)+1∑

r=1
λr f(vr)

∣∣ τ(n,m)+1∑
r=1

λr T (vr) = V ,
τ(n,m)+1∑

r=1
λr = 1 , λr > 0 , vr ∈ Rnm , (2.2)

1 6 r 6 τ(n,m) + 1
}
,

which is called the Busemann representative of f . 15) Any polyconvex function is locally Lipschitz contin-

uous on the interior of its effective domain 16) and, consequently, differentiable a. e. on dom (f). However,

stronger smoothness properties as continuous differentiability are not automatically inherited by its convex

representatives. 17) For the purposes of optimal control, it is therefore advisable to state the smoothness

and growth assumptions about the integrand in terms of a fixed convex representative g rather than of the

original function f .

In the special case n = m = 2, we get σ(1) = 4, σ(2) = 1, τ(2, 2) = 5 and T (v) =
(

v
det v

)
. Consequently,

any polyconvex function f : R2×2 → R ∪{ (+∞) } must take the form f(v) = g
(
v, det v

)
with a convex

function g : R5 → R ∪{ (+∞) }. For n = m = 3, we have σ(1) = 9, σ(2) = 9, σ(3) = 1 and τ(3, 3) = 19.

Here adj2 v is the transpose of the cofactor matrix and adj3 v = det v.

Definition 2.3. (Polyconvex set) 18) Consider elements v ∈ Rnm as (n,m)-matrices. A set P ⊆ Rnm is

called polyconvex iff there exists a convex set Q ⊆ Rτ(n,m) such that P =
{
v ∈ Rnm

∣∣ T (v) ∈ Q
}

. The set

Q is called a convex representative for the polyconvex set P.

Equivalently, a set P ⊆ Rnm can be defined as polyconvex iff its indicator function χP : Rnm → R ∪{ (+∞) }
is a polyconvex function. 19) Elementary examples of polyconvex sets are quasiaffine hyperplanes H = { v ∈

13) [Dacorogna 08 ] , p. 156 f., Definition 5.1.(iii).
14) [Dacorogna 08 ] , p. 163, Theorem 5.6., Part 2.
15) [Bevan 06 ] , p. 24, Definition 2.1. Recently, [Eneya/Bosse/Griewank 13 ] provided an effective numerical proce-

dure for the evaluation of g(V ).
16) [Dacorogna 08 ] , p. 47, Theorem 2.31.
17) Cf. [Bevan 03 ] and [Bevan 06 ] , pp. 44 ff., Section 5.
18) [Dacorogna 08 ] , p. 316, Definition 7.2. (ii). The definition goes back to [Dacorogna/Ribeiro 06 ] , p. 108,

Definition 3.1. (ii).
19) [Dacorogna 08 ] , p. 318, Proposition 7.5.
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Rn×m
∣∣ 〈V0 , T (v) 〉 = α0 } for V0 ∈ Rτ(n,m), α0 ∈ R (e. g. the group SO(n) ), open quasiaffine half-spaces

H+ = { v ∈ Rn×n
∣∣ 〈V0 , T (v) 〉 > α0 } (e. g. the group GL+(n) ), polyconvex polytopes obtained as the

polyconvex hull of finitely many points 20) and polyconvex polyhedral sets obtained as the intersection of

finitely many affine and quasiaffine half-spaces. Any convex set is polyconvex as well. 21)

Analogously to polyconvex functions, the convex representative of a polyconvex set is not necessarily uniquely

determined. By the following lemma, the smallest possible convex representative is singled out, which will

be called the precise representative Q̃ of P.

Lemma 2.4. (Precise representative of a polyconvex set) 1) 22) If P ⊆ Rnm is a polyconvex set then

Q̃ = co
{
T (v) ∈ Rτ(n,m)

∣∣ v ∈ P
}

forms a convex representative of P.

2) For any convex representative Q ⊆ Rτ(n,m) of P, it holds that Q̃ ⊆ Q.

Proof. The proof of Part 2) is obvious.

Lemma 2.5. (Compactness of the precise representative) If P ⊂ Rnm is a compact polyconvex set

then its precise convex representative Q̃ ⊂ Rτ(n,m) of P is compact as well.

Proof. Consider the precise representative of P, which is given by Lemma 2.4. through Q̃ = co
{
T (v)

∣∣ v ∈
P
}
⊆ Rτ(n,m). First, the continuous function T : Rnm → Rτ(n,m) maps the compact set P onto a compact

image. Secondly, the convex hull of a compact set is compact again, cf. [Schneider 93 ] , p. 6, Theorem

1.1.10.

3. Existence of optimal solutions.

a) Statement of the control problem and basic assumptions.

We are concerned with the following multidimensional control problem of Dieudonné-Rashevsky type:

(P)0 F (x, u) =

∫
Ω

f(s, x(s), u(s)) ds −→ inf ! ; (3.1)

(x, u) ∈W 1,p
0 (Ω,Rn)× Lp(Ω,Rnm) ; (3.2)

E(x, u) = Jx(s)− u(s) = 0 (∀) s ∈ Ω ; (3.3)

u(s) ∈ K ∩ P ⊂ Rnm (∀) s ∈ Ω . (3.4)

About the data within the problem (P)0, the following assumptions will be imposed:

Assumptions 3.1. (Basic assumptions about the data within (P)0)

1) We assume that n, m > 2 and m < p <∞ (thus n ∧m < p).

2) Ω ⊂ Rm is the closure of a bounded strongly Lipschitz domain, K ⊂ Rnm is a compact convex set with

o ∈ int (K), and P ⊂ Rnm is a nonempty compact, polyconvex set (cf. Definition 2.3. above).

3) The integrand f(s, ξ, v) : Ω×Rn×Rnm → R is continuous with respect to s, ξ and v and polyconvex as

a function of v for all fixed (ŝ, ξ̂) ∈ Ω × Rn.

4) The polyconvex integrand f(s, ξ, v) admits a convex representative g(s, ξ, v, ω) : Ω×Rn×Rnm×
(
Rσ(2)×

Rσ(3)× ...×Rσ(n∧m)
)
→ R, which is continuous with respect to s and continuously differentiable with respect

to ξ, v and ω. Moreover, g satisfies a growth condition

20) Cf. [Dacorogna 08 ] , pp. 323 ff.
21) [Dacorogna 08 ] , p. 318, Theorem 7.7.
22) [Dacorogna 08 ] , p. 317, Theorem 7.4. (iii).
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∣∣ g( s, ξ, v, ω2, ω3, ... , ω(n∧m) )
∣∣ 6 A0(s) + B0(ξ) + C0

(
1 +

∣∣ v ∣∣p +
(n∧m)∑
r=2

∣∣ωr ∣∣p/r ) (3.5)

(∀) s ∈ Ω ∀ (ξ, v, ω) ∈ Rn × Rnm×
(
Rσ(2)×Rσ(3)× ... ×Rσ(n∧m)

)
where A0 ∈ L1

(Ω,R), A0

∣∣ int (Ω) is continuous, B0 is measurable and bounded on every bounded subset of

Rn, and C0 > 0.

b) Convex gradient restriction: existence of global minimizers.

Throughout this subsection, we assume that that P = K. Choosing for the polyconvex integrand f(s, ξ, v)

a convex representative g(s, ξ, v, ω) : Ω ×Rn×Rnm×
(
Rσ(2)×Rσ(3)× ... × Rσ(n∧m)

)
→ R according to

Assumption 3.1., 4), the problem (P)0 may be restated in the following way:

(P)1 G(x, u, w) =

∫
Ω

g(s, x(s), u(s), w(s)) ds −→ inf ! ; (3.6)

(x, u, w) ∈W 1,p
0 (Ω,Rn)× Lp(Ω,Rnm) (3.7)

×
(
L
p/2

(Ω,Rσ(2))× Lp/3(Ω,Rσ(3))× ...× Lp/(n∧m)
(Ω,Rσ(n∧m))

)
;

E1(x, u) = Jx(s)− u(s) = 0 (∀) s ∈ Ω ; (3.8)

E2(u,w) = w2(s)− adj2 u(s) = 0 (∀) s ∈ Ω ; (3.9)

E3(u,w) = w3(s)− adj3 u(s) = 0 (∀) s ∈ Ω ; (3.10)
...

E(n∧m)(u,w) = w(n∧m)(s)− adj(n∧m) u(s) = 0 (∀) s ∈ Ω ; (3.11)

u ∈ U =
{
z1 ∈ Lp(Ω,Rnm)

∣∣ z1(s) ∈ K (∀) s ∈ Ω
}
. (3.12)

Now we are in position to prove an existence theorem based on the equivalence of (P)0 and (P)1.

Theorem 3.2. (Existence of global minimizers for (P)0, convex gradient restriction) Consider

problem (P)0 under Assumptions 3.1. and assume further that P = K.

1) If (x∗, u∗) is a global minimizer of (P)0 then
(
x∗, u∗, T2(u∗), T3(u∗), ... , T(n∧m)(u

∗)
)

is a global mini-

mizer of (P)1. Conversely, if (x∗, u∗, w∗) is a global minimizer of (P)1 then (x∗, u∗) is a global minimizer

of (P)0.

2) There exists a global minimizer (x∗, u∗, w∗) of (P)1. Consequently, there exists a global minimizer (x∗, u∗)

of (P)0 as well.

Proof. 1) Let (x∗, u∗) be a global minimizer of (P)0 and assume that (x, u, w) is a feasible triple within (P)1.

Then, by definition of G, G(x, u, w) = F (x, u) > F (x∗, u∗) = G(x∗, u∗, w∗) with w∗ =
(
T2(u∗), T3(u∗), ... ,

T(n∧m)(u
∗)
)
, and (x∗, u∗, w∗) is a global minimizer of (P)1. On the other hand, let (x∗, u∗, w∗) be a global

minimizer of (P)1 and assume that (x, u) is feasible in (P)0. Then, again by definition of G, we have

F (x, u) = G(x, u, w) > G(x∗, u∗, w∗) = F (x∗, u∗) where w =
(
T2(u), T3(u), ... , T(n∧m)(u)

)
, and (x∗, u∗) is

a global minimizer of (P)0.

2) Due to the control restriction (3.12), the feasible domain B1 of (P)1 forms a bounded subset of W
1,p
0 (Ω,Rn)

× L
∞

(Ω,Rnm) × L
∞

(Ω,Rσ(2)) × L
∞

(Ω,Rσ(3)) × ... × L
∞

(Ω,Rσ(n∧m)) and, consequently, of W
1,p
0 (Ω,Rn)

× L
p
(Ω,Rnm)×Lp/2(Ω,Rσ(2))×Lp/3(Ω,Rσ(3))× ...×Lp/(n∧m)

(Ω,Rσ(n∧m)) as well. As a first consequence

of the growth condition (3.5), the objective (3.6) remains bounded on B1, and (P)1 admits a minimizing

sequence { (xN , uN , wN ) } . Let us confirm that this sequence contains a subsequence, which converges with
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respect to the product of the norm topology of W
1,p
0 (Ω,Rn) and the weak topologies of L

p
(Ω,Rnm) and

L
p/2

(Ω,Rσ(2)) × L
p/3

(Ω,Rσ(3)) × ... × L
p/(n∧m)

(Ω,Rσ(n∧m)) to a feasible element (x̂, û, ŵ). It is clear that

we may pass over to subsequences, which satisfy xN −⇀x̂, uN −⇀û and wN −⇀ŵ (we keep the index N).

By the Rellich-Kondrachev theorem, 23) we may ensure further that xN converges uniformly to x̂, and x̂

satisfies the zero boundary condition. Moreover, the weak continuity of the generalized derivative yields

JxN − uN = E1(xN , uN ) −⇀ E1(x̂, û) = Jx̂− û = o . (3.13)

From [Dacorogna 08 ] , p. 395 f., Theorem 8.20, Parts 3 and 4, we infer that uN = JxN −⇀ Jx̂ = û

implies

adj2 u
N = adj2 Jx

N −⇀ adj2 Jx̂ = adj2 û =⇒ E2(uN , wN ) −⇀ E2(û, ŵ) = o ; (3.14)

adj3 u
N = adj3 Jx

N −⇀ adj3 Jx̂ = adj3 û =⇒ E3(uN , wN ) −⇀ E3(û, ŵ) = o ; (3.15)
...

adj(n∧m) u
N = adj(n∧m) Jx

N −⇀ adj(n∧m) Jx̂ = adj(n∧m)û (3.16)

=⇒ E(n∧m)(u
N , wN ) −⇀ E(n∧m)(û, ŵ) = o .

Note that the set U itself is convex, bounded, closed and weak∗-seqentially compact as a subset of L
p
(Ω,Rnm),

cf. [Rolewicz 76 ] , p. 157, Theorem IV.5.6′, and its proof. Thus û belongs to U, and (x̂, û, ŵ) is feasible in

(P)1.

