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Pontryagin’s principle for Dieudonné-Rashevsky type problems
with polyconvex integrands

Marcus Wagner

1. Introduction.

The present paper is concerned with the proof of first-order necessary optimality conditions for multidimen-

sional control problems of Dieudonné-Rashevsky type:

F(x,u) = / f(s,2(s),u(s))ds — infl;  (z,u) € WP(Q,R™) x LP(Q,R™™); (1.1)
Q
Ox1(s)/0s1 ... 0x1(s)/0sm

Jx(s) = : : = u(s) for almost all s € Q; (1.2)
0z (s)/0s1 ... 0xn(s)/0sm

u(s) e KCR™  for almost all s € (1.3)

with n, m > 2, Q C R™, m < p < oo and a compact set K € R™" with nonempty interior. In the case of
a convex integrand f(s,§, -) and a convex restriction set K, the global minimizers of (1.1) — (1.3) satisfy
optimality conditions in the form of Pontryagin’s principle °*) even though the usual regularity condition for
the equality operator (1.2) fails. 92) The question arises whether the Pontryagin principle and its proof can
be extended to situations where the usual convexity of the data is replaced by generalized convexity notions.
An answer to this question is of conceptual interest since the classical proof of the Pontryagin principle is
based on an implicit convexification of the integrand as well as of the set of feasible controls. °3)

Within the hierarchy of the generalized convexity notions, ®®) polyconvezity is the closest one to usual con-
vexity. In short, a polyconvex function arises as a composition of the vector of all minors of a matricial
argument with a convex function. Appearing e. g. in problems from material science,®® hydrodynamics %)
and mathematical image processing, °”) objectives with polyconvex integrands are of considerable practical
importance. In the present paper, it will be shown that the proof of Pontryagin’s principle for the problem
(1.1) — (1.3) can be maintained if the integrand f(s,&,v) is polyconvex with respect to v while the control
restriction set K is still convex (Theorems 4.3., 4.4. and 4.11.). To the best of the author’s knowledge, a
proof of optimality conditions, which makes explicit use of the polyconvex structure of the integrand, is still
missing in the literature. The incorporation of polyconvex control constraints into the proof scheme, which

turns out to be possible as well, will be achieved in a subsequent publication.

[WAGNER 09], p. 549 f., Theorems 2.2. and 2.3.
Cf. [IoFFE/TICHOMIROV 79], p. 73 f., Theorem 3, Assumption c), and [ITO/KUNISCH 08], p. 5 f.

See [ GINSBURG/IOFFE 96, p. 92, Definition 3.2., and p. 96, Theorem 3.6. (“local relaxability” of the problem), as
well as [IOFFE/TICHOMIROV 79], pp. 201 ff.

[DACOROGNA 08], p. 156 f.
[LUBKOLL/SCHIELA/WEISER 12], p. 12 f. (deformation of a compressible Ogden-type material).
[KUNISCH/VEXLER 07], p. 1371, (1.9), and p. 1376 f., (2.8) (vortex reduction for instationary flows).

[ BURGER/MODERSITZKI/RUTHOTTO 13], [ DROSKE/RUMPF 04 ] and [ WAGNER 10], p. 5, (2.16) (hyperelastic image
registration).
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The outline of the paper is as follows: After closing this section with some remarks about notation, we turn in
Section 2 to the description of polyconvexity. In Section &, we state the control problem to be investigated,
provide two equivalent reformulations of the problem and ensure first the existence of global minimizers
(Theorem 3.3.). In Section 4, we start with the formulation of Pontryagin’s principle in the special case
of dimensions n = m = 2. Then we state and prove the first-order necessary optimality conditions in full
generality as our main result (Theorem 4.3.) and provide an a. e. pointwise reformulation of the maximum
condition (Theorem 4.4.). In the final Section 5, we apply our theorems to a problem of hyperelastic image

registration.

Notations.

Let © C R™ be the closure of a bounded Lipschitz domain (in strong sense). Then C*(Q,R") denotes
the space of r-dimensional vector functions f: Q — R", whose components are continuous (k = 0) or k-
times continuously differentiable (k = 1, ... , 00), respectively; L”(£2,R") denotes the space of r-dimensional
vector functions f: © — R", whose components are integrable in the pth power (1 < p < o) or are
measurable and esentially bounded (p = c0). W(l)’p (©2,R") denotes the Sobolev space of r-dimensional vector
functions f: 2 — R" with compactly supported components, possessing first-order weak partial derivatives
and belonging together with them to the space L (2, R) (1 < p < 00). W™ (Q,R") is understood as the
Sobolev space of all r-vector functions f: Q@ — R" with Lipschitz continuous components and boundary
values zero.%®) Jz denotes the Jacobi matrix of the vector function x € Wé’p (Q,R"). The abbreviation
“(V)s € A” has to be read as “for almost all s € A” or “for all s € A except a Lebesgue null set”. Finally,
the symbol o denotes, depending on the context, the zero element or the zero function of the underlying

space. The notion of a polyconvex function will be precisely stated in the following section.

2. Polyconvex functions.

In order to describe polyconvexity, we introduce first the following notation for the vector of the minors of

a matricial argument. %%)

Definition 2.1. (The operator T) Let n, m > 1 and denote Min(n,m) =n A m.

1) We consider elements v € R™™ as (n,m)-matrices and define T(v) = (v, Tov, Tsv, ..., T(n/\m)v) €
RT™™ = R7W x R7® x R7®) x ... x R7™"™) as the row vector consisting of all minors of v: Thv = adj,v,
Tzv = adjzv, ... ;, Tnam)v = adjuamyv. Consequently, we have o(k) = (Z) . (ZL), 1<k<nAm. The sum
of the dimensions is denoted by T(n,m) =o(1) + ... +o(n Am).

2) Let (m An) < p < oo. We consider elements u € LP(Q, R™) as (n, m)-matriz functions and define the
operator T: LP(Q,R™™) — LP(Q,R M) x LP/Q(Q,]R"(Q)) % Lp/g(Q,]I{”(3)) Y % LP/(n/\m)(Q’RU(n/\m))
by ur— Tu = (u, Tou, Tsu, ..., T(n/\m)u) with Tou = adjyu, Tau = adjsu, ... , Tinam)t = adjpm)u-

Now we may state the definition of a polyconvex function.

Definition 2.2. (Polyconvex function)'©) We consider elements v € R™™ as (n,m)-matrices and ele-
ments V. € R™™™) as row vectors. A function f(v): R™™ — R U{(+00)} is called polyconvez iff there

[EVANS/GARIEPY 92], p. 131, Theorem 5.

For all notations related to matricial arguments and polyconvexity, we adopt the conventions from [DACOROGNA
08].
[DACOROGNA 08], p. 156 f., Definition 5.1.(iii).
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exists a convex function g(V): R™™™ = R U{ (+00) } such that
fv) =g(T(v)) VveR"™. (2.1)

The function g is called a convex representative for the polyconver function f.

Note that, in general, the convex representative for a given polyconvex function is not uniquely determined.

Given a polyconvex function f, a convex representative may be obtained through ')

7(n,m)+1 7(n,m)+1 7(n,m)+1
g(V) = lnf{ Z Ar f(vr) | Z Ar T(UT) =V, Z Ar=1, 020, v, e R"™, (22)
r=1 r=1 r=1

1<r<7(n,m)+1}.

(2.2) is called the Busemann representative of f.'? Any polyconvex function is locally Lipschitz continuous
on the interior of its effective domain® and, consequently, differentiable a. e. on dom (f). Surprisingly,
smoothness properties as continuous differentiability of a polyconvex function f are not automatically in-

4) For the purposes of optimal control, it is therefore advisable to

herited by its convex representatives.
state the smoothness and growth assumptions about the integrand in terms of a fixed convex representative
g rather than of the original function f.

In the special case n = m = 2, we get o(1) =4, 0(2) =1, 7(2,2) = 5 and T(v) = (,,). Consequently,
any polyconvex function f: R*** — R U{(+00) } must take the form f(v) = g(v, detv) with a convex
function g: R® — R U{(+00)}. For n = m = 3, we have o(1) = 9, 0(2) = 9, 0(3) = 1 and 7(3,3) = 19.

Here adj, v is the transpose of the cofactor matrix and adj; v = det v.

3. Existence of optimal solutions.

a) Statement of the control problem and basic assumptions.

We are concerned with the following multidimensional control problem of Dieudonné-Rashevsky type:

(P)o Fl(x,u) = /f(s,x(s),u(s))ds — inf!; (3.1)
Q
(z,u) € WEP(Q,R™) x LP(Q, R"™); (3.2)
E(z,u) = Jz(s) —u(s) =0 (V)s e Q;
u(s) € KCR™ (V)seQ. (3.4)

About the data within the problem (P)g, the following assumptions will be imposed:

Assumptions 3.1. (Basic assumptions about the data within (P)g)
1) We assume that n, m > 2 and m < p < oo (thusn Am <p).

2) Q C R™ is the closure of a bounded strongly Lipschitz domain, and K C R"™ is a convexr body with
0 € int (K).

[DACOROGNA 08], p. 163, Theorem 5.6., Part 2.

[BEVAN 06], p. 24, Definition 2.1. Recently, [ ENEYA/BOSSE/GRIEWANK 13] provided an effective numerical proce-
dure for the evaluation of g(V).

[DACOROGNA 08], p. 47, Theorem 2.31.
Cf. [BEVAN 03] and [BEVAN 06], pp. 44 ff., Section 5.



3) The integrand f(s,&,v): O x R" xR — R is continuous with respect to s, & and v and polyconvex as
a function of v for all fized (3,€) € Q@ x R™.

4) The polyconvez integrand f(s,&,v) admits a convex representative g(s,&,v,w): @ x R™ x R™™ x ( R7?
R°®) x ... x RE(A™) ) — R, which is continuous with respect to s and continuously differentiable with respect

to &, v and w. Moreover, g satisfies a growth condition

(nAm) .
95,60, 03,3, o Wam) ) | < Ao(s) + Bo(€) + Co (1+ o] + > e ) (3.5)
M)se V(v,w)eR” x R"™ x (RU(Q) «R7G) » % Ra(nAm))

where Ag € Ll(Q, R), Ap | int () 4s continuous, By is measurable and bounded on every bounded subset of
R", and Cy > 0.

b) Equivalent formulations of the control problem.

Choosing for the polyconvex integrand f(s,£,v) a convex representative g(s,&, v,w): © x R" x R™™ x
(]R”(2) xR7®) x .. x ]R”("Am)) — R according to Assumption 3.1., 4), the problem (P)o may be restated

in the following way:

(P); G(z,u,w) = /g(s,x(s),u(s),w(s))ds — inf!; (3.6)
Q
(z,u,w) € WHP(Q,R™) x LP(Q,R™™) (3.7)
x (LP/Q(Q,IR”(Q)) x LPP(Q,R7®) x ... x LP/ ("™ Ro(mAm)) )
Eq(z,u) = Jx(s) —u(s) =0 (V)seQ; (3.8)
Ba(u,w) = wa(s) — adigu(s) = 0 (¥)s € ; (3.9)
Es(u,w) = ws(s) —adjsu(s) =0 (V)seQ; (3.10)
Epm) (U, 0) = Winam) (8) — adjiam) u(s) = 0 (V) s € Q; (3.11)
u(s) e K R™™; (3.12)
w(s) e K c R7@ xR® . x R7™™ (V)5 € Q (3.13)
where
K = K(Og(g), RQ) X K(Og(g), Rg) X ... X K(Ua(n/\m)y R(n/\m)) (314)
is a product of closed balls with the radii
Ry = sup { | (adjy(v)), | |1<1<0(2), veK}, (3.15)
Rs = sup { | (adjz(v)), | |1<1<o(3), veK}, (3.16)
Rinam)y = sup{ | (adJ(n,\nL) ) | | 1<i<onAm), veK } . (3.17)

A further reformulation of (P)g is the problem (P)s, which is identical with (P); except the fact that the
restriction (3.13) is replaced by w(s) € R7?) x R®) . x R7"™ () s € Q, i. e. the additional variables w
are governed by the equality restrictions (3.9) — (3.11) alone. In fact, the following proposition shows that
the problems (P)y — (P)2 are equivalent.



Proposition 3.2. (Equivalent formulations of the basic problem) If (z*,u*) is a global minimizer
of (P)g then (x*, uw*, To(u*), T3(u*), ..., T(n/\m)(u*)) is a global minimizer of (P)1 as well as of (P)a.

Conversely, if (z*,u*, w*) is a global minimizer of (P); or (P)s then (x*,u*) is a global minimizer of (P)g.

Proof. Let (z*,u*) be a global minimizer of (P)y and assume that (x,u,w) is a feasible triple within (P);.
Then, by definition of G, G(z,u,w) = F(z,u) > F(z*,u*) = G(z*,u*, w*) with w* = (Ta(u*), Ts(u*), ...,
Tnnm) (u*) ), and (z*,u*, w*) is a global minimizer of (P);. On the other hand, let (z*,u*, w*) be a global
minimizer of (P); and assume that (x,u) is feasible in (P)o. Then, again by definition of G, we have
F(z,u) = G(z,u,w) > G(a*,u*, w*) = F(z*,u*) where w = (T3 (u), T5(u), ..., Tinam)(u) ), and (z*,u*) is
a global minimizer of (P)y. The same is true if (P); is replaced by (P)2 since the feasible domains of both

problems coincide. =

c) Existence of global minimizers.

Assumptions 3.1. have been chosen in such a way that the existence of a global minimizer of problem (P)g

and, consequently, of problems (P); and (P)y as well, can be guaranteed.