As a further consequence of the growth condition (3.5), we observe that∣∣ f(s, ξ, v)
∣∣ =

∣∣ g( s, ξ, v, T2(v), T3(v), ... , T(n∧m)(v) )
∣∣ (3.17)

6 A0(s) + B0(ξ) + C0

(
1 +

∣∣ v ∣∣p +
(n∧m)∑
r=2

∣∣Tr(v)
∣∣p/r ) (∀) s ∈ Ω ∀ (ξ, v) ∈ Rn ×K

for almost all s ∈ Ω and arbitrary (ξ, v) ∈ Rn ×K where the sum of the second and third term is a bounded

function on every bounded subset of Rn×K. Consequently, the function f̃(s, ξ, v) : Ω × Rn×Rnm →
R ∪{+(∞) } defined through

f̃(s, ξ, v) = f(s, ξ, v) +

{
0 | (s, ξ, v) ∈ Ω × Rn×K ;

(+∞) | (s, ξ, v) ∈ Ω × Rn× (Rnm \K)
(3.18)

belongs to the function class F̃K described in [Wagner 11 ] , p. 191, Definition 1.1., 2), and the existence

theorems [Wagner 11 ] , p. 193, Theorems 1.4. and 1.5., imply the weak lower semicontinuity relation

lim inf
n→∞

G(xN , uN , wN ) = lim inf
n→∞

∫
Ω

g(s, xN (s), uN (s), wN (s)) ds (3.19)

= lim inf
n→∞

∫
Ω

g
(
s, xN (s), uN (s), T2

(
uN (s)

)
, T3

(
uN (s)

)
, ... , T(n∧m)

(
uN (s)

) )
ds (3.20)

= lim inf
n→∞

∫
Ω

f(s, xN (s), uN (s)) ds = lim inf
n→∞

∫
Ω

f̃(s, xN (s), uN (s)) >
∫

Ω

f̃(s, x̂(s), û(s)) ds (3.21)

=

∫
Ω

f(s, x̂(s), û(s)) ds =

∫
Ω

g(s, x̂(s), û(s), ŵ(s)) ds = G(x̂, û, ŵ) . (3.22)

Thus (x̂, û, ŵ) is a global minimizer of (P)1. Part 1) implies now that (x̂, û) is a global minimizer of (P)0.

23) [Adams/Fournier 07 ] , p. 168, Theorem 6.3.
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Remark 3.3. If the convex representative g(s, ξ, v, ω) does not depend explicitly on certain components

of ω ∈ Rσ(2)×Rσ(3)× ... × Rσ(n∧m) then, obviously, the equations referring to these components may be

omitted from (3.9)− (3.11), and the feasible domain of (P)1 may be considered as a subset of an accordingly

smaller space.

Remark 3.4. Theorem 3.2. remains true if Assumptions 3.1., 3) and 4) are replaced by the following

weaker conditions: 3)′ f(s, ξ, v) is Borel measurable with respect to s, continuous with respect to ξ and v

and polyconvex as a function of v for all fixed (ŝ, ξ̂) ∈
(

Ω \ N
)
× Rn where N ⊂ Ω is a m-dimensional

Lebesgue null set, and 4)′ the convex representative g(s, ξ, v, ω) is Borel measurable with respect to s,

continuously differentiable with respect to ξ, v and ω while still satisfying (3.5). Then the integrand f still

fits into the framework described in [Wagner 11 ] .

c) Polyconvex gradient restriction: existence of global minimizers.

By Lemma 2.5., the compact polyconvex set P admits a convex, compact representative Q ⊂ Rnm × Rσ(2) ×
Rσ(3)× ... × Rσ(n∧m). Choosing for the polyconvex integrand f(s, ξ, v) a convex representative g(s, ξ, v, ω)

as above, we get a reformulation (Q)1 of problem (P)0, which is identical with (P)1 but comprises an addition

control restriction, namely

(Q)1 (3.6) − (3.12) ;

(u,w) ∈W =
{ (

z1, z2, z3, ... , z(n∧m)

)
∈ Lp(Ω,Rnm) × L

p/2
(Ω,Rσ(2)) × L

p/3
(Ω,Rσ(3)) (3.23)

× ... × L
p/(n∧m)

(Ω,Rσ(n∧m))
∣∣ ( z1(s) , z2(s) , z3(s) , ... , z(n∧m)(s)

)
∈ Q (∀) s ∈ Ω

}
.

Theorem 3.5. (Existence of global minimizers for (P)0, polyconvex gradient restriction) Consider

problem (P)0 under Assumptions 3.1.

1) If (x∗, u∗) is a global minimizer of (P)0 then
(
x∗, u∗, T2(u∗), T3(u∗), ... , T(n∧m)(u

∗)
)

is a global mini-

mizer of (Q)1. Conversely, if (x∗, u∗, w∗) is a global minimizer of (Q)1 then (x∗, u∗) is a global minimizer

of (P)0.

2) There exists a global minimizer (x∗, u∗, w∗) of (Q)1 and, consequently, a global minimizer (x∗, u∗) of

(P)0.

Proof. 1) Assume that (x∗, u∗) is a global minimizer of (P)0 and let (x, u, w) be a feasible triple within (Q)1.

Then, by definition of G, G(x, u, w) = F (x, u) > F (x∗, u∗) = G(x∗, u∗, w∗) with w∗ =
(
T2(u∗), T3(u∗), ... ,

T(n∧m)(u
∗)
)
, and (x∗, u∗, w∗) is a global minimizer of (Q)1 as well. Conversely, if (x∗, u∗, w∗) is a global

minimizer of (Q)1 then, again by definition of G, we have F (x, u) = G(x, u, w) > G(x∗, u∗, w∗) = F (x∗, u∗)

for every feasible pair (x, u) within (P)0 where w =
(
T2(u), T3(u), ... , T(n∧m)(u)

)
. Consequently, (x∗, u∗)

forms a global minimizer of (P)0.

2) Observe that the set W defined in (3.23) is nonempty and convex together with the convex set Q. Moreover,

due to the existence of a. e. pointwise convergent subsequences, the restriction
(
z1(s) , z2(s) , z3(s) , ... ,

, z(n∧m)(s)
)
∈ Q will be conserved under norm convergence in the space L

p
(Ω,Rnm) × L

p/2
(Ω,Rσ(2)) ×

L
p/3

(Ω,Rσ(3)) × ... × L
p/(n∧m)

(Ω,Rσ(n∧m)). Consequently, W is closed in norm and weakly sequentially

compact as a subset of the mentioned space. Now the same arguments as in the proof of Theorem 3.2, 2)

apply.
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4. Pontryagin’s principle: polyconvex integrand and convex gradient restrictions.

a) The special case n = m = 2.

First, let us illustrate the assertions of our main theorems in the simplest case with dimensions n = m = 2.

Then a global minimizer of (P)0 must satisfy the following first-order necessary optimality conditions.

Theorem 4.1. (Pontryagin’s principle for (P)0 with n = m = 2, convex restrictions) 24) Consider

the problem (P)0 with n = m = 2 under Assumptions 3.1. mentioned above and choose for the polyconvex

integrand f(s, ξ, v) in (P)0 a convex representative g(s, ξ, v, ω2) in accordance with Assumption 3.1., 4).

Assume further that P = K. If (x∗, u∗) is a global minimizer of (P)0 then there exist multipliers λ0 > 0,

y(1) ∈ Lp/(p−1)
(Ω,R4) and y(2) ∈ Lp/(p−2)

(Ω,R) such that the following conditions are satisfied:

(M) λ0

∫
Ω

(
g( s, x∗(s), u(s), w2(s) )− g( s, x∗(s), u∗(s),detu∗(s) )

)
ds−

∫
Ω

(
u(s)− u∗(s)

)T
y(1)(s) ds (4.1)

+

∫
Ω

(
w2(s)− detu∗(s)

)
y(2)(s) ds −

∫
Ω

∇v det
(
u∗(s)

)T (
u(s)− u∗(s)

)
y(2)(s) ds > 0

∀u ∈ U = { z1 ∈ Lp(Ω,Rnm)
∣∣ z1(s) ∈ K (∀) s ∈ Ω } ∀w2 ∈ Lp/2(Ω,R) ;

(K) λ0

2∑
i=1

∫
Ω

∂g

∂ξi
( s, x∗(s), u∗(s),detu∗(s) )

(
xi(s)− x∗i (s)

)
ds (4.2)

+
2∑
i=1

2∑
j=1

∫
Ω

( ∂xi
∂sj

(s)− ∂x∗i
∂sj

(s)
)
y

(1)
ij (s) ds = 0 ∀x ∈W 1,p

0 (Ω,R2) .

Theorem 4.2. (Pointwise maximum condition for (P)0 with n = m = 2) 25) Consider the problem

(P)0 with n = m = 2 under the Assumptions 3.1. mentioned above and choose for the polyconvex integrand

f(s, ξ, v) in (P)0 a convex representative g(s, ξ, v, ω2) in accordance with Assumption 3.1., 4). Assume

further that P = K. If (x∗, u∗) is a global minimizer of (P)0 then the maximum condition (M) from

Theorem 4.1. implies the following pointwise maximum condition:

(MP) λ0

(
g( s, x∗(s), v, ω2 )− g( s, x∗(s), u∗(s),detu∗(s) )

)
−

2∑
i=1

2∑
j=1

(
vij − u∗ij(s)

)
y

(1)
ij (s) (4.3)

+
(
ω2 − detu∗(s)

)
y(2)(s) −

2∑
i=1

2∑
j=1

∂

∂vij
det(u∗(s) )

(
vij − u∗ij(s)

)
y(2)(s) > 0

(∀) s ∈ Ω ∀ v ∈ K ∀ω2 ∈ R .

Obviously, (MP) can be decomposed into the separated conditions

(MP)1 λ0

(
g( s, x∗(s), v,detu∗(s) )− g( s, x∗(s), u∗(s),detu∗(s) )

)
(4.4)

−
2∑
i=1

2∑
j=1

(
y

(1)
ij (s) +

∂

∂vij
det (u∗(s) ) y(2)(s)

) (
vij − u∗ij(s)

)
> 0 (∀) s ∈ Ω ∀ v ∈ K ;

(MP)2 λ0

(
g( s, x∗(s), u∗(s), ω2 )− g( s, x∗(s), u∗(s),detu∗(s) )

)
(4.5)

+
(
ω2 − detu∗(s)

)
y(2)(s) > 0 (∀) s ∈ Ω ∀ω2 ∈ R .

24) Special case of Theorem 4.3. below.
25) Special case of Theorem 4.4. below.
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b) The main theorems in the general case n > 2, m > 2.

For general dimensions n > 2, m > 2, the first-order necessary optimality conditions for a global minimizer

of the multidimensional control problem (P)0 will be stated in the following main theorem.

Theorem 4.3. (Pontryagin’s principle for (P)0, convex restrictions) Consider the problem (P)0

under Assumptions 3.1. and choose for the polyconvex integrand f(s, ξ, v) in (P)0 a convex representative

g(s, ξ, v, ω) in accordance with Assumption 3.1., 4). Assume further that P = K. If (x∗, u∗) is a global

minimizer of (P)0 then there exist multipliers λ0 > 0, y(1) ∈ Lp/(p−1)
(Ω,Rnm), y(2) ∈ Lp/(p−2)

(Ω,Rσ(2)),

y(3) ∈ Lp/(p−3)
(Ω,Rσ(3)), ... , y(n∧m) ∈ Lp/(p−(n∧m))

(Ω, Rσ(n∧m)) such that the following conditions are

satisfied:

(M) λ0

∫
Ω

(
g( s, x∗(s), u(s), w(s) )− g( s, x∗(s), u∗(s), w∗(s) )

)
ds −

∫
Ω

(
u(s)− u∗(s)

)T
y(1)(s) ds (4.6)

+
(n∧m)∑
r=2

∫
Ω

(
wr(s)− w∗r(s)

)T
y(r)(s) ds −

(n∧m)∑
r=2

∫
Ω

∇v adjr(u
∗(s) )

(
u(s)− u∗(s)

)T
y(r)(s) ds > 0

∀u ∈ U = { z1 ∈ Lp(Ω,Rnm)
∣∣ z1(s) ∈ K (∀) s ∈ Ω }

∀w2 ∈ Lp/2(Ω,Rσ(2)) ∀w3 ∈ Lp/3(Ω,Rσ(3)) ... ∀w(n∧m) ∈ L
p/(n∧m)

(Ω,Rσ(n∧m)) ;

(K) λ0

n∑
i=1

∫
Ω

∂g

∂ξi
( s, x∗(s), u∗(s), w∗(s) )

(
xi(s)− x∗i (s)

)
ds (4.7)

+
n∑
i=1

m∑
j=1

∫
Ω

( ∂xi
∂sj

(s)− ∂x∗i
∂sj

(s)
)
y

(1)
ij (s) ds = 0 ∀x ∈W 1,p

0 (Ω,Rn) .

Note that the regular case always occurs, i. e. λ0 6= 0.

The following assertion shows that the condition (M) from Theorem 4.3. implies a pointwise maximum

condition.

Theorem 4.4. (Pointwise maximum condition for (P)0) Consider the problem (P)0 under Assump-

tions 3.1. and choose for the polyconvex integrand f(s, ξ, v) in (P)0 a convex representative g(s, ξ, v, ω) in

accordance with Assumption 3.1., 4). Assume further that P = K. If (x∗, u∗) is a global minimizer of (P)0

then the maximum condition (M) from Theorem 4.3. implies the following pointwise maximum condition:

(MP) λ0

(
g( s, x∗(s), v, ω )− g( s, x∗(s), u∗(s), w∗(s) )

)
−
(
v − u∗(s)

)T
y(1)(s) (4.8)

+
(n∧m)∑
r=2

(
ωr − w∗r(s)

)T
y(r)(s) −

(n∧m)∑
r=2

∇v adjr(u
∗(s) )

(
v − u∗(s)

)T
y(r)(s) > 0

(∀) s ∈ Ω ∀ v ∈ K ∀ω2 ∈ Rσ(2) ∀ω3 ∈ Rσ(3) ... ∀ω(n∧m) ∈ Rσ(n∧m) .

Obviously, (MP) can be further decomposed into the following set of separated conditions:

(MP)1 λ0

(
g( s, x∗(s), v, w∗(s) )− g( s, x∗(s), u∗(s), w∗(s) )

)
(4.9)

−
(
v − u∗(s)

)T
y(1)(s) −

(n∧m)∑
r=2

∇v adjr(u
∗(s) )

(
v − u∗(s)

)T
y(r)(s) > 0 (∀) s ∈ Ω ∀ v ∈ K ;

(MP)2 λ0

(
g( s, x∗(s), u∗(s), ω2, w

∗
3(s), ... , w∗(n∧m)(s) )− g( s, x∗(s), u∗(s), w∗(s) )

)
(4.10)

+
(
ω2 − w∗2(s)

)T
y(2)(s) > 0 (∀) s ∈ Ω ∀ω2 ∈ Rσ(2) ;
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(MP)3 λ0

(
g( s, x∗(s), u∗(s), w∗2(s), ω3, ... , w

∗
(n∧m)(s) )− g( s, x∗(s), u∗(s), w∗(s) )

)
(4.11)

+
(
ω3 − w∗3(s)

)T
y(3)(s) > 0 (∀) s ∈ Ω ∀ω3 ∈ Rσ(3) ;

...

(MP)(n∧m) λ0

(
g( s, x∗(s), u∗(s), w∗2(s), w∗3(s), ... , ω(n∧m) )− g( s, x∗(s), u∗(s), w∗(s) )

)
(4.12)

+
(
ω(n∧m) − w∗(n∧m)(s)

)T
y(n∧m)(s) > 0 (∀) s ∈ Ω ∀ω(n∧m) ∈ Rσ(n∧m) .

c) Proof of Theorem 4.3.

Sketch of the proof. The proof of Theorem 4.3. is based on the equivalence of the problems (P)0 and (P)1.

Thus to the given global minimizer (x∗, u∗) of (P)0, a global minimizer (x∗, u∗, w∗) of (P)1 corresponds,

which will be used in order to define a pair of convex variational sets C and D as subsets of the space

R×Lp(Ω,Rnm)×Lp/2(Ω,Rσ(2))×Lp/3(Ω,Rσ(3))× ... ×Lp/(n∧m)
(Ω,Rσ(n∧m)). We establish first that the

interior of D is nonempty (Step 1). Although the usual regularity condition for the equality operator E1

fails, 26) we are able to show that C ∩ D = Ø by applying Lyusternik’s theorem to the operators E2, E3, ... ,

E(n∧m) (Steps 2− 4). This fact allows for the application of the weak separation theorem and a subsequent

derivation of the first-order necessary optimality conditions from the resulting variational inequality (Steps

5, 6 and 7).

• Step 1. The variational sets C and D. Assume that a global minimizer (x∗, u∗) of (P)0 is given. Then, by

Theorem 3.2., 1), (x∗, u∗, w∗) =
(
x∗, u∗, T2(u∗), T3(u∗), ... , T(n∧m)(u

∗)
)

is a global minimizer of (P)1. We

define the variational sets

C =
{ (

%, z1, z2, z3, ... , z(n∧m)

)
(4.13)

∈ R×Lp(Ω,Rnm)× Lp/2(Ω,Rσ(2))× Lp/3(Ω,Rσ(3))× ... × Lp/(n∧m)
(Ω,Rσ(n∧m)) with

% = ε+DxG(x∗, u∗, w∗)(x− x∗) +DuG(x∗, u∗, w∗)(u− u∗) +DwG(x∗, u∗, w∗)(w − w∗) ; (4.14)

z1 = Jx− Jx∗ − (u− u∗) ; (4.15)

z2 = (w2 − w∗2)−DuT2(u∗)(u− u∗) ; (4.16)
...

z(n∧m) = (w(n∧m) − w∗(n∧m))−DuT(n∧m)(u
∗)(u− u∗) ; (4.17)

ε > 0 , x ∈W 1,p
0 (Ω,Rn) , (4.18)

u ∈ U , w2 ∈ Lp/2(Ω,Rσ(2)) , w3 ∈ Lp/3(Ω,Rσ(3)) , ... , w(n∧m) ∈ L
p/(n∧m)

(Ω,Rσ(n∧m))
}

; (4.19)

D =
{ (

%, z1, z2, z3, ... , z(n∧m)

)
(4.20)

∈ R×Lp(Ω,Rnm)× Lp/2(Ω,Rσ(2))× Lp/3(Ω,Rσ(3))× ... × Lp/(n∧m)
(Ω,Rσ(n∧m)) with

% < 0 ; (4.21)

z1 ∈ K(o, 1
2 | % |/K0) ⊂ Lp(Ω,Rnm) ; (4.22)

z2 ∈ K(o, 1
2 | % |/K0) ⊂ Lp/2(Ω,Rσ(2)) ; (4.23)

...

z(n∧m) ∈ K(o, 1
2 | % |/K0) ⊂ Lp/(n∧m)

(Ω,Rσ(n∧m))
}

(4.24)

The value of the constant K0 > 0 will be chosen according to Proposition 4.7. below.

Proposition 4.5. The variational sets C and D are nonempty and convex with int (D) 6= Ø.

26) See [ Ioffe/Tichomirow 79 ] , p. 73 f., Theorem 3, Assumption c), and [ Ito/Kunisch 08 ] , p. 5 f.
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Proof. The set C contains the origin and is convex together with U and K. Consider two points
(
%′, z′1, z

′
2,

z′3, ... , z
′
(n∧m)

)
,
(
%′′, z′′1 , z

′′
2 , z

′′
3 , ... , z

′′
(n∧m)

)
∈ D and parameters λ′, λ′′ ∈ [ 0 , 1 ] , λ′ + λ′′ = 1. It follows

that λ′ %′ + λ′′ %′′ < 0, and ‖λ′ z′k + λ′′ z′′k ‖Lp/k 6 λ′ ‖ z′k ‖Lp/k + λ′′ ‖ z′′k ‖Lp/k 6 1
2

(
λ′ | %′ |+ λ′′ | %′′ |

)
/K0 =

1
2 |λ

′ %′+λ′′ %′′ | /K0, 1 6 k 6 n∧m. Consequently, the convex combination belongs to D as well. Obviously,

the point
(
−1, o, o, o, ... , o

)
belongs to int (D)

• Step 2. Definition of the sets Cη. We denote by G =
{
z1 ∈ Lp(Ω,Rnm)

∣∣ ∃x ∈ W 1,p
0 (Ω,Rn) such that

z1 = Jx
}

the subspace of the “gradients” within L
p
(Ω,Rnm) and by U0 = U ∩ G the subset of those

admissible controls of (P)0, which may be completed to feasible pairs for (P)0. For every η > 0, we define a

set

Cη =
{ (

%, z1, z2, z3, ... , z(n∧m)

)
(4.25)

∈ R×Lp(Ω,Rnm)× Lp/2(Ω,Rσ(2))× Lp/3(Ω,Rσ(3))× ... × Lp/(n∧m)
(Ω,Rσ(n∧m)) with

z1 = Jx− Jx∗ − (u− u∗) , ‖ z1 ‖Lp 6 η ; (4.26)

z2 = (w2 − w∗2)−DuT2(u∗)(u− u∗) , ‖ z2 ‖Lp/2 6 η ; (4.27)

...

z(n∧m) = (w(n∧m) − w∗(n∧m))−DuT(n∧m)(u
∗)(u− u∗) , ‖ z(n∧m) ‖Lp/(n∧m) 6 η ; (4.28)

x ∈W 1,p
0 (Ω,Rn) , u ∈ U0 + K(o, η) ⊂ Lp(Ω,Rnm) , (4.29)

w2 ∈ Lp/2(Ω,Rσ(2)) , w3 ∈ Lp/3(Ω,Rσ(3)) , ... , w(n∧m) ∈ L
p/(n∧m)

(Ω,Rσ(n∧m))
}
. (4.30)

• Step 3. Proposition 4.6. If the point
(
%, z1, z2, z3, ... , z(n∧m)

)
is contained in D then it belongs to

Cη with η = 1
2 | % |/K0 as well.

Proof. Let an element
(
%, z1, z2, z3, ... , z(n∧m)

)
∈ D be given. By definition, we have ‖ z1 ‖Lp 6 η , ... ,

‖ z(n∧m) ‖Lp/(n∧m) 6 η with η = 1
2 | % |/K0. We must confirm that the components can be represented through

z1 = Jx− Jx∗ − (u− u∗) ; (4.31)

z2 = (w2 − w∗2)−DuT2(u∗)(u− u∗) ; (4.32)
...

z(n∧m) = (w(n∧m) − w∗(n∧m))−DuT(n∧m)(u
∗)(u− u∗) (4.33)

with functions x ∈W 1,p
0 (Ω,Rn), u ∈ U0 + K(o, η) ⊂ Lp(Ω,Rnm), w2 ∈ Lp/2(Ω,Rσ(2)), w3 ∈ Lp/3(Ω, Rσ(3)),

... , w(n∧m) ∈ L
p/(n∧m)

(Ω,Rσ(n∧m)). Indeed, since o ∈ U0 ⊂ L
p
(Ω,Rnm) and ‖ z1 ‖Lp 6 η, we may choose

x = o ∈ W 1,p
0 (Ω,Rn), u = o + z1 ∈ U0 + K(o, η) ⊂ L

p
(Ω,Rnm), w2 = z2 + DuT2(u∗)z1 ∈ Lp/2(Ω,Rσ(2)),

w3 = z3 + DuT3(u∗)z1 ∈ Lp/3(Ω,Rσ(3)), ... , w(n∧m) = z(n∧m) + DuT(n∧m)(u
∗)z1 ∈ Lp/(n∧m)

(Ω,Rσ(n∧m)),

thus obtaining the claimed representation.

• Step 4. Proposition 4.7. Let η > 0 be given. If
(
%, z1, z2, z3, ... , z(n∧m)

)
belongs to Cη ∩ C then it

follows that % > −K0 η where K0 > 0 is a constant independent of η.

Proof. The proof of Proposition 4.7. will be delivered in several steps.

Step 4.1. Assume that an element
(
%, z1, z2, z3, ... , z(n∧m)

)
belongs to the intersection Cη ∩ C. Conse-

quently, there exist a number ε̃ > 0 and functions x̃ ∈W 1,p
0 (Ω,Rn), ũ ∈ U ∩

(
U0 + K(o, η)

)
⊂ Lp(Ω,Rnm),

w̃2 ∈ Lp/2(Ω,Rσ(2)), w̃3 ∈ Lp/3(Ω,Rσ(3)), ... , w̃(n∧m) ∈ L
p/(n∧m)

(Ω,Rσ(n∧m)) such that (ũ, w̃) ∈W and

% = ε̃+DxG(x∗, u∗, w∗)(x̃− x∗) +DuG(x∗, u∗, w∗)(ũ− u∗) +DwG(x∗, u∗, w∗)(w̃ − w∗) ; (4.34)

z1 = Jx̃− Jx∗ − (ũ− u∗) ; (4.35)

z2 = (w̃2 − w∗2)−DuT2(u∗)(ũ− u∗) ; (4.36)
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...

z(n∧m) = (w̃(n∧m) − w∗(n∧m))−DuT(n∧m)(u
∗)(ũ− u∗) as well as (4.37)

‖ z1 ‖Lp 6 η , ‖ z2 ‖Lp/2 6 η , ‖ z3 ‖Lp/3 6 η , ... , ‖ z(n∧m) ‖Lp/(n∧m) 6 η . (4.38)

First, in relation to ũ ∈ U0+K(o, η), we find u0 ∈ U0 with u0 = Jx0, x0 ∈W 1,p
0 (Ω,Rn), and ‖ ũ− u0 ‖ 6 η. 27)

Thus we obtain

o = Jx0 − Jx∗ − (u0 − u∗) and (4.39)

‖ Jx̃− Jx0 ‖Lp = ‖ Jx̃− u0 ‖Lp 6 ‖ Jx̃− ũ ‖Lp + ‖ ũ− u0 ‖Lp 6 2 η =⇒ (4.40)

‖ x̃− x0 ‖W 1,p
0

6 C1 ‖ Jx̃− Jx0 ‖Lp 6 2C1 η (4.41)

by application of the Poincaré inequality with constant C1 > 0. 28) Next, we find that

w̃2 − w∗2 = DuT2(u∗)(ũ− u∗) + z2 = DuT2(u∗)(ũ− u0) +DuT2(u∗)(u0 − u∗) + z2 =⇒ (4.42)(
w̃2 −DuT2(u∗)(ũ− u0)− z2

)
− w∗2 = DuT2(u∗)(u0 − u∗) . (4.43)

Using the abbreviation w̃2 −DuT2(u∗)(ũ− u0)− z2 = w0
2 ∈ L

p/2
(Ω,Rσ(2)), we obtain

o = (w0
2 − w∗2)−DuT2(u∗)(u0 − u∗) and (4.44)

‖w0
2 − w̃2 ‖Lp/2 6 ‖DuT2(u∗) ‖L(Lp,Lp/2) · ‖ ũ− u

0 ‖Lp + ‖ z2 ‖Lp/2 6 (1 + C2) η . (4.45)

Analogously, we find elements w0
3 ∈ L

p/3
(Ω,Rσ(3)), ... , w0

(n∧m) ∈ L
p/(n∧m)

(Ω,Rσ(n∧m)) such that

o = (w0
3 − w∗3)−DuT3(u∗)(u0 − u∗) and (4.46)

‖w0
3 − w̃3 ‖Lp/3 6 ‖DuT3(u∗) ‖L(Lp,Lp/3) · ‖ ũ− u

0 ‖Lp + ‖ z3 ‖Lp/3 6 (1 + C3) η ; (4.47)

...

o = (w0
(n∧m) − w

∗
(n∧m))−DuT(n∧m)(u

∗)(u0 − u∗) and (4.48)

‖w0
(n∧m) − w̃(n∧m) ‖Lp/(n∧m) 6 ‖DuT(n∧m)(u

∗) ‖L(Lp,Lp/(n∧m))
· ‖ ũ− u0 ‖Lp (4.49)

+ ‖ z(n∧m) ‖Lp/(n∧m) 6 (1 + C(n∧m)) η .