Theorem 3.3. (Existence of global minimizers for (P)y — (P)2) Consider problem (P)o under As-
sumptions 3.1. Then there exists a global minimizer (x*,u*) of (P)g. Consequently, there exists a global

minimizer (z*,u*,w*) of (P)1 and (P)2 as well.

Proof. The growth condition (3.5) implies that
| f(s,60) | = [ g(5,60,To(0), T3(v), -, Tinam) (v)) | (3.18)

(nAm)
< Ao(s) + Bo(6) +00(1+|U\P+ ) \T,,(U)VD“) V)seQ V(Ev)eR" xK
r=2

for almost all s € Q and arbitrary ({,v) € R" x K where the sum of the second and third term is a bounded
function on every bounded subset of R™ x K. Consequently, the function f(s,&,v): @ x R" xR"™ —
R U{+(c0) } obtained as

~ 0 |(s,&0)eQ x R"xK;
{( (3.19)

belongs to the function class f;"K described in [ WAGNER 11], p. 191, Definition 1.1., 2), and we may apply
the existence theorem [WAGNER 11], p. 193, Theorem 1.5., in order to ensure the existence of a global
minimizer of (P)g while using the modified integrand f instead of f. By Proposition 3.2., (P); and (P)

admit global minimizers as well. m

d) Remarks and generalizations.

Remark 3.4. If the convex representative g(s,{,v,w) does not depend explicitly on certain components
of w e R7® xR7G) x ... x RZ"\™) then, obviously, the equations referring to these components may be
omitted from (3.9) — (3.11), and the feasible domain of (P); and (P); may be considered as a subset of an

accordingly smaller space.

Remark 3.5. Theorem 3.3. remains true if Assumptions 3.1., 3) and 4) are replaced by the following
weaker conditions: 3)’ f(s,&,v) is Borel measurable with respect to s, continuous with respect to £ and v
and polyconvex as a function of v for all fixed (3,&) € (2 \ N) x R" where N C Q is a m-dimensional

Lebesgue null set, and 4)" the convex representative g(s,&,v,w) is Borel measurable with respect to s,



continuously differentiable with respect to &, v and w while still satisfying (3.5). Then the integrand f still
fits into the framework described in [ WAGNER 11]. Note that Proposition 3.2. remains unaffected as well.

4. Pontryagin’s principle for polyconvex integrands.

a) The special case n =m = 2.

First, let us illustrate the assertions of our main theorems in the simplest case with dimensions n = m = 2.

Then a global minimizer of (P)y must satisfy the following first-order necessary optimality conditions.

Theorem 4.1. (Pontryagin’s principle for (P)y with n = m = 2) % Consider the problem (P)q with
n = m = 2 under Assumptions 3.1. mentioned above and choose for the polyconver integrand f(s,&,v) in
(P)o a convex representative g(s,&,v,ws) in accordance with Assumption 3.1., 4). If (z*,u*) is a global
minimizer of (P)q then there exist multipliers Ao > 0, y() € Lp/(pfl)(Q7 R*) and y@ ¢ Lp/(pd)(Q, R) such
that the following conditions are satisfied:

) /\o/Q(Q(S’l‘*(s)’u(s)’wz(s))—9(87$*(8)7U*(8)7detu*(8))
+ /Q(wg(s)—detu*() @ (s /V det(u ) (u ()—u*(s))y(Q)(s)ds >0

VueU= {z € LP(QR"™) | 21(s) €K (V) s € Q} Vws € L"*(Q,R);

N———
Q.
»

|
o
—~
I
=
Va)
>
|
IS
*
Py
Va)
&
SN—
H
<
=
<
Va)
>
Q.
»
—
N
—
N—

() Ao Z 2L (s, (s), u*(s), det u* (s)) (wi(s) — 27 (s) ) ds (4.2)

0&

+ i i/(axl( )—%(s))y(l)( Jds =0 VxeW ’p(Q R?). =
== 0s; 0s;

Theorem 4.2. (Pointwise maximum condition for (P), with n = m = 2)'%) Consider the problem

(P)o with n = m = 2 under the Assumptions 3.1. mentioned above and choose for the polyconvez integrand

f(s,&,0) in (P)o a convex representative g(s,&,v,ws) in accordance with Assumption 3.1., 4). If (x*,u*)

is a global minimizer of (P)o then the mazimum condition (M) from Theorem 4.1. implies the following

pointwise mazximum condition:

(vij —ui;(s)) v () (4.3)

HMw

(MP)  Xo (g(s,x*(s),uu@) —g(s,2"(s),u”(s),detu*(s) )) Zi:

+ (wz—detu*(s))y@)(s) - 22: 22:

i=1 j=1 Uzy

det(u*(s)) (U” — u” (s) ) y(2)(s) >0
(V)se VveK Vwr eR. n

Obviously, (MP) can be decomposed into the separated conditions
MP)1 Ao (g( s,2*(s), v, det u*(s) ) — g( s, 2*(s), u*(s), det u*(s) )) (4.4)

- 5 2 ()0 g et (w() 5P ) ) (v = i) 20 (D@ Vo ek:

=1 j=1

(VP)2 X (g(s,2" (), u" (5), 2 ) — 95,2 (5),u"(s), detu’(s)) ) (4.5)
+ (wg — detu*(s))y@)(s) >0 (V)seQ VwelR.

15) Special case of Theorem 4.3. below.

16) Special case of Theorem 4.4. below.



b) The main theorems in the general case n > 2, m > 2.

For general dimensions n > 2, m > 2, the first-order necessary optimality conditions for a global minimizer
of the multidimensional control problem (P)y will be stated in the following main theorem.

Theorem 4.3. (Pontryagin’s principle for (P)o) Consider the problem (P)g under Assumptions 8.1. and
choose for the polyconvex integrand f(s,&,v) in (P)o a convex representative g(s,&,v,w) in accordance with
Assumption 3.1., 4). If (z*,u*) is a global minimizer of (P)o then there exist multipliers Ao > 0, y(M) €
LP/(Pfl)(Q’an)’ Y@ ¢ LP/(P*Q)(Q’]RU(Q))’ y® € LP/(P*3)(Q,RU(3))! e, yAm) ¢ LZD/(ID*("AW))(Q7

]RU("AT”)) such that the following conditions are satisfied:

(M) Ao / (9527 () u(s),w(s)) = 9,0 (5), u" (), w"(5)) ) ds — / (u(s) —u*(s)) " yM(s)ds  (4.6)

(nAm) (nAm)

+ 3 [ (wels) —wi(s)) v (s ds = X | Tuadi (uw(s)) (uls) —u(s)) "y (s)ds > 0
r=2 Q r=2 Q

VueU = {z € LY (QR"™) | 21(s) € K (V) s € Q}

Vwy € L2 (QR7P) Vs € LPPQ,R®) . Ywgam € L7/ (@RI ;

@) a3 [

P A 6—&( s, 2 (s),u*(s), w*(s)) (JL‘Z(S) —z;(s) ) ds (4.7)

nm ox; s (1) 1,p
— 71 .. = ’ Q n .
+ z; ng Q( 75, (s) 7, (s)) Yy (s)ds =0 Ve Ws"(QR")

Note that the regular case always occurs, i. e. Ag # 0.

The following assertion shows that the condition (M) from Theorem 4.3. implies a pointwise maximum
condition.

Theorem 4.4. (Pointwise maximum condition for (P)y) Consider the problem (P)g under Assump-
tions 3.1. and choose for the polyconvex integrand f(s,&,v) in (P)o a convex representative g(s,&,v,w) in
accordance with Assumption 3.1., 4). If (z*,u*) is a global minimizer of (P)o then the mazimum condition

(M) from Theorem 4.3. implies the following pointwise maximum condition:

(MCP) )‘0 (g( 8733*(3)7”7“}) —g(s,w*(s),u*(s),w*(s))) - (U _U*(S))Ty(l)(s) (4'8)
(nAm) (nAm)
+ X (@ wl(9) y6) - S Veadi,(w'(5)) (v u'(5) 5 (s) > 0
(Ms€eQ VveK VYwr € R7® Vuws e R7® . Vuwam € R7™

Remark. Obviously, (M®P) can be further decomposed into the following set of separated conditions:

OP1 o (905" (5), 0,07 (5)) = gls,2" (), " (), w7 (s)) ) (4.9)
(nAmM)

—(U—u*(s))Ty(l)(s) - 2:32 Vvadjr(u*(s))(v—u*(s))Ty(T)(s) >0 (V)sef Vvek;

)2 Ao (90527 (), (), w0205 (5): o Wiy () = 9,27 ()0 (5), w(s) ) ) (4.10)

+(wo—w3(s)) yP(s) 20 (V)seQ Vw, e R7P;

OP)s Ao (9052 (5), 0" (), (), s, oo W) () = 95,27 (5), 0" (), (s) ) ) (4.11)

+(w3—w3(s))Ty(3)(s) >0 (V)seQ VYwseR'®;



(Mj))(n/\m) A0 (g(s,x*(s),u*(s),w;(s),wg(s), aw(n/\m)) 79( S,IE*(S),U*(S),U)*(S))> (412)
* T nAm o(n/Am
+ (Wnam) —w(nAm)(s)) Yy () > 0 (V)s e VWinam) € R (nAm)
¢) Proof of Theorem 4.3.

Sketch of the proof. The proof of Theorem 4.3. is structured as follows: By Proposition 3.2., any given
global minimizer (x*,u*) of (P)g corresponds to a global minimizer (x*, u*, w*) = (m*, u*, To(u*), T5(u*), ...,
Tinam) (u*)) of (P)y. With reference to (z*,u*,w*), we define a pair of convex variational sets C and D
within the space R x LP(Q, R™™) x LP/*(Q, R°®) x LP3(Q, R7®)) x ... x L/ ""™)(Q, R7""*™)) and show
that C is closed and D has a nonempty interior (Step 1). Applying Lyusternik’s theorem to the operators
Es, E3, ... , E(uam), we prove that the nonnegativity of the first variation of the objective G of (P)2 at
(z*,u*,w*) implies the relation C N D = @ (Steps 2 —4). Regardless of the failing regularity condition for
F, the weak separation theorem yields a variational inequality, from which the claimed optimality conditions
are obtained (Steps 5 and 6). The occurence of the regular case is a consequence of the fact that the set U

of feasible controls within (P)g admits a nonempty interior with respect to the L™ -norm topology (Step 7).

o Step 1. The variational sets C and D. Assume that a global minimizer (z*,u*) of (P)o is given. Then

(z*, u*, w*) = (2, u*, Ta(u*), T3(u*), ..., Tinam)(u*) ) is a global minimizer of (P)z. Fixing a number a > 0,

we define the variational sets

C= { (Q? R1y %2 35 -oo Z(n/\m)) (413)
€ R x LP(Q,R™) x LP2(Q,R7P) x LP3(Q,R7®) x ... x LP/""™) (@ R7™))  with

o0=¢+ D,G(z", u",w*)(x —z%) + D,G(z",u", w")(u —u*) + D, G(z*, u™, w*)(w — w*); (4.14)
z1 =Jr—Jz* — (u—u"); (4.15)
zo = (wg — w3) — D, To(u®)(u — u*); (4.16)
z3 = (wg — w3) — D, T5(u*)(u — u*); (4.17)

Zinam) = (Wnam) = Winamy) — DuT(nam) (0*)(u —u”); (
>0, ze WJP(Q,R"), (4.19
we U, wy € IPPQRTP), wsy € PR, ., wipam) € L/ (QRICA™)) 1 (

D = { (g7 21, 22, 23, e z(nAm)) (

€ R x LP(Q,R™™) x LP2(Q, R x LPA(Q,R7®)) x ... x LV ™™ RO with

o< =2K (llz1llgs + 122 lgors + W2 s + -+ Wztuamy lpprnnm )5
21 € K(o,) C LP(Q,R™™);
2 € K(o,a) € LP2(Q,R7®?);
23 € K(o,a) € LP3(Q,R7®));

Znam) € K(0, @) € P/ (RO Y (4.26)

The value of the constant K > 0 will be chosen according to (4.103) below.

Proposition 4.5. 1) The variational set C is nonempty, closed and convez.

2) The variational set D is convex with nonempty interior.
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Proof. 1) Obviously, C contains the origin and is convex since U is convex together with K. In order to

prove closedness, assume that a sequence { (QN, 2V, 2N 2L zg\[mm) ) b, C with oV — gg, 28 — 29,
2N = 29— 2 zf:'l Amy z?n amy 15 given. The elements of this sequence are generated by

numbers eV > 0 and functions z¥ € W P(Q,R"), vV € U, w) € LPPQRD), wl e 1P, R7®),
C wé\fmm) e P/ RO We check now whether the sequences {2V }, {u™ }, {w] }, {w },

co s {W{} oy } remain bounded. First, the sequence {u" }, U is bounded in L™-norm (thus in L”-norm

as well). Consequently, z¥ — 29, 28 — 28 .. | Z(]X,/\m) — z?nAm) imply that the sequences {wd },
wl¥}, o {wlY remain bounded in Lp/2-, Lp/?’—, N Lp/(n/\m)—norm7 respectively. Further, from
3 (nAmM) Y

A= JaN —uN = 20 and 2V € W(l)’p(Q,IR”) we may conclude that the sequence {2V} is bounded in
WP norm. Assumption 3.1., 4) ensures that D, G(z*, u*, w*), D, G(z*,u*, w*) and D,,G(z*,u*, w*) act as
linear, continuous functionals on the spaces W(l)’p(Q7 R"™), LP(2,R™™) and Lp/Q(Q, ]R”(Q)) X L”/S(Q7 IR”(?’)) X
o x LV ("Am)(Q,]R”("Am), respectively. Consequently, o — oo implies the boundedness of the sequence
{eN}.