The constants C2 > 0, C3 > 0, ... , C(n∧m) > 0 depend only on (x∗, u∗) and the data of (P)0.

• Step 4.2. Let us invoke now Lyusternik’s theorem, which reads as follows:

Theorem 4.8. (Ljusternik’s theorem) 29) Consider Banach spaces X, Y, the (possibly nonlinear) operator

M : X → Y and its kernel M = { r ∈ X
∣∣ M(r) = o }. If r∗ ∈ M, M is continuously Fréchet differentiable

in a neighbourhood of r∗ and DM(r∗) maps onto Y then the set of the tangential vectors for M at the point

r∗ coincides with the kernel { r ∈ X
∣∣ DM(r∗)(r) = o }.

Let us apply Theorem 4.8. to the data

X = L
p
(Ω,Rnm) × L

p/2
(Ω,Rσ(2)) × L

p/3
(Ω,Rσ(3)) × ... × L

p/(n∧m)
(Ω,Rσ(n∧m)) ; (4.50)

Y = L
p/2

(Ω,Rσ(2)) × L
p/3

(Ω,Rσ(3)) × ... × L
p/(n∧m)

(Ω,Rσ(n∧m)) ; (4.51)

M =
(
E2 , ... , E(n∧m)

)
; (4.52)

r∗ = (u∗, w∗) . (4.53)

27) If η = 0 then we may employ u0 = ũ, x0 = x̃ and w0 = w̃ throughout the proof.
28) [Adams/Fournier 07 ] , p. 184, Corollary 6.31.
29) [ Ioffe/Tichomirow 79 ] , p. 42.
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Then we may observe that the Fréchet derivative DM(u∗, w∗) : X×Y → Y, which is given through

DM(u∗, w∗)(u− u∗, w − w∗) =


w2 − w∗2 −DuT2(u∗)(u− u∗)
w3 − w∗3 −DuT3(u∗)(u− u∗)

...

w(n∧m) − w∗(n∧m) −DuT(n∧m)(u
∗)(u− u∗)

 , (4.54)

is a mapping onto the target space Y. The continuity of DM with respect to the reference point is obvious.

Consequently, equations (4.39), (4.44), (4.46) − (4.48) imply that (u0 − u∗, w0 − w∗) is a tangential vector

for the set M = { (u,w) ∈ X
∣∣ M(u,w) = o } at (u∗, w∗), and we find elements

(
Q(u0, λ) , R(w0, λ)

)
∈ X

satisfying(
u∗ + λ (u0 − u∗) +Q(u0, λ) , w∗ + λ (w0 − w∗) +R(w0, λ)

)
∈ M ⇐⇒ (4.55)

w∗2(s) + λ (w0
2 − w∗2) +R2(w0, λ)− adj2

(
u∗(s) + λ (u0 − u∗) +Q(u0, λ)

)
= 0 (∀) s ∈ Ω ; (4.56)

w∗3(s) + λ (w0
3 − w∗3) +R3(w0, λ)− adj3

(
u∗(s) + λ (u0 − u∗) +Q(u0, λ)

)
= 0 (∀) s ∈ Ω ; (4.57)

...

w∗(n∧m)(s) + λ (w0
(n∧m) − w

∗
(n∧m)) +R(n∧m)(w

0, λ) (4.58)

− adj(n∧m)

(
u∗(s) + λ (u0 − u∗) +Q(u0, λ)

)
= 0 (∀) s ∈ Ω

for all sufficiently small 0 6 λ < 1 where

lim
λ→0+0

λ−1 ‖Q(u0, λ) ‖Lp = 0 ; (4.59)

lim
λ→0+0

λ−1 ‖R2(w0, λ) ‖Lp/2 = 0 ; (4.60)

...

lim
λ→0+0

λ−1 ‖R(n∧m)(w
0, λ) ‖

Lp/(n∧m) = 0 . (4.61)

• Step 4.3. Let us decompose

adj2
(
u∗(s) + λ (u0 − u∗) +Q(u0, λ)

)
= adj2

(
u∗(s) + λ (u0 − u∗)

)
+ S2(u∗, u0, λ) ; (4.62)

adj3
(
u∗(s) + λ (u0 − u∗) +Q(u0, λ)

)
= adj3

(
u∗(s) + λ (u0 − u∗)

)
+ S3(u∗, u0, λ) ; (4.63)

...

adj(n∧m)

(
u∗(s) + λ (u0 − u∗) +Q(u0, λ)

)
= adj(n∧m)

(
u∗(s) + λ (u0 − u∗)

)
+ S(n∧m)(u

∗, u0, λ) . (4.64)

Consequently, we have

w∗2(s) + λ (w0
2 − w∗2) +R2(w0, λ)− S2(u∗, u0, λ)− adj2

(
u∗(s) + λ (u0 − u∗)

)
= 0 ; (4.65)

w∗3(s) + λ (w0
3 − w∗3) +R3(w0, λ)− S3(u∗, u0, λ)− adj3

(
u∗(s) + λ (u0 − u∗)

)
= 0 ; (4.66)

...

w∗(n∧m)(s) + λ (w0
(n∧m) − w

∗
(n∧m)) +R(n∧m)(w

0, λ)− S(n∧m)(u
∗, u0, λ) (4.67)

− adj(n∧m)

(
u∗(s) + λ (u0 − u∗)

)
= 0 ,

and the triples(
x∗ + λ (x0 − x∗) , u∗ + λ (u0 − u∗) , w∗ + λ (w0 − w∗) +R(w0, λ)− S(u∗, u0, λ)

)
(4.68)
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are feasible in (P)1 for all sufficiently small 0 < λ < 1. We will convince ourselves that the expressions

S(u∗, u0, λ) satisfy limit relations analogous to R(w0, λ).

• Step 4.4. Lemma 4.9. It holds that lim
λ→0+0

λ−1 ‖S2(u∗, u0, λ) ‖Lp/2 = 0, lim
λ→0+0

λ−1 ‖S3(u∗, u0, λ) ‖Lp/3

= 0, ... , lim
λ→0+0

λ−1 ‖S(n∧m)(u
∗, u0, λ) ‖

Lp/(n∧m) = 0.

Proof. We start with expanding (4.62). Then to every index 1 6 l 6 σ(2) correspond indices 1 6 i < k 6 n,

1 6 j < r 6 m such that

S2,l(u
∗, u0, λ) =

(
u∗ij + λ (u0

ij − u∗ij)
)
Qkr(u

0, λ)−
(
u∗kj + λ (u0

kj − u∗kj)
)
Qir(u

0, λ) (4.69)

+ Qij(u
0, λ)

(
u∗kr + λ (u0

kr − u∗kr)
)
−Qkj(u0, λ)

(
u∗ir + λ (u0

ir − u∗ir)
)

+Qij(u
0, λ)Qkr(u

0, λ)−Qkj(u0, λ)Qir(u
0, λ) =⇒∫

Ω

∣∣S2,l(u
∗, u0, λ)

∣∣p/2 ds 6 C
(∫

Ω

∣∣Qkr(u0, λ)
∣∣p/2 ds+

∫
Ω

∣∣Qir(u0, λ)
∣∣p/2 ds+

∫
Ω

∣∣Qij(u0, λ)
∣∣p/2 ds (4.70)

+

∫
Ω

∣∣Qkj(u0, λ)
∣∣p/2 ds+

∫
Ω

∣∣Qij(u0, λ)Qkr(u
0, λ)

∣∣p/2 ds+

∫
Ω

∣∣Qkj(u0, λ)Qir(u
0, λ)

∣∣p/2 ds)
since

(
u∗ij(s) + λ (u0

ij(s) − u∗ij(s))
)
,
(
u∗kj(s) + λ (u0

kj(s) − u∗kj(s))
)
,
(
u∗kr(s) + λ (u0

kr(s) − u∗kr(s))
)

and(
u∗ir(s) + λ (u0

ir(s)− u∗ir(s))
)

belong to the compact set K for almost all s ∈ Ω. This implies the estimate

‖S2,l(u
∗, u0, λ) ‖Lp/2(Ω) (4.71)

6 C
(
‖Qkr(u0, λ) ‖Lp/2(Ω) + ‖Qir(u0, λ) ‖Lp/2(Ω) + ‖Qij(u0, λ) ‖Lp/2(Ω) + ‖Qkj(u0, λ) ‖Lp/2(Ω)

+ ‖Qij(u0, λ) ‖Lp(Ω) · ‖Qkr(u
0, λ) ‖Lp(Ω) + ‖Qkj(u0, λ) ‖Lp(Ω) · ‖Qir(u

0, λ) ‖Lp(Ω)

)
6 C̃

(
‖Qkr(u0, λ) ‖Lp(Ω) + ‖Qr(u0, λ) ‖Lp(Ω) + ‖Qij(u0, λ) ‖Lp(Ω) + ‖Qkj(u0, λ) ‖Lp(Ω) (4.72)

+ ‖Qij(u0, λ) ‖Lp(Ω) · ‖Qkr(u
0, λ) ‖Lp(Ω) + ‖Qkj(u0, λ) ‖Lp(Ω) · ‖Qir(u

0, λ) ‖Lp(Ω)

)
=⇒

lim
λ→0+0

λ−1 ‖S2,l(u
∗, u0, λ) ‖Lp/2 6 C̃

(
lim

λ→0+0
λ−1 ‖Qkr(u0, λ) ‖Lp(Ω) + lim

λ→0+0
λ−1 ‖Qir(u0, λ) ‖Lp(Ω) (4.73)

+ lim
λ→0+0

λ−1 ‖Qij(u0, λ) ‖Lp(Ω) + lim
λ→0+0

λ−1‖Qkj(u0, λ) ‖Lp(Ω)

+ lim
λ→0+0

λ−1 ‖Qij(u0, λ) ‖Lp(Ω) · lim
λ→0+0

‖Qkr(u0, λ) ‖Lp(Ω)

+ lim
λ→0+0

λ−1 ‖Qkj(u0, λ) ‖Lp(Ω) · lim
λ→0+0

‖Qir(u0, λ) ‖Lp(Ω)

)
= 0 (4.74)

by assumption about Q(u0, λ). Analogously, the limit relations λ−1 ‖S3,l(u
∗, u0, λ) ‖Lp/3 → 0 for all 1 6 l 6

σ(3), ... , λ−1 ‖S(n∧m),l(u
∗, u0, λ) ‖

Lp/(n∧m) → 0 for all 1 6 l 6 σ(n ∧m) may be confirmed.

• Step 4.5. We compute the limit

lim
λ→0+0

1

λ

(
G
(
x∗ + λ (x0 − x∗) , u∗ + λ (u0 − u∗) , (4.75)

w∗ + λ (w0 − w∗) +R(w0, λ)− S(u∗, u0, λ)
)
− G(x∗, u∗, w∗)

)
= lim

λ→0+0

1

λ

(
G
(
x∗ + λ (x0 − x∗) , u∗ + λ (u0 − u∗) , w∗ + λ (w0 − w∗) +R(w0, λ)− S(u∗, u0, λ)

)
(4.76)

−G
(
x∗ , u∗ + λ (u0 − u∗) , w∗ + λ (w0 − w∗) +R(w0, λ)− S(u∗, u0, λ)

))
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+ lim
λ→0+0

1

λ

(
G
(
x∗ , u∗ + λ (u0 − u∗) , w∗ + λ (w0 − w∗) +R(w0, λ)− S(u∗, u0, λ)

)
−G

(
x∗ , u∗ , w∗ + λ (w0 − w∗) +R(w0, λ)− S(u∗, u0, λ)

) )
+ lim

λ→0+0

1

λ

(
G
(
x∗ , u∗ , w∗ + λ (w0 − w∗) +R(w0, λ)− S(u∗, u0, λ)

)
−G(x∗, u∗, w∗)

)
= DxG(x∗, u∗, w∗) (x0 − x∗) +DuG(x∗, u∗, w∗) (u0 − u∗) +DwG(x∗, u∗, w∗) (w0 − w∗) > 0 (4.77)

since, by Step 4.3., the variation runs along a feasible direction. Inequality (4.77) implies that

DxG(x∗, u∗, w∗) (x̃− x∗) +DuG(x∗, u∗, w∗) (ũ− u∗) +DwG(x∗, u∗, w∗) (w̃ − w∗) (4.78)

+DxG(x∗, u∗, w∗) (x0 − x̃) +DuG(x∗, u∗, w∗) (u0 − ũ) +DwG(x∗, u∗, w∗) (w0 − w̃) > 0 .