As a consequence, { u’¥ } contains a subsequence, which converges weak* (with respect to L™) or weak (with
respect to L) to a limit element u® € LP(Q, R™™). Since U C L= (Q, R"™) C LP(Q,R™™) is convex, u’ still

belongs to U. Further, within {w) }, {w) }, ..., {w{),,, } we find weakly convergent subsequences with
limit elements wd € L/?(Q,R7?), wd € LP/3(Q, R°®), ... | Whamy € LP/ (M) RIMAM)Y satisfying
2y = (wy —w3) — D, To(u")(u” —u*); (4.27)
2§ = (w§ —w§) — DuTs(u)(u® — ") (4.28)
z?n/\m) = (w(()n/\m) - wzkn/\m)) - DuT(n/\m) (u*)(uo - ’U,*) . (429)

Moreover, {x" } contains a weakly convergent subsequence with limit element 2° € W(l)’p (Q,R"™) as well.

By Assumption 3.1., 1), this subsequence may be chosen according to the Rellich/Kondrachev theorem 17)

such that 2V = 20, and 20 satisfies the zero boundary condition. Since the generalized derivative operator

is weakly continuous, z{v — 29 implies that J2° = u°, and we get

2) = Ja¥ — Jr* — (u® —u*). (4.30)
Finally, {e™ } contains a convergent subsequence with limit element £° > 0, and we obtain

0" = ¥ + DG, ut, w*) (2 — ) + DG (a*, u*, w*) (u® — u*) + DypG(a*, u*, w) (w® —w*). (4.31)

0

Consequently, (0%, 29, 29, 29, ..., Znm) ) belongs to C, and the set is closed.

2) D is the subgraph of a concave function over a convex range of definition in the space L”(Q, R"™) x
LP2(Q,RP) x LPP(Q,R7®)) x ... x L™ (Q R7™ ™) and, therefore, convex. Obviously, the point
(—2K,0,0,0,..,0) belongs to the interior of D. m

e Step 2. Definition of the set Cy. Denote by
G = {z € LP(QR") |3z € WyP(QR") such that z = Jo } (4.32)
the “gradient” subspace of L”(Q, R™)1®) and by

Ug=UNG (4.33)

[ADAMS/FOURNIER 07], p. 168, Theorem 6.3.
If Q admits even a C'-boundary then LP(€, R™™) admits a direct decomposition into a “gradient” and a “curl”
subspace for any 1 < p < oo, cf. [ WAGNER 09], p. 555, Theorem 3.1., (iii).
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the subset of all admissible controls of (P)g, which may be completed to feasible pairs for (P)o. With the
aid of Uy, we define the following set

Cy = { (Q, 21, 22, 23, e z(n/\m)) (4.34)
€ R x LP(Q,R™) x LP2(Q,R°®) x LP3(Q,R7®) x ... x LP/""™) (@ R7™))  with

o=Jzr—Jz* — (u—u"); (4.35)

0= (w2 —w3) — DyTo(u")(u—u"); (4.36)

0 = (ws —wj3) — DuT3(u")(u—u"); (4.37)

0 = (W(nam) = Wnam)) = DuT(nam) (W) (w—u"); (4.38)

e WiP(Q,R™), ue Ug, (4.39)

wy € PR wy € LP3(Q,R®)), .. wipam) € L/ ™ (Q,RTAMY L (4.40)

e Step 3. Proposition 4.6. The following implication holds: (Q, 21, 22, 23, -, z(m\m)) €eCiNC=
0=0.

Proof. The proof of Proposition 4.6. will be delivered in several steps.

e Step 3.1. Assume that an element (QO, 0,0,0, .., 0) is contained in Cqg N C. Then we find a number
€0 > 0 and functions 20 € WP(Q,R"), u* € Uy € LP(Q,R™), w € LP2(QR®), wl € LP3(Q,R7®),
s Wioamy € LP/ (M) (Q R gatisfying

0" = ¥ + DG, ut,w) (2 — ) + DG (a*, u*, w*) (u® — u*) + DypG(a*, u*, w) (w® —w*); (4.41)
o= Ja¥ — Jo* — (u® —u*); (4.42)
0o = (w) —w}) — DyTo(u*)(u’ —u*); (4.43)
0o = (w) —w}) — DT3(u*)(u’ —u*); (4.44)
0 = (Whnm) = Winam)) = DuT(uam) (™) (u® —u*). (4.45)

e Step 3.2. Let us invoke now Lyusternik’s theorem, which reads as follows:

Theorem 4.7. (Ljusternik’s theorem) 19) Consider Banach spaces X, Y, the (possibly nonlinear) operator
M: X =Y and its kernel M = {r € X ‘ M(r)=o90}. If r* € M, M is continuously Fréchet differentiable
in a neighbourhood of r* and DM (r*) maps onto Y then the set of the tangential vectors for M at the point
r* coincides with the kernel {r € X | DM (r*)(r) = o }.

Applying the theorem to the data

X = LP(Q,R™) x LP?(Q,R7®) x LP3(Q,R7®)) x ... x LP/ ("™ RI(Am)y (4.46)
Y = LP2(Q,R7P) x LP3(Q,R7®) x ... x LP/ (M (Q RO (4.47)
M = (Ez, ..., Eqam ) s (4.48)
o= (0w, (4.49)

[IOFFE/TICHOMIROW 79], p. 42.
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we observe that the Fréchet derivative DM (u*,w*): X xY — Y, which is given through

wy — wh — Dy To(u*)(u — u*)
ws — wh — Dy, T5(u*)(u — u*)
DM (u*,w*)(u—u,w—w*) = . ) (4.50)

w(”/\m) - wEkn/\m) - DUT(n/\m) (U*)(U - U*)

maps onto Y. The continuity of DM with respect to the reference point is obvious. Consequently, (4.43) —
(4.45) imply that (u® —u*, w® — w*) is a tangential vector for M = { (u,w) € X | M(u,w) =0} at (u*,w"),
and there exist elements (Q(u®,\), R(w® X)) € X such that

(u+ AW —u*) + Q% N\, w* + A(w’ —w*) + R(w’,\)) € M <+ (4.51)
wi(s) + A (wd — wi) + Ra(w®, \) — adjy (u*(s) + A (u’ —u*) + Q% A)) =0 (V)s€Q; (4.52)
wi(s) + A (w§ — wi) + Ry(w’, \) — adjs (u*(s) + A(u’ —u*) + Q% N)) =0 (V)s€eQ; (4.53)

fadl](n/\m) (u(s) + A(u® —u*) + Q(uO,A)) =0 (V)sef

for all sufficiently small A > 0 where

lim A QN || = 0 (4.55)
A—040
lim A7 Ra(w® N) || o2 = 0; (4.56)
A—040
lim A7 R3(w® ) || 1es = 0; (4.57)
A—040
lim A7 Ruam) (0 M) [ osnam = 0. (4.58)
A—040

e Step 3.3. Let us decompose

adj, (u*(s) + A (u® —u*) + QuP, )\)) = adj, (u*(s) + A (ul — u*)) + So(u*,u®, \); (4.59)
adjs (u*(s) + A (uo —u*)+ Q(uo, )\)) = adj; (u*(s) + A (uo — u*)) + Sg(u*,uo, K (4.60)

adJ(n/\m) (U*(S) + A (UO - u*) + Q(uov )‘) ) = adj(n/\'m) (U*(S) + A (U'O - U*) ) + S(n/\m) (U*a U,O, >‘) . (461)

Consequently, we have

wi(s) + A (wd — wh) + Ro(w®, N) — Sa(u, u®, A) — adj, (u*(s) + A (u® —u*)) = 0; 4.62)
w(s) + N (wl — w5) + Ro(w®, A) — Ss(u*, u°, 3) — adiy (u*() + A (u — ) ) = 0; 1.63)
wzkn/\m)( ) + A ( (nAm) — wzcn/\m)) + R(n/\m) (wo’ /\) - S(n/\m) (’U,*, u07 )‘) (464)

and the triples

(x* F A =), u A (W —ut), w4 A (0 — w*) + R(w®, ) — S(u*,uo,)\)) (4.65)
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are feasible in (P)q for all sufficiently small A > 0. Moreover, the expressions S(u*,u® \) satisfy limit

relations analogous to R(w?, \).

e Step 3.4. Lemma 4.8. It holds that lim A7'| Sa(u*,u®\) || 2 = 0, lim A7'[ Ss(u*,u®,\) | e/s
A—0+0 A—0+0

=0, o, T AT Sy (4% A) | ascinny = 0.
A—040

Proof. Expanding (4.59), to every index 1 < I < o(2) correspond indices 1 <i <k <n,1<j<r<m
such that

Soa(u u® ) = (ufy + A(ud; —uf;)) Qure(u®, A) — (up; + A (ug; — ujy)) Qir(u®, N) (4.66)
+ Qi (u®, N) (ufy + A (uy — ) ) = Qug (u®, ) (ufy + X (), — uj,))

+ Qi (W, N) Qrr (W, N) — Qrj(u®, ) Qir(u®,\) =

/Q] Soa(u,u®, N [P ds < © (/Q\ Quer (W, N)[P? ds + /Q| Qur (u®, ) "% ds + /Q| Qi (N s (4.67)

- /Q‘ij(uo,)\)|p/2ds+/ﬂ‘Qij(uo,)\) Qur(u®,\) |p/2ds+/Q\ij(u07>\) Qur(u®, ) [ ds )

since (uj;(s) + A (ufj(s) — uf5(s))), (ui;(s) + A(ud;(s) = ui; (), (upn(s) + A(ud,(s) — uj,(s))) and
(uf(s) + X (ud,(s) — u}.(s)) ) belong to the compact set K for almost all s € Q. Consequently, we get

H SQ,I(U*’ UO’ )‘) ||LP/2(Q) (4.68)

< O (1Qur(®,N) oy + 1| Quir (1% ) vy + 11 Qus (W0 N) oy + 1| Qg (6, ) ]2

+ || Qij(uoa A) ||LP(Q) -l ri(uov A) HLP(Q) + || ij(uov A) HLP(Q) |l Qir(uoa A) ||LP(Q))

< O (1Qur(® M) Iy + 11 Qe X) ooy + 1 Qus (1%, N) gy + 1| Qg (4%, N [ (4.69)
Qi (6 N [l oy | Qur (1, ) oy + 1l Qg (6, M) [l oy - | Qi (u®, A) ||L1’(Q)) —
lm A7 Sou(u, u® A) || e (4.70)
A—04-0
<O m AT NQu’ Mooy + m AT Qi X))
A—0+0 +0
+ lim A\~ 1||Qw(u A) ||Lp Q)—&— hm )\ 1|| Qk](u A) ||Lp @)
A—0+0
+ lim A7 1”@1](“ A) ||LP(Q) lim ||ri(u ;A) ||L1’(Q)
A—0+0 A—=0+0
+ lim AT Qg (u®, N) HLP(Q lim || Qir(u®,N) ||LT’(Q)) =0 (4.71)
A—0+0 A—040

by assumption about Q(u’ \). Analogously, we may confirm that A~! | S5 ;(u*,u®, A) || s — O for all
1<1<a(3), oo s AT Smamy (@ u®, A | pscanmy = 0 forall 1 <I< o(nAm).

e Step 3.5. We compute the limit

1
0 < lim f(G(:E*+)\(CL‘O—$*)7u*+)\(uo—u*),w*—l—)\(wo—w*)—&—R(wOJ\)—S(u*,uo,)\)) (4.72)
A—0+0 A

—G(x*,u*,w*))
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= lim 1 (G(x* + A —2*), u AW =), wt A (w? —w) + R(w? ) — S(ut,u’,N))  (4.73)
A—0+0

—G(a:*,u*Jr/\(uOfu*),w*+/\(w07w*)+R(w0,)\)fS(u*,uo,)\)))
1
+ lim f(G(J:*,u*+)\(u0—u*)7w*—l—)\(wo—w*)—i—R(wo,)\)—S(u*7u0,/\))
A—0+40 A

—G(z*, u", w4+ A (w” —w*) + R(w’,\) —S(u*,uo,)\)))

+ lim 1 (G(x* U, w4 A (W —wt) + R(w®, \) — S(u*,ul,\)) — G(Q:*,u*,w*))

A—0+0
= D,G(z*,u*,w*) (2° — ) + D, G(z*, u*, w*) (u® — u*) + DG (2", u*, w*) (W’ — w*) (4.74)
p a(l) dg 0 N s
= [ R @ e ds [ S ) ds (1.75)
a(2) 89 a(n/\m)
+ ) (W, —wy ) ds + . / ) (W —wh ) ds
l; QaWQ,l( ) (w2 21) 8w(mm)l ) (W) (nAm).)

as a consequence of Assumption 3.1., 4). Consequently, we get

0° =+ D,Gx*,u*, w*) (2° — z*) + D, G(z*, u*, w*) (u® — u*) + DypG(z*, u*, w*) (W’ —w*) > 0,

(4.76)
and the proof of Proposition 4.6. is complete. m

e Step 4. Definition and properties of the sets C,,. To every nn > 0, we associate the set
C, = { (g, Z1, 29, 235 .., z(n/\m)) (4.77)
€ R x LP(Q,R™™) x LP*(Q,R7®)) x L3 (Q,R7®)) 5 ... x LV "™ (Q R with
=Jr—Jz" —(u—u"), ||z <03 (4.78)
zg = (w2 —w3) = DT (u)(u—u"), |22l < s (4.79)
z3 = (w3 —wz) — D T3(u")(u —u"), [ 23] Lo <73 (4.80)
Z(nAm) = (w(n/\m) - wzkn/\m)) - DUT(n/\M) (U*)(u - U*) ) ” Z(nAm) ”Lp/(vwm) <N (4'81)
e WyP(Q,R™), ue Uy +K(o,n) € LP(Q,R™), (4.82)
e "R, wy € PP QR , wipam) € L7/ (@RI 1 (4.83)

Proposition 4.9. For arbitrary n > 0, the following implication holds: (Q, 21, 22y 23, e z(n/\m)) eC, N
C = p > —Kn with a constant K > 0 independent on 7.