By Assumption 3.1., 4), the operators DxG(x∗, u∗, w∗), DuG(x∗, u∗, w∗) and DwG(x∗, u∗, w∗) are bounded.

Consequently, the first component % of our element from Step 4.1. satisfies

% = ε̃+DxG(x∗, u∗, w∗) (x̃− x∗) +DuG(x∗, u∗, w∗) (ũ− u∗) +DwG(x∗, u∗, w∗) (w̃ − w∗) (4.79)

> −
(∥∥DxG(x∗, u∗, w∗)

∥∥ · ‖x0 − x̃ ‖Lp +
∥∥DuG(x∗, u∗, w∗)

∥∥ · ‖u0 − ũ ‖Lp (4.80)

+
∥∥DwG(x∗, u∗, w∗)

∥∥ ·(n∧m)∑
r=2

‖w0
r − w̃r ‖Lp/r

)
> −C0

(
2C1 + 1 +

(n∧m)∑
r=2

(1 + Cr)
)
η = −K0 η (4.81)

where (4.41), (4.45), (4.47) and (4.49) have been used, and the proof of Proposition 4.7. is complete.

In particular, Proposition 4.7. implies that the origin
(

0, o, o, o, ... , o
)
, which belongs to C0 ∩ C, must be

a boundary point of C.

• Step 5. Separation of C and D. Propositions 4.6. and 4.7. imply together that the convex sets C and D are

disjoint while int (D) 6= Ø. Indeed, by Proposition 4.6., a given point
(
%, z1, z2, z3, ... , z(n∧m)

)
∈ D must be

contained in C| % |/(2K0). If the same point belongs to C∩C| % |/(2K0) then we arrive at a contradiction since % <

0 but % > −| % |/2 by Proposition 4.7. Consequently, we may apply the weak separation theorem 30) in order

to find a nontrivial linear, continuous functional (λ0, y
(1), y(2), y(3), ... , y(n∧m)) ∈ R×Lp/(p−1)

(Ω,Rnm) ×
L
p/(p−2)

(Ω,Rσ(2)) × Lp/(p−3)
(Ω,Rσ(3)) × ... × Lp/(p−(n∧m))

(Ω,Rσ(n∧m)), which separates C and D properly.

Consequently, we arrive at the variational inequality

λ0 %
′ + 〈 y(1), z′1 〉+ 〈 y(2), z′2 〉+ 〈 y(3), z′3 〉+ ... + 〈 y(n∧m), z′(n∧m) 〉 (4.82)

> λ0 %
′′ + 〈 y(1), z′′1 〉+ 〈 y(2), z′′2 〉+ 〈 y(3), z′′3 〉+ ... + 〈 y(n∧m), z′′(n∧m) 〉

∀
(
%′, z′1, z

′
2, z
′
3, ... , z

′
(n∧m)

)
∈ C ∀

(
%′′, z′′1 , z

′′
2 , z

′′
3 , ... , z

′′
(n∧m)

)
with

%′′ 6 0 and (4.83)

‖ z′′1 ‖Lp 6
| %′′ |
2K0

, ‖ z′′2 ‖Lp/2 6
| %′′ |
2K0

, ‖ z′′3 ‖Lp/3 6
| %′′ |
2K0

, ... , ‖ z′′(n∧m) ‖Lp/(n∧m) 6
| %′′ |
2K0

. (4.84)

• Step 6. Derivation of the optimality conditions from the variational inequality (4.82).

a) Nonnegativity. Inserting ( 1, o, o, o, ... , o ) ∈ C (generated with ε = 1, x = x∗, u = u∗ and w = w∗) and

(−1, o, o, o, ... , o ) ∈ D into the inequality, we find λ0 > 0.

30) [ Ioffe/Tichomirow 79 ] , p. 152, Theorem 1.
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b) Derivation of (M). Next we insert into the inequality (4.82) elements of C generated with ε = 0, x = x∗

and functions u and w such that u ∈ U and (u,w) ∈W together with ( 0, o, o, o, ... , o ) ∈ cl (D). This yields

the maximum condition (M), namely

λ0

(
G(x∗, u, w)−G(x∗, u∗, w∗)

)
− 〈 y(1), u− u∗ 〉 (4.85)

+
(n∧m)∑
r=2

〈 y(r), wr − w∗r 〉 −
(n∧m)∑
r=2

〈 y(r), DuTr(u
∗) (u− u∗) 〉 > 0 .

c) Derivation of (K). Insert now into (4.82) elements of C generated with ε = 0, u = u∗, w = w∗ and

arbitrary x ∈W 1,p
0 (Ω,Rn) and ( 0, o, o, o, ... , o ) ∈ cl (D). This yields

λ0DxG(x∗, u∗, w∗) (x− x∗) + 〈 y(1), Jx− Jx∗ 〉 > 0 . (4.86)

Inserting further the element of C generated with ε = 0, u = u∗, w = w∗ and (2x∗ − x) ∈ W
1,p
0 (Ω,Rn)

instead of x, we obtain the reverse inequality, and we arrive at the canonical equation (K).

• Step 7. Occurrence of the regular case λ0 > 0. Let us assume, on the contrary, that λ0 = 0. Inserting

then u = u∗ into the maximum condition (4.85), we get

(n∧m)∑
r=2

〈 y(r), wr − w∗r 〉 > 0 (4.87)

for all w ∈ Lp/2(Ω,Rσ(2)) × L
p/3

(Ω,Rσ(3)) × ... × L
p/(n∧m)

(Ω,Rσ(n∧m)) which is only possible if y(2), y(3),

... , y(n∧m) = o. Further, condition (K) reduces to

〈 y(1) , Jx 〉 = 〈 y(1) , Jx∗ 〉 ∀x ∈W 1,p
0 (Ω,Rn) , (4.88)

and this implies 〈 y(1) , Jx∗ 〉 = 〈 y(1) , u∗ 〉 = 0. Within the maximum condition, we obtain

− 〈 y(1) , u− u∗ 〉 = −〈 y(1) , u 〉 > 0 ∀u ∈ U . (4.89)

Since o ∈ int (K) by assumption, U contains some L
∞

(Ω,Rnm)-norm ball V, and we conclude that 〈 y(1) , u 〉
= 0 for all u ∈ U ∩ V. Consequently, y(1) vanishes on all functions z ∈ C∞0 (Ω,Rnm) ∩ L

p
(Ω,Rnm) and

thus on the whole space L
p
(Ω,Rnm), cf. [Adams/Fournier 07 ] , p. 38, Corollary 2.30. Summing up, we

see that λ0 = 0 implies y(1), y(2), y(3), ... , y(n∧m) = o, and we get a contradiction since the separating

hyperplane between C and D was described by a nontrivial functional. We obtain λ0 > 0, and the proof of

Theorem 4.3. is complete.

d) Proof of Theorem 4.4.

Proof. The countable subset K0 =
(

K ∩Qnm
)
×Qσ(2)×Qσ(3)× ...×Qσ(n∧m) lies dense in K×Rσ(2)×Rσ(3)

× ...×Rσ(n∧m). Let us consider the null sets of the non-Lebesgue points of the integrable functions g( · , x∗( · ),
u∗( · ), w∗( · )), g( · , x∗( · ), v0, ω0),

(
v0 − u∗( · )

)T
y(1)( · ),

(
ω0
r − w∗r( · )

)T
y(r)( · ), ∇v adjr(u

∗( · ) )
(
v0 −

u∗( · )
)T · y(r)( · ), 2 6 r 6 (n ∧ m) for (v0, ω0) ∈ K0. The countable union N of these null sets is still

a null set. Since Ω ⊂ Rm is the closure of a strongly Lipschitz domain, ∂Ω is a null set as well. 31) Let us

31) [Wagner 06 ] , p. 122, Lemma 9.2.
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fix a point s0 ∈ int (Ω) \ N as well as a pair (v0, ω0) ∈ K0. Then a closed ball B = K(s0, ε) with sufficiently

small radius ε > 0 is contained in int (Ω), and the function pair (u,w) with

u(s) = 1B(s)
( Dist (s, ∂B)

Dist (s0, ∂B)
· v0 +

(
Dist (s0, ∂B)−Dist (s, ∂B)

)
Dist (s0, ∂B)

· u∗(s)
)

+ 1(Ω \B)(s)u
∗(s) ; (4.90)

w(s) = 1B(s)
( Dist (s, ∂B)

Dist (s0, ∂B)
· ω0 +

(
Dist (s0, ∂B)−Dist (s, ∂B)

)
Dist (s0, ∂B)

· w∗(s)
)

+ 1(Ω \B)(s)w
∗(s) (4.91)

belongs to U×Lp/2(Ω,Rσ(2))×Lp/3(Ω,Rσ(3))× ... ×Lp/(n∧m)
(Ω,Rσ(n∧m)). Since the functions mentioned

above are continuous with respect to v and ω and (u(s0), w(s0)) = (v0, ω0), s0 is a Lebesgue point of

g( · , x∗( · ), u( · ), w( · )),
(
u( · )−u∗( · )

)T
y(1)( · ),

(
wr( · )−w∗r( · )

)T
y(r)( · ), ∂

∂r adjr(u
∗( · ) )

(
u( · )−u∗( · )

)T
· y(r)( · ), 2 6 r 6 (n ∧m), as well, and we are allowed to form the Lebesgue derivative of (M) at the point

s0 after inserting (u,w) into the inequality.

Consider now a Vitali covering of Ω 32) and specify therein some decreasing sequence {ΩN } of closed subsets

of Ω ∩ B with
⋂
N ΩN = { s0 }. Together with (u,w), all function pairs (uN , wN ) with

uN (s) = 1ΩN (s)u(s) + 1(Ω \ΩN )(s)u
∗(s) ; (4.92)

wN (s) = 1ΩN (s)w(s) + 1(Ω \ΩN )(s)w
∗(s) (4.93)

form admissible controls, and we get

lim
N→∞

1

|ΩN |

∫
ΩN

λ0

(
g( s, x∗(s), uN (s), wN (s) )− g( s, x∗(s), u∗(s), w∗(s) )

)
ds (4.94)

− lim
N→∞

1

|ΩN |

∫
ΩN

(
uN (s)− u∗(s)

)T
y(1)(s) ds +

(n∧m)∑
r=2

lim
N→∞

1

|ΩN |

∫
ΩN

(
wNr (s)− w∗r(s)

)T
y(r)(s) ds

−
(n∧m)∑
r=2

lim
N→∞

1

|ΩN |

∫
ΩN
∇v adjr(u

∗(s) )
(
uN (s)− u∗(s)

)T
y(r)(s) ds

= λ0

(
g( s, x∗(s), v0, ω0 )− g( s, x∗(s), u∗(s), w∗(s) )

)
−
(
v0 − u∗(s)

)T
y(1)(s) (4.95)

+
(n∧m)∑
r=2

(
ω0
r − w∗r(s)

)T
y(r)(s) −

(n∧m)∑
r=2

∇v adjr(u
∗(s) )

(
v0 − u∗(s)

)T
y(r)(s) > 0 .

This inequality holds for fixed s0 ∈ int (Ω) \ N for arbitrary (v0, ω0) ∈ K0. Since its left-hand side is a

continuous function of (v, ω), it may be extended to the whole set K × Rσ(2)×Rσ(3)× ... × Rσ(n∧m), and

the proof is complete.

e) Remarks and generalizations.

Consider an integrand f(s, ξ, v) and its polyconvex representative g(s, ξ, v, ω), which satisfy the conditions

3)′ and 4)′ from Remark 3.4. instead of Assumptions 3.1., 3) and 4). Then the following growth conditions

for the partial derivatives of g must be imposed.

Assumptions 4.10. (Weaker assumptions about the data of (P)0) Assume that g(s, ξ, v, ω) : Ω ×
Rn×Rnm×

(
Rσ(2)× Rσ(3)× ... × Rσ(n∧m)

)
→ R is a convex representative of the polyconvex integrand

f(s, ξ, v), which is measurable with respect to s and continuously differentiable with respect to ξ, v and ω.