Proof. Assume that an element (Q, Z1, 22, 235 e, z(n,\m)) belongs to C,, N C. Consequently, we find a
number €% > 0 and functions 2° € Wy?(Q,R™), u® € UN (Up+K(o,n)) € LP(Q,R"™), w) € LP2(Q,R7?),
wd € LPP(Q,R7)), .. w(nAm) e L/ R guch that

0" = ¥ + D,G(x*, u*, w*) (2 — ) + DG (x*, u*, w*) (u® — u*) + DypG(a*, u*, w*) (w® —w*); (4.84)
2 = Ja¥ — Ja* — (u® —u¥); (4.85)
2o = (W) —wh) — D To(u*)(u® —u*); (4.86)



25 = () — w3) — DuTy(u) (W — ") (487)
Z(nAm) = (w?’n/\m) - wj(kn/\m)) - DUT(H/\WL) (’U/*)<’U,O - u*) and (488)
Hzl ”LP <7, HZ2 ”LP/2 <n, ||Z?> ||LP/3 S/ PN Hz(n/\m) ”Lp/(vmm) <. (4'89)

Since u® € Uy + K(o,7n), we find @ € Uy with @ = JZ, T € W(l)’p(Q,IR"), and ||u® — @ || < 7. Thus we get
1720 = TE e = 1720 — il < 1720 — 0l + 40 — 0 < 27, (4.90)
and the Poincaré inequality 20 implies
[| 2° — 2y < G J¥ — Jz | . < 2C17. (4.91)

Further, we get
wd —wi = D To(u*)(u® —u*) 4+ 2o = D To(u*)(u® — @) + D To(u*) (G — u*) + 20 = (4.92)
(wd — D To(u*)(u® — @) — 20) —wh = Dy To(u*) (@ —u*). (4.93)

Abbreviating now w§ — D,/ To(u*)(u® — @) — 22 = 10p € Lp/z(Q, R7?), we see that

| @y —wh || o2 < | DuTo(u) |l gpo pory - |6 =@l e + [ 22 I g2 < (14 C2) 7. (4.94)
Analogously, we find elements w3 € LP/S(QJRU(?’)), ey Winam) € Lp/(”/\m)(QJRU(("Am))) such that

W3 —wy = D,/T3(u™) (@ —u™), ..., Winam) — wE‘nAm) = DuTinpm)(u*) (@ —u*) and (4.95)

|05 — w5 || pors < | DuTs(u*) | g porsy - 10 =@ llpe + 125 [l pors < (14 C3)m; (4.96)

H WinAm) — w?n/\m) ”Lp/(n/\m) < ” DuT(n/\m) (U*) ||£(Lp’Lp/(n/\m)) : ” uO —u ||LP + ” Z(nAm) ||LP/(nAm) (497)

< (1 + C(n/\m)) .

From Proposition 4.6., we conclude further that

(nAm)
€%+ D,G(x*, u*, w*) (& — ) + DuG(a*, u*) (@ —u*) + 3 Dy Gz, u*,w*) (W, —w}) =0, (4.98)
r=2
and we may estimate
(nAm)
0° =+ D,G(x*,u*, w) (2 — %) + DG (2", v, w)(u® —u*) + 3 Dy Gz*,u*, w)(wd —w) (4.99)
r=2
(nAm)
= &'+ D,G(z*,u*,w*)(2° — &) + DG (2", u*,w*)(u’ — @) + 3 Dy, G(z*, u*,w*)(w? — @,.) (4.100)
r=2
(nAm)

+ D, G(x™, ™, w*)(T — a¥) + D,G(z", v, w*) (@ —u*) + Y. Dy, G, u*,w") (0, —w))
r=2

> &~ | DGt w) |- 20 = & ) — | DGl w) |- u — | (4.101)
(nAm) o
- 22 ||DwrG(x*aU*aw*)” : ||w7'_w7‘H
r=

nAm)

(
> — (201 DG ut wh) ||+ || DuGa' u',w) |+ X (14 Cp) || Dap, Gl w) | ) . (4.102)
r=2

20) [ADAMS/FOURNIER 07], p. 184, Corollary 6.31.
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Consequently, the claimed implication is true with
(nAm)
K =2C || D,G(z",u*,w*) || + || DuG(z", u*,w*) || + > (1+Cy) || D, G(z*, u",w*)|. m (4.103)
r=2
Proposition 4.10. The variational set D is a subset of C,.

Proof. We must convince ourselves that the components of a given element (g, 21, 22, 23, -y Z(nAm) ) eD

admit representations

2y = Ja — Jo* — (u® —u*); (4.104)
29 = (W) — wh) — Dy To(u*)(u® —u*); (4.105)
z3 = (w§ — w3) — D T(u*)(u” — u*); (4.106)
Z(nAm) = (w(()n/\m) - wzkn/\m)) - DuT(n/\m) (U*)(uo - U*) (4107)
with functions 20 € WyP(Q,R"), u® € Uy + K(o,a) € LP(Q,R™™), wl € L2 RP), wl e LP3(Q,
R°®), ..., W am) € L/ 0 R7A™)) - Indeed, since o € Ug € LP (2, R™™) and || 21 || » < @, we may
choose 20 = 0 € W P(Q,R"), u° = 0+ 21 € Uy + K(0,a) C LP(Q,R™), wd = 25 + D, To(u*)z €
LP/Q(Q7RU(2))7 'Ll)g = z3 + DuTS(u*)Zl € Lp/3<QaRU(3))> e w(()n/\m) = Z(nam) T DuT(n/\m)(u*)Zl €

Lp/("/\m)(ﬂ, R (™™ thus obtaining the claimed representation. m

e Step 5. Separation of C and D. From Propositions 4.9. and 4.10., we see now that the convex sets C and D
are disjoint while int (D) # (. Consequently, application of the weak separation theorem 21) yields the exis-
tence of a nontrivial linear, continuous functional (g, ™), ¥y, y®) .. y("™) c R x Lp/(p_l)(Q, R™™) x
Lp/(P_Q)(Q, R7®) x Lp/(p_3)(Q, R7®)) x ... x Lp/(p_("/\m))(ﬂ, R?(™"™)) which separates C and D properly.