Let the partial derivatives of g satisfy the following growth conditions:∣∣ ∂g
∂ξi

( s, ξ, v, ω2, ω3, ... , ω(n∧m) )
∣∣ 6 Ai(s) + Bi(ξ) + Ci

(
1 +

∣∣ v ∣∣p−1
+

(n∧m)∑
r=2

∣∣ωr ∣∣(p−1)/r
)

(4.96)

(∀) s ∈ Ω ∀ (ξ, v, ω) ∈ Rn × Rnm×
(
Rσ(2)×Rσ(3)× ... ×Rσ(n∧m)

)
32) [Dunford/Schwartz 88 ] , p. 212, Definition 2.
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where Ai ∈ L
p/(p−1)

(Ω,R), Bi is measurable and bounded on every bounded subset of Rn, and Ci > 0,

1 6 i 6 n;

∣∣ ∂g
∂vl

( s, ξ, v, ω2, ω3, ... , ω(n∧m) )
∣∣ 6 A

(1)
l (s) + B

(1)
l (ξ) + C

(1)
l

(
1 +

∣∣ v ∣∣p−1
+

(n∧m)∑
r=2

∣∣ωr ∣∣(p−1)/r
)

(4.97)

(∀) s ∈ Ω ∀ (ξ, v, ω) ∈ Rn × Rnm×
(
Rσ(2)×Rσ(3)× ... ×Rσ(n∧m)

)
where A

(1)
l ∈ L

p/(p−1)
(Ω,R), B

(1)
l is measurable and bounded on every bounded subset of Rn, and C

(1)
l > 0,

1 6 l 6 σ(1) = nm;

∣∣ ∂g

∂ω2,l
( s, ξ, v, ω2, ω3, ... , ω(n∧m) )

∣∣ 6 A
(2)
l (s) + B

(2)
l (ξ) + C

(2)
l

(
1 +

∣∣ v ∣∣p−2
+

(n∧m)∑
r=2

∣∣ωr ∣∣(p−2)/r
)

(4.98)

(∀) s ∈ Ω ∀ (ξ, v, ω) ∈ Rn × Rnm×
(
Rσ(2)×Rσ(3)× ... ×Rσ(n∧m)

)
where A

(2)
l ∈ L

p/(p−2)
(Ω,R), B

(2)
l is measurable and bounded on every bounded subset of Rn, and C

(2)
l > 0,

1 6 l 6 σ(2);

...∣∣ ∂g

∂ω(n∧m),l
( s, ξ, v, ω2, ω3, ... , ω(n∧m) )

∣∣ 6 A
(n∧m)
l (s) + B

(n∧m)
l (ξ) + C

(n∧m)
l

(
1 +

∣∣ v ∣∣p−(n∧m)
(4.99)

+
(n∧m)∑
r=2

∣∣ωr ∣∣(p−(n∧m))/r
)

(∀) s ∈ Ω ∀ (ξ, v, ω) ∈ Rn × Rnm×
(
Rσ(2)×Rσ(3)× ... ×Rσ(n∧m)

)
where A

(n∧m)
l ∈ Lp/(p−(n∧m))

(Ω,R), B
(n∧m)
l is measurable and bounded on every bounded subset of Rn, and

C
(n∧m)
l > 0, 1 6 l 6 σ(n ∧m).

Theorem 4.11. About the data of (P)0, let Assumptions 3.1., 1), 2) and 5) as well as Assumptions

4.10. hold. Assume further that P = K. Then Theorems 4.3. and 4.4. remain true.

Proof. An inspection of the proof of Theorem 4.3. reveals that conditions (4.96)− (4.99) are sufficient in or-

der to ensure that DxG(x∗, u∗, w∗), DuG(x∗, u∗, w∗) and DwG(x∗, u∗, w∗) act as linear, continuous function-

als on the spaces W
1,p
0 (Ω,Rn), L

p
(Ω,Rnm) and L

p/2
(Ω,Rσ(2))×Lp/3(Ω,Rσ(3))× ... ×Lp/(n∧m)

(Ω,Rσ(n∧m)),

respectively. Consequently, the first variation of G can be expressed as in (4.77).

This generalization opens the way to the application of Pontryagin’s principle to problems from mathematical

image processing where, in general, the objectives depend on image data I(s) being measurable and essentially

bounded instead of continuous.

Remark 4.12. Remark 3.3. from above applies accordingly to Theorems 4.3., 4.4. and 4.11. Consequently,

only those components of w ∈ Lp/2(Ω,Rσ(2)) × Lp/3(Ω,Rσ(3))× ... × Lp/(n∧m)
(Ω,Rσ(n∧m)), which appear

explicitly within the objective of (P)1, must be paired with multipliers and incorporated into the conditions

(M) and (MP), respectively.

Remark 4.13. Theorems 4.3., 4.4. and 4.11. may be restated for strong local minimizers (x∗, u∗) of (P)0,

cf. [ Ioffe/Tichomirow 79 ] , p. 98 f.

Remark 4.14. With obvious adaptations, the proof of Theorem 4.3. applies to [Wagner 09 ] , p. 549,

Theorem 2.2. as well. Consequently, an error occuring in the proof of this theorem ibid., p. 552, Step 3, can

be completely removed. Analogously, the proof of Theorem 4.4. applies to ibid., p. 550, Theorem 2.3., thus

fixing an error in the proof of this theorem ibid., p. 553, (33).
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5. Pontryagin’s principle: polyconvex integrand and polyconvex gradient restrictions.

a) An exact penalty for the polyconvex control restriction.

Throughout this section, P ⊂ Rnm is an arbitrary polyconvex set according to Assumption 3.1., 2). In order

to carry over the proof scheme from Section 4, a further equivalent formulation of problem (P)0 will be used.

Namely, we will introduce an exact penalty for the control restriction (3.23), thus obtaining the problem

(Q)2 G̃(x, u, w) =

∫
Ω

g(s, x(s), u(s), w(s)) ds+K2 ·Dist
(

(x, u, w) , L
p
(Ω,Rn)×W

)
−→ inf ! ; (5.1)

(x, u, w) ∈W 1,p
0 (Ω,Rn)× Lp(Ω,Rnm) (5.2)

×
(
L
p/2

(Ω,Rσ(2))× Lp/3(Ω,Rσ(3))× ...× Lp/(n∧m)
(Ω,Rσ(n∧m))

)
;

E1(x, u) = Jx(s)− u(s) = 0 (∀) s ∈ Ω ; (5.3)

E2(u,w) = w2(s)− adj2 u(s) = 0 (∀) s ∈ Ω ; (5.4)

E3(u,w) = w3(s)− adj3 u(s) = 0 (∀) s ∈ Ω ; (5.5)
...

E(n∧m)(u,w) = w(n∧m)(s)− adj(n∧m) u(s) = 0 (∀) s ∈ Ω ; (5.6)

u ∈ U =
{
z1 ∈ Lp(Ω,Rnm)

∣∣ z1(s) ∈ K (∀) s ∈ Ω
}
, (5.7)

which turns out to be equivalent to (P)0 and (Q)1 provided that a sufficiently large constant K2 > 0 will be

chosen (see Proposition 5.3. below) and the partial derivatives of g satisfy Assumptions 4.10.

Before stating the next lemma, let us define the closed balls

K(o, R0) ⊂W 1,p
0 (Ω,Rn) ↪→ C

0
0(Ω,Rn) ; (5.8)

K′(o, R′) = K(o, R′) × K(o, R′) × ... × K(o, R′) (5.9)

⊂ Lp/2(Ω,Rσ(2))× Lp/3(Ω,Rσ(3))× ... × Lp/(n∧m)
(Ω,Rσ(n∧m))

with the radii

R0 = sup
{
‖x ‖C0

0(Ω,Rn)

∣∣ Jx ∈ U
}

; (5.10)

R′ = Max
26 r6 (n∧m)

Cr · sup
{
|
(

adjr(v)
)
l
|
∣∣ 1 6 l 6 σ(r) , v ∈ K

}
(5.11)

where the constants Cr > 0 are taken from the imbedding inequalities

‖ zr ‖Lp/r 6 Cr ‖ zr ‖L∞ , 2 6 r 6 (n ∧m) . (5.12)

Lemma 5.1. Let Assumptions 3.1., 1), 2) and 5) together with Assumptions 4.10. hold. Then the functional

G within (Q)1 satisfies the Lipschitz condition

∣∣G(x′, u′, w′)−G(x′′, u′′, w′′)
∣∣ 6 K1

(
‖x′ − x′′ ‖Lp + ‖u′ − u′′ ‖Lp +

(n∧m)∑
r=2

‖w′r − w′′r ‖Lp/r
)

(5.13)

for all triples (x′, u′, w′), (x′′, u′′, w′′) ∈ K(o, R0) × U × K′(o, R′) ⊂
(
W

1,p
0 (Ω,Rn) ∩ C

0
0(Ω,Rn)

)
×

L
p
(Ω,Rnm)×

(
L
p/2

(Ω,Rσ(2))× Lp/3(Ω,Rσ(3))× ... × Lp/(n∧m)
(Ω,Rσ(n∧m))

)
.

Proof. Fix a number ε > 0 and consider an arbitrary pair of elements (x′, u′, w′), (x′′, u′′, w′′) ∈ K(o, R0) ×
U × K′(o, R′). By convexity, this set contains the whole segment S =

[
(x′, u′, w′) , (x′′, u′′, w′′)

]
. Our
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assumptions guarantee the Gâteaux differentiability of the functional G with respect to x, u, w2, w3, ... ,

w(n∧m) even on the larger set K(o, R0 + ε) ×
(

U + K(o, ε)
)
× K′(o, R′+ ε) and, consequently, along S. Now

the mean value theorem 33) yields the estimate∣∣G(x′, u′, w′)−G(x′′, u′′, w′′)
∣∣ (5.14)

6 sup
(x̂,û,ŵ)∈ S

∥∥DG(x̂, û, ŵ)
∥∥ · ( ‖x′ − x′′ ‖Lp + ‖u′ − u′′ ‖Lp +

(n∧m)∑
r=2

‖w′r − w′′r ‖Lp/r
)

where

sup
(x̂,û,ŵ)∈ S

∥∥DG(x̂, û, ŵ)
∥∥ 6 sup

x̂∈K(o,R0+ε)

sup
û∈U+K(o,ε)

sup
ŵ∈K′(o,R′+ε)

∥∥DG(x̂, û, ŵ)
∥∥ (5.15)

6 sup
x̂∈K(o,R0+ε)

sup
û∈U+K(o,ε)

sup
ŵ∈K′(o,R′+ε)

C
( n∑
i=1

∥∥ ∂g
∂ξi

(x̂, û, ŵ)
∥∥
Lp/(p−1)

+
n∑
i=1

m∑
j=1

∥∥ ∂g

∂vij
(x̂, û, ŵ)

∥∥
Lp/(p−1)

(5.16)

+
σ(2)∑
l=1

∥∥ ∂g

∂ω2,l
(x̂, û, ŵ)

∥∥
Lp/(p−2)

+ ... +
σ(n∧m)∑
l=1

∥∥ ∂g

∂ω(n∧m),l
(x̂, û, ŵ)

∥∥
Lp/(p−(n∧m))

)
.

The suprema in (5.16) are formed over bounded function sets. Consequently, the expression in (5.16)

remains finite as far as the boundedness of the Nemytskij operators (x̂, û, ŵ) 7−→ ∂g(x̂, û, ŵ)/∂ξi ∈ Lp/(p−1)
,

(x̂, û, ŵ) 7−→ ∂g(x̂, û, ŵ)/∂vij ∈ Lp/(p−1)
, (x̂, û, ŵ) 7−→ ∂g(x̂, û, ŵ)/∂ω2,l ∈ Lp/(p−2)

, (x̂, û, ŵ) 7−→ ∂g(x̂, û, ŵ)/

∂ω3,l ∈ Lp/(p−3)
, ... , (x̂, û, ŵ) 7−→ ∂g(x̂, û, ŵ)/ ∂ω(n∧m),l ∈ L

p/(p−(n∧m))
can be guaranteed. However, this

is implied by the growth conditions (4.96)− (4.99). For example, from (4.96) it follows that

∥∥ ∂g
∂ξi

(x̂, û, ŵ)
∥∥
Lp/(p−1)

=

∫
Ω

∣∣∣ ∂
∂ξi

g(s, x̂(s), û(s), ŵ(s))
∣∣∣p/(p−1)

ds (5.17)

6
∫

Ω

∣∣∣Ai(s) +Bi
(
x̂(s)

)
+ Ci

(
1 +

∣∣ û(s)
∣∣p−1

+
(n∧m)∑
r=2

∣∣ ŵr(s) ∣∣(p−1)/r
) ∣∣∣p/(p−1)

ds (5.18)

6 C

∫
Ω

(
Ai(s)

p/(p−1) +Bi
(
x̂(s)

)p/(p−1)
+ Ci

(
1 +

∣∣ û(s)
∣∣p +

(n∧m)∑
r=2

∣∣ ŵr(s) ∣∣p/r )) ds (5.19)

6 C
(∥∥Ai ∥∥p/(p−1)

Lp/(p−1) +
(
B̃i(R0 + ε)

)p/(p−1)
+ Ci

(
1 +

∥∥ û∥∥p
Lp

+
(n∧m)∑
r=2

∥∥ ŵr ∥∥p/rLp/r

))
(5.20)

with an appropriate constant B̃i(R0 + ε) > 0 such that ‖ x̂ ‖C0 6 R0 + ε =⇒ |Bi( x̂(s) ) | 6 B̃i(R0 + ε),

and (5.20) remains uniformly bounded for all (x̂, û, ŵ) ∈ K(o, R0 + ε) ×
(

U + K(o, ε)
)
× K′(o, R′ + ε). For

the other partial derivatives occuring in (5.16), we may reason analogously. Consequently, condition (5.13)

holds true with a constant K1 > sup (x̂,û,ŵ)∈K(o,R0+ε)× ( U+K(o,ε) )×K′(o,R′+ε) ‖DG(x̂, û, ŵ) ‖.

Remark 5.2. For the application of the mean value theorem in this proof, the Gâteaux differentiability of the

functional G is required not only on the set K(o, R0)×U×
{ (

z2, z3, ... , z(n∧m)

) ∣∣ ( z1, z2, z3, ... , z(n∧m)

)
∈

W
}

, which belongs in fact to the subspace W
1,∞
0 (Ω,Rn) ×L∞(Ω,Rnm)×

(
L
∞

(Ω,Rσ(2)) × L∞(Ω,Rσ(3)) ×
... × L

∞
(Ω,Rσ(n∧m))

)
, but on an open neighbourhood of it. In order to ensure this, the growth conditions

from Assumptions 4.10. must be imposed.

Proposition 5.3. (Equivalence of (Q)1 and (Q)2) Let Assumptions 3.1., 1), 2) and 5) together with

Assumptions 4.10. hold and fix in (5.1) a sufficiently large constant K2 > K1 > 0. 34) Then every global

33) [ Ioffe/Tichomirow 79 ] , p. 40.
34) The constant K1 is taken from Lemma 5.1.
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minimizer (x∗, u∗, w∗) of (Q)1 is a global minimizer of (Q)2 as well. Conversely, every global minimizer of

(Q)2 is feasible in (Q)1 and forms a global minimizer of (Q)1.

Proof. Denote the feasible domains of (Q)1 and (Q)2 by B1 and B2. BAssume that (x∗, u∗, w∗) is a

global minimizer of (Q)1. Let us apply [Clarke 90 ] , p. 51 f., Proposition 2.4.3., to the following data:

S = B2 ⊂ L
p
(Ω,Rn) × U × L

p/2
(Ω,Rσ(2)) × L

p/3
(Ω,Rσ(3)) × ... × L

p/(n∧m)
(Ω,Rσ(n∧m)), C = B1 =

B2 ∩
(
L
p
(Ω,Rn) ×W

)
, and f : S → R is the functional G : B2 → R. By Lemma 5.1., G is Lipschitz on

S with constant K1, and from the proof of Theorem 3.5., 2), we see that W is closed. Consequently, the

assertion follows from the cited result. Conversely, let a global minimizer (x∗, u∗, w∗) of (Q)2 be given. Then

the cited theorem ensures that (x∗, u∗, w∗) is feasible in (Q)1 and forms even a global minimizer there.

b) Necessary conditions in form of Pontryagin’s principle.

Theorem 5.4. (Pontryagin’s principle for (P)0, polyconvex restriction) Consider the problem (P)0

under Assumptions 3.1., 1), 2) and 5) and Assumptions 4.10. and choose for the polyconvex set P a com-

pact, convex representative Q ⊂ Rnm × Rσ(2) × Rσ(3) × ... × Rσ(n∧m). Further, choose for the integrand

f(s, ξ, v) in (P)0 a convex representative g(s, ξ, v, ω) in accordance with the assumptions mentioned above.

If (x∗, u∗) is a global minimizer of (P)0 then there exist multipliers λ0 > 0, y(1) ∈ L
p/(p−1)

(Ω,Rnm),

y(2) ∈ Lp/(p−2)
(Ω,Rσ(2)), y(3) ∈ Lp/(p−3)

(Ω,Rσ(3)), ... , y(n∧m) ∈ Lp/(p−(n∧m))
(Ω, Rσ(n∧m)) such that the

following conditions are satisfied:

(M) λ0

∫
Ω

(
g( s, x∗(s), u(s), w(s) )− g( s, x∗(s), u∗(s), w∗(s) )

)
ds −

∫
Ω

(
u(s)− u∗(s)

)T
y(1)(s) ds (5.21)

+
(n∧m)∑
r=2

∫
Ω

(
wr(s)− w∗r(s)

)T
y(r)(s) ds −

(n∧m)∑
r=2

∫
Ω

∇v adjr(u
∗(s) )

(
u(s)− u∗(s)

)T
y(r)(s) ds > 0

∀ (u,w) ∈
(

U × L
p/2

(Ω,Rσ(2)) × L
p/3

(Ω,Rσ(3)) × ... × L
p/(n∧m)

(Ω,Rσ(n∧m))
)
∩ W ;

(K) λ0

n∑
i=1

∫
Ω

∂g

∂ξi
( s, x∗(s), u∗(s), w∗(s) )

(
xi(s)− x∗i (s)

)
ds (5.22)

+
n∑
i=1

m∑
j=1

∫
Ω

( ∂xi
∂sj

(s)− ∂x∗i
∂sj

(s)
)
y

(1)
ij (s) ds = 0 ∀x ∈W 1,p

0 (Ω,Rn) .

The function sets U and W are defined by means of K and Q through (3.12) and (3.23).

Let us define the set

Q′ =
{ (

ω2, ω3, ... , ω(n∧m)

)
∈ Rσ(2)×Rσ(3)× ... ×Rσ(n∧m)

∣∣ ( v, ω2, ω3, ... , ω(n∧m)

)
∈ Q

}
. (5.23)

Proposition 5.5. (Occurence of the regular case) Consider the problem (P)0 under the assumptions

of Theorem 5.4. and let (x∗, u∗) be a global minimizer of (P)0. If there exists a number γ > 0 such that(
T2

(
u∗(s)

)
, T3

(
u∗(s)

)
, ... , T(n∧m)

(
u∗(s)

) )
+ K(o, γ) ∈ int (Q′) for almost all s ∈ Ω then in the necessary

optimality conditions (M) and (K) from Theorem 5.4. the regular case occurs, i. e. λ0 > 0.

The maximum condition (M) from Theorem 5.4. implies the following condition (MP), which holds a. e. point-

wise:

Theorem 5.6. (Pointwise maximum condition for (P)0) Consider the problem (P)0 under the as-

sumptions of Theorem 5.4. If (x∗, u∗) is a global minimizer of (P)0 then the maximum condition (M) from
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Theorem 5.4. implies the following pointwise maximum condition:

(MP) λ0

(
g( s, x∗(s), v, ω )− g( s, x∗(s), u∗(s), w∗(s) )

)
−
(
v − u∗(s)

)T
y(1)(s) (5.24)

+
(n∧m)∑
r=2

(
ωr − w∗r(s)

)T
y(r)(s) −

(n∧m)∑
r=2

∇v adjr(u
∗(s) )

(
v − u∗(s)

)T
y(r)(s) > 0

(∀) s ∈ Ω ∀
(
v, ω2, ω3, ... , ω(n∧m)

)
∈
(

K×Rσ(2)×Rσ(3)× ... ×Rσ(n∧m)
)
∩ Q .

c) Proof of Theorems 5.4.−5.6.

Proof of Theorem 5.4. The proof of Theorem 5.4. runs parallel to the proof of Theorem 4.3. above, which

is subjected to the following modifications. In Step 1 , within the definition of the set C, the restriction

(u,w) ∈W must be added. Then Proposition 4.5. remains true since W is convex together with K and the

convex representative Q of P. Steps 2− 4.4. can be carried over without alterations. In Step 4.5., we must

compute instead

lim
λ→0+0

1

λ

(
G̃
(
x∗ + λ (x0 − x∗) , u∗ + λ (u0 − u∗) , (5.25)

w∗ + λ (w0 − w∗) +R(w0, λ)− S(u∗, u0, λ)
)
− G̃(x∗, u∗, w∗)

)
= lim

λ→0+0

1

λ

(
G
(
x∗ + λ (x0 − x∗) , u∗ + λ (u0 − u∗) , (5.26)

w∗ + λ (w0 − w∗) +R(w0, λ)− S(u∗, u0, λ)
)
− G(x∗, u∗, w∗)

)
+ lim

λ→0+0

K2

λ

(
Dist

( (
x∗ + λ (x0 − x∗) , u∗ + λ (u0 − u∗) , w∗ + λ (w0 − w∗) +R(w0, λ)− S(u∗, u0, λ)

)
,

L
p
(Ω,Rn)×W

)
− Dist

( (
x∗, u∗, w∗

)
, L

p
(Ω,Rn)×W

))
> 0 .

Since (x∗, u∗, w∗) and (x̃, ũ, w̃) belong to the convex set L
p
(Ω,Rn)×W, we have

Dist
( (

x∗, u∗, w∗
)
, L

p
(Ω,Rn)×W

))
= 0 ; (5.27)

Dist
( (

x∗ + λ (x̃− x∗) , u∗ + λ (ũ− u∗) , w∗ + λ (w̃ − w∗)
)
, L

p
(Ω,Rn)×W

))
= 0 , (5.28)

and in the last term of (5.26), the expression (5.27) may be replaced by (5.28). Thus we get (5.29)

... + lim
λ→0+0

K2

λ

(
Dist

( (
x∗ + λ (x0 − x∗) , u∗ + λ (u0 − u∗) , w∗ + λ (w0 − w∗) +R(w0, λ)− S(u∗, u0, λ)

)
,

L
p
(Ω,Rn)×W

)
−Dist

( (
x∗ + λ (x̃− x∗) , u∗ + λ (ũ− u∗) , w∗ + λ (w̃ − w∗)

)
, L

p
(Ω,Rn)×W

))
> 0

=⇒ lim
λ→0+0

1

λ

(
G
(
x∗ + λ (x0 − x∗) , u∗ + λ (u0 − u∗) , w∗ + λ (w0 − w∗) +R(w0, λ)− S(u∗, u0, λ)

)
(5.30)

− G(x∗, u∗, w∗)
)

> − lim
λ→0+0

K2

λ
·
∣∣Dist

(
...
)
−Dist

(
...
) ∣∣

> − lim
λ→0+0

K2

λ

(
λ ‖ x̃− x0 ‖Lp + λ ‖ ũ− u0 ‖Lp (5.31)

+
(n∧m)∑
r=2

(
λ ‖ w̃r − w0

r ‖Lp/r + ‖Rr(w0, λ) ‖Lp/r + ‖Sr(u∗, u0, λ) ‖Lp/r
))
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since the distance function to a closed set of a normed space satisfies a Lipschitz condition with constant

1. 35) Consequently, expanding the left-hand side of (5.30) as in (4.75)− (4.77) and using (4.41), (4.45), (4.47)

and (4.49), we find that the first component % of the element from Step 4.1. satisfies

% = ε̃+DxG(x∗, u∗, w∗) (x̃− x∗) +DuG(x∗, u∗, w∗) (ũ− u∗) +DwG(x∗, u∗, w∗) (w̃ − w∗) (5.32)

> −
(∥∥DxG(x∗, u∗, w∗)

∥∥+K2

)
· ‖x0 − x̃ ‖Lp −

(∥∥DuG(x∗, u∗, w∗)
∥∥+K2

)
· ‖u0 − ũ ‖Lp (5.33)

−
(∥∥DwG(x∗, u∗, w∗)

∥∥+K2

)
·
(n∧m)∑
r=2

‖w0
r − w̃r ‖Lp/r

− lim
λ→0+0

K2

(n∧m)∑
r=2

λ−1
(
‖Rr(w0, λ) ‖Lp/r + ‖Sr(u∗, u0, λ) ‖Lp/r

)
> −C0 η

(
2C1 + 1 +

(n∧m)∑
r=2

(1 + Cr)
)

> −K0 η (5.34)

with a sufficiently large number K0 > 0, and Proposition 4.7. holds still true. Now Steps 5 and 6 remain

unchanged while Step 7 must be dropped.

Proof of Theorem 5.5. Let us assume, on the contrary, that λ0 = 0. Then, inserting u = u∗ into the

maximum condition (5.21), we obtain the inequality

(n∧m)∑
r=2

〈 y(r), wr − w∗r 〉 =
(n∧m)∑
r=2

〈 y(r), wr − Tr(u∗ ) 〉 > 0 , (5.35)

which holds true for all functions w belonging to elements (u,w) ∈W ∩
(

U×Lp/2(Ω,Rσ(2))×Lp/3(Ω,Rσ(3))

× ... × L
p/(n∧m)

(Ω,Rσ(n∧m))
)
. By assumption, we are allowed to insert into (5.35) arbitrary functions

w ∈ L∞(Ω,Rσ(2)) × L
∞

(Ω,Rσ(3)) × ... × L
∞

(Ω,Rσ(n∧m)) with∥∥wr − Tr(u∗ )
∥∥
L∞(Ω,Rσ(r))

6 γ , 2 6 r 6 (n ∧m) . (5.36)

Consequently, for 2 6 r 6 (n∧m), y(r) vanishes on all functions z ∈ C∞0 (Ω,Rσ(r)) ∩ Lp(Ω,Rσ(r)) and thus

on the whole space L
p
(Ω,Rσ(r)), cf. [Adams/Fournier 07 ] , p. 38, Corollary 2.30., and we get y(2), y(3),

... , y(n∧m) = o. Now the argumentation may be completed as in the proof of Theorem 4.3., Step 7.

Proof of Theorem 5.6. This proof runs in complete analogy to the proof of Theorem 4.4.

d) Remarks and generalizations.

Our first remark concerns the polyconvex set P. Here Assumption 3.1., 2) may be weakened as follows:

Corollary 5.7. (General polyconvex restriction set) Lemma 5.1. and Proposition 5.3. as well as

Theorem 5.4., Proposition 5.5. and Theorem 5.6. remain true as far as the polyconvex set P ⊆ Rnm in

Assumption 3.1., 2) is closed but possibly unbounded.

Proof. Since K ⊂ Rnm is convex and compact, we may replace P by P̃ = K ∩ P before starting the analysis

of the problems. This causes no change in the feasible domains. However, the set P̃ is compact together

with K and polyconvex as an intersection of a convex and a polyconvex set.

Remark 5.8. As a consequence of the consideration of a polyconvex gradient constraint, the number of

variables in (Q)1 and (Q)2 as well as in the conditions of Pontryagin’s principle cannot be reduced even if the

35) [Clarke 90 ] , p. 50, Proposition 2.4.1.
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integrand does not depend explicitly on some of them. For the same reason, in contrast to (4.9)− (4.12), the

pointwise condition (MP) from Theorem 5.6. allows for a decomposition into separate conditions in special

cases only.

Remark 5.9. Theorems 5.4. and 5.6. may be restated for strong local minimizers (x∗, u∗) of (P)0, cf. [ Ioffe/

Tichomirow 79 ] , p. 98 f.

Remark 5.10. For the purposes of optimization, it would be desirable to know the largest possible convex

representative of a given polyconvex set P, thus obtaining maximal significance of the conditions (M) and

(MP).

6. Application to hyperelastic image registration.

a) Unimodal image registration.

Assume that on a two- or three-dimensional domain Ω ⊂ Rm, m ∈ { 2, 3 }, two greyscale images are given,

which will be identified with at least measurable functions I0, I1 : Ω→ [ 0 , 1 ] . Considering I0 as reference

image, one searches for a deformation field x : Ω → Rm satisfying the condition I1(s − x(s)) ≈ I0(s), thus

modifying the template image I1 such that it matches the reference image I0 in a best possible way. In this

abstract formulation of the registration problem, the single assumption is required that there is an overall

correlation between the greyscale intensity distributions as well as the geometrical properties of the template

and reference image. For the practical determination of a possible deformation field x as well as for a reliable

interpretation of the result, more information about the pictured objects and their motion behaviour is

needed. 36)

In numerous situations, a reasonable approach to unimodal registration is to attribute the changes in I1 with

respect to the reference image I0 to an elastic deformation of the pictured objects. This is particularly true

for the imaging of living tissue, which behaves according to hyperelastic material laws. 37) Consequently, a

large part of the literature is concerned with variational or PDE methods where x is sought as a linear-

elastic 38) or hyperelastic deformation. 39) In the latter case, the problems involve polyconvex stored-energy

functions. 40)

The interest in an optimal control access to the elastic registration problem is caused by the fact that the

validity of the underlying elasticity models depends crucially on the uniform boundedness of the maximal

shear stress generated by the deformation x. 41) Consequently, it is advisable to incorporate restrictions for

the partial derivatives of x into the given variational models. In the present paper, we confine ourselves to

convex restriction sets. However, in a forthcoming publication we will extend our approach to polyconvex

control restrictions as 0 < R0 6 det (J(x)) 6 R1 < ∞. In the following, we reformulate a two-dimensional

registration problem within the framework of optimal control and provide the necessary optimality conditions

for the problem.

36) A detailed introduction to the registration problem may be found in [Hintermüller/Keeling 09 ] , [Modersitzki

04 ] and [Modersitzki 09 ] .
37) See e. g. [Ogden 03 ] .
38) We refer e. g. to [Fischer/Modersitzki 03 ] , [Haber/Modersitzki 04 ] , [Henn/Witsch 00 ] , [Henn/Witsch

01 ] and [Modersitzki 04 ] , pp. 77 ff.
39) See e.g. [Burger/Modersitzki/Ruthotto 13 ] , [Droske/Rumpf 04 ] , [Droske/Rumpf 07 ] and [Le Guya-

der/Vese 09 ] .
40) Examples may be found in [Balzani/Neff/Schröder/Holzapfel 06 ] .
41) This is even true for living tissue, cf. [Gasser/Holzapfel 02 ] , p. 340 f., and the literature cited therein.
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b) A two-dimensional registration problem with polyconvex regularizer.

Let us consider the following two-dimensional image registration problem with polyconvex regularizer: 42)

(R)2 : F (x) =

∫
Ω

(
I1( s− x(s) )− I0(s)

)2

ds + µ ·
∫

Ω

(
c1
∥∥ Jx(s)

∥∥ p (6.1)

+ c2
(

det
(

Id2 − Jx(s)
)
− 1

)2 )
ds −→ inf ! ;

x ∈W 1,p
0 (Ω,R2) ; Jx(s) ∈ K = P ⊂ R2×2 (∀) s ∈ Ω . (6.2)

As discussed in [Burger/Modersitzki/Ruthotto 13 ] and [Droske/Rumpf 04 ] , the objective can be

regarded as a stored-energy functional, which is connected with a generic hyperelastic model. We assume

that 4 6 p < ∞, µ, c1, c2 > 0. The image data I0 and I1 belong to L
∞

(Ω,R) and C
1
0(Ω,R), respectively.

K = P ⊂ R2×2 is a compact convex set with o ∈ int (K). We use the matrix norm ‖
(
v1 v2
v3 v4

)
‖p = | v1 |p +

| v2 |p + | v3 |p + | v4 |p, which is continuously differentiable with respect to its arguments since p > 4. Id2

denotes the (2, 2)-unit matrix.

In [Wagner 10 ] and [Wagner 12 ] , after an appropriate approximation of the data term, a direct method

was employed for the numerical solution of this problem. In [Angelov 11 ] and [Angelov/Wagner 12 ] ,

p. 5 f., the problem (R)2 was incorporated into a larger scheme for hyperelastic registration of multimodal

image data. Applying Theorems 4.1. and 4.2. to (R)2, we obtain the following set of necessary optimality

conditions:

Proposition 6.1. (Pontryagin’s principle for (R)2 ) Consider (R)2 under the analytical assumptions

mentioned above. If (x∗, u∗) is a global minimizer of (R)2 then there exist multipliers λ0 > 0, y(1) ∈
L
p/(p−1)

(Ω,R4) and y(2) ∈ Lp/(p−2)
(Ω,R) such that the following conditions are satisfied:

(MP)1 λ0 µ c1
2∑
i=1

2∑
j=1

( ∣∣ vij ∣∣p − ∣∣u∗ij(s) ∣∣p )+ λ0 µ c2

( (
v11 + v22

)2 − (u∗11(s) + u∗22(s)
)2

(6.3)

+ 2 detu∗(s)
(
v11 + v22 − u∗11(s)− u∗22(s)

) )
−

2∑
i=1

2∑
j=1

(
y

(1)
ij (s) +

∂

∂vij
det (u∗(s) ) y(2)(s)

) (
vij − u∗ij(s)

)
> 0 (∀) s ∈ Ω ∀ v ∈ K ;

(MP)2 λ0 µ c2

( (
ω2

)2 − (detu∗(s)
)2 − 2

(
u∗11(s) + u∗22(s)

) (
ω2 − detu∗(s)

) )
(6.4)

+
(
ω2 − detu∗(s)

)
y(2)(s) > 0 (∀) s ∈ Ω ∀ω2 ∈ R ;

(K) − λ0

∫
Ω

( ∂I1
∂s1

( s− x∗(s) )
(
x1(s)− x∗1(s)

)
+
∂I1
∂s2

( s− x∗(s) )
(
x2(s)− x∗2(s)

) )
ds (6.5)

+
2∑
i=1

2∑
j=1

∫
Ω

( ∂xi
∂sj

(s)− ∂x∗i
∂sj

(s)
)
y

(1)
ij (s) ds = 0 ∀x ∈W 1,p

0 (Ω,R2) .

Proof. In order to apply Theorems 4.11., 4.1. and 4.2. to (R)2, we must to verify that the data of the

problem satisfy assumptions 3)′ and 4)′ from Remark 3.4. as well as the growth conditions (4.96)− (4.98).

Obviously, assumption 3)′ from Remark 3.4. is satisfied. For the polyconvex integrand f(s, ξ, v), we choose

the convex representative g : Ω × R2 × R4 × R → R defined as

g(s, ξ, v, ω2) =
(
I1(s− ξ)− I0(s)

)2
+ µ c1

2∑
i=1

2∑
j=1

∣∣ vij ∣∣p + µ c2
(
ω2 − v11 − v22

)2
(6.6)

42) Sligthly modified from [Wagner 11 ] , p. 218, (4.15), and [Wagner 10 ] , p. 5, (2.16) − (2.19). Note that the

reference points within the regularization term must be chosen in accordance with the deviation of s− x(s) from the

identity.



26

with the partial derivatives

∂g

∂ξi
(s, ξ, v, ω2) = −2

(
I1(s− ξ)− I0(s)

) ∂I1
∂si

(s− ξ) , 1 6 i 6 2 ; (6.7)

∂g

∂v11
(s, ξ, v, ω2) = p µ c1

∣∣ v11

∣∣p−1 − 2µ c2
(
ω2 − v11 − v22

)
; (6.8)

∂g

∂v12
(s, ξ, v, ω2) = p µ c1

∣∣ v12

∣∣p−1
; (6.9)

∂g

∂v21
(s, ξ, v, ω2) = p µ c1

∣∣ v21

∣∣p−1
; (6.10)

∂g

∂v22
(s, ξ, v, ω2) = p µ c1

∣∣ v22

∣∣p−1 − 2µ c2
(
ω2 − v11 − v22

)
; (6.11)

∂g

∂ω2
(s, ξ, v, ω2) = 2µ c2

(
ω2 − v11 − v22

)
. (6.12)

Let us confirm the growth condition (3.5), thus establishing assumption 4)′ from Remark 3.4. Since I0(s) is

essentially bounded on Ω and I1(s), after extension by zero to R2 \Ω, is bounded on R2, we get for almost

all s ∈ Ω and for all (ξ, v, ω2) ∈ R2 × R4 ×R (6.13)

∣∣ g(s, ξ, v, ω2)
∣∣ 6 C1

( ∣∣ I0(s)
∣∣2 +

∣∣ I1(s− ξ)
∣∣2 )+ µ c1

2∑
i=1

2∑
j=1

∣∣ vij ∣∣p + µ c2 C2

( ∣∣ v11

∣∣2 +
∣∣ v22

∣∣2 +
∣∣ω2

∣∣2 )
6 2C3 + 4µ c1

∣∣ v ∣∣p + µ c2 C2

(
2
∣∣ v ∣∣2 +

∣∣ω2

∣∣2 ) 6 2C3 + C4

(
1 +

∣∣ v ∣∣p +
∣∣ω2

∣∣p/2 ) (6.14)

since p > 4. Thus (3.5) is satisfied with A0(s) ≡ C3 and B0(ξ) ≡ C3. Further, we have

∣∣ ∂g
∂ξi

(s, ξ, v, ω2)
∣∣ 6 2

( ∣∣ I1(s− ξ)
∣∣+
∣∣ I0(s)

∣∣ ) ‖ I1 ‖C1 6 2C5 ‖ I1 ‖C1 , 1 6 i 6 2 , (6.15)

and (4.96) is satisfied with Ai(s) ≡ C5 ‖ I1 ‖C1 and Bi(ξ, v, ω2) ≡ C5 ‖ I1 ‖C1 , 1 6 i 6 2. Concerning (4.97)

and (4.98), we see that the right-hand sides in the inequalities

∣∣ ∂g

∂v11
(s, ξ, v, ω2)

∣∣ 6 p µ c1
∣∣ v11

∣∣p−1
+ 2µ c2

(
2
∣∣ v ∣∣+

∣∣ω2

∣∣ ) , (6.16)∣∣ ∂g

∂v12
(s, ξ, v, ω2)

∣∣ = p µ c1
∣∣ v12

∣∣p−1
, (6.17)∣∣ ∂g

∂ω2
(s, ξ, v, ω2)

∣∣ 6 2µ c2
(

2
∣∣ v ∣∣+

∣∣ω2

∣∣ ) (6.18)

are measurable and bounded on bounded subsets of R2×R4×R. The derivatives ∂g(s, ξ, v, ω2)/∂v21 and

∂g(s, ξ, v, ω2)/∂v22 can be estimated in analogous way. Consequently, (4.97) and (4.98) hold with A
(1)
l (s) ≡ 0,

A(2)(s) ≡ 0 and B
(1)
l (ξ, v, ω2), 1 6 l 6 4 and B(2)(ξ, v, ω2) as given through (6.16)− (6.18). Consequently,

for a given global minimizer (x∗, u∗) of (R)2, the necessary optimality conditions take the claimed form.

A numerical implementation of the necessary conditions obtained here as well as further applications to

problems with higher-dimensional data sets will be reserved for future publications.

Acknowledgement.

The present work has been supported within the project “Relaxation theorems and necessary optimality

conditions for semiconvex multidimensional control problems” by the German Research Council.



27

References.

1. [Adams/Fournier 07 ] Adams, R. A.; Fournier, J. J. F.: Sobolev Spaces. Academic Press / Elsevier; Amsterdam

etc. 2007, 2nd ed.

2. [Angelov 11 ] Angelov, A.: Multimodale Bildregistrierung durch elastisches Matching von Kantenskizzen. Diplo-

ma thesis; University of Münster 2011

3. [Angelov/Wagner 12 ] Angelov, A.; Wagner, M.: Multimodal image registration by elastic matching of edge

sketches via optimal control. University of Leipzig, Institute of Mathematics, Preprint No. 04/2012 (to appear:

J. Ind. Manag. Optim.)
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