As a result, we obtain the variational inequality

Ao+ (yM, )+ (u®, )+ (P, )+ o+ (W, 2 ) (4.108)
> Xoo” + (yW, 2 )+ (u®, 2 + (0P, ) + o+ (W, 2 )

V (o, 21, 2, 25, e, zén,\m)) €eC V(0" 2,24, 2, ..., ZE/n/\m)) with
2 e < oy 125 lpere <oy 1125 |l pars < @y ooy [ 2(unm) | pscnm < @ and (4.109)
o' < =K (l21 o + 1122 I or2 + 231l pors + oo+ [ 2am) | posam ) - (4.110)

e Step 6. Derivation of the optimality conditions from the variational inequality (4.108).
a) Nonnegativity. Inserting (1, o, 0, 0, ..., 0) € C (generated with ¢ = 1, z = z*, u = v* and w = w*) and
(=1,0,0,0,..,0) €D into the inequality, we get A\g > 0.

b) Derivation of (M). We insert into the inequality elements of C generated with ¢ = 0, = z* and
arbitrary u € U as well as with arbitrary w € LF/> (Q,R7?) x Lp/?’(Q7 R°®) x ... x Lp/("/\m)(ﬂ, RO (A™)
and (0, 0, 0,0, ..., 0) € cI(D). Then we obtain

Mo (G(z*,u,w) — G(z*,u*, w*) ) — (yV, u—u*) (4.111)
(nAm) (nAmM)

+ 2 (W e —wl) = X (YY), DT () (u—wt)) 0.
r=2 r=2

[IOFFE/TICHOMIROW 79], p. 152, Theorem 1.
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¢) Derivation of (X). Now we insert elements of C generated with ¢ = 0, u = u*, w = w* and arbitrary
e WEP(Q,R™) and (0, 0, 0, 0, ..., 0) € cl (D). This yields

Ao DGz v, w*) (z — %) + (y V), Jo — Jz*) > 0. (4.112)

Inserting at the same time the element of C generated with ¢ = 0, u = u*, w = w* and (22* — ) €

Wé’p (Q,R"™) instead of x, we obtain the reverse inequality
Ao DGz u*, w*) (z — %) + (y V), Jo — Jz*) <0, (4.113)

and we arrive at (X).

e Step 7. Occurrence of the reqular case A\g > 0. Let us assume, on the contrary, that Ag = 0. Inserting

u = u* into the maximum condition (M), this implies that

(nAm)
> (" w, —wr) =0 (4.114)
for all w € LP/Q(Q,R"(Q)) X Lp/3(Q,IR"(3)) X ... X Lp/("/\m)(Q,IR”("Am)) which is only possible if (), y3),
., y""™) = o. Further, condition (X) reduces to

(yV Jz)y = (yV | Jz*) Vae WIP(Q,R"), (4.115)
and this implies (y™ | Jz*) = (y( | u*) = 0. Within the maximum condition, we obtain
— gV u—u) = —(yP u) >0 Yuel. (4.116)

Since o € int (K) by assumption, U contains some L™ (€2, R™™)-norm ball V, and we conclude that {y™®) | u)
=0 for all w € U N V. Consequently, y*) vanishes on all functions z € C;°(Q,R™™) N LP(Q,R™™) and
thus on the whole space L?(Q2, R™™), cf. [ ADAMS/FOURNIER 07], p. 38, Corollary 2.30. Summing up, we
see that Ao = 0 implies y), y@), yB3) . ¢y 7)) — o and we get a contradiction since the separating
hyperplane between C and D was described by a nontrivial functional. We obtain Ag > 0, and the proof of
Theorem 4.3. is complete. m

d) Proof of Theorem 4.4.
Proof. The countable subset K° = (K ne™™ ) x Q7@ x Q73 x .. x Q7™ Jies dense in Kx R7?) x R7®)

x ... x R7™)  Let us consider the null sets of the non-Lebesgue points of the integrable functions g(-,z*(+),
wt (), w(-)), 9wt ()00 W), (00 —ur () YD), (w2 —wi(-) Y (), Vead(w(-)) (00 —
u*())T (), 2 <7 < (nAm) for (v°,w%) € K°. The countable union N of these null sets is still
a null set. Since © C R™ is the closure of a strongly Lipschitz domain, 9§ is a null set as well. 22 Let us
fix a point s¥ € int () \ N as well as a pair (v%,w?) € K°. Then a closed ball B = K(s", ¢) with sufficiently

small radius € > 0 is contained in int (), and the function pair (u,w) with

ist (s ist (s, B) — Dist (s, 0
ist (s ist (s, 0B) — Dist (s, 0

22) [WAGNER 06], p. 122, Lemma 9.2.
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belongs to U x LP/2(Q, R7®) x LP3(Q, R7®)) x .. x L/ "™ (Q, R7(™™))_ Since the functions mentioned

O is a Lebesgue point of

T

(

above are continuous with respect to v and w and (u(s?), (30)) (9, W0, s
g(ra* () u( ) w( D), ()= () TyO (), (wrl-)=wr () (), Zadi, (w()) (u(-)—u*(-))
-y (+), 2 <r < (nAm), as well, and we are allowed to form the Lebesgue derivative of (M) at the point
s0 after inserting (u,w) into the inequality.
Consider now a Vitali covering of 23) and specify therein some decreasing sequence { QV } of closed subsets
of 2 N B with M OV = {s°}. Together with (u,w), all function pairs (u™,w) with

uN (s) = Tgn(s)u(s) + T\ ovy(s)u™(s); (4.119)

w™ (s) = lgn(s) w(s) + Ty any(s) w*(s) (4.120)

form admissible controls, and we get

lim o / )\0 (5,2 (s),u™ (s),wN (s)) — g(s,2*(s),u*(s), w*(s) )) ds (4.121)

e (e () sy ds + ("i’" fim oy [ () = i) ) ds
N— oo |Q | =5 Nooo |Q ‘ r
(nAm) )
rz=:2 e \Q / Vo adj, (u(s)) (u™(s) —u(s)) 4" (s)ds
- (9<87x*<s>vv°,w°>fg<s,w <s>,u*<s>,w*<s>>) — (= (9) yM(s) (4.122)
(nAm) (nAm)

X (@ -wi9) Y0 6) - S Veadi, (w7(5)) (¢ —w () y(s) > 0.

This inequality holds for fixed s® € int (Q) \ N for arbitrary (v%,w?) € K°. Since its left-hand side is a
continuous function of (v,w), it may be extended to the whole set K x R x R°®) x ... x RZ™™)  and

the proof is complete. m

e) Remarks and generalizations.

Theorem 4.11. Let us replace Assumptions 3.1., 8) and 4) by the weaker conditions 3) and 4) from
Remark 3.5. Then Theorems 4.3. and 4.4. remain true provided that the partial derivatives of g satisfy the
additional growth conditions

9g
| 0&;

(s,§,v,w)| < AZ(S) + Bi(g,U,w) (4123)
(V)S cQ V(f,v,w) c R™ x R™ x (RU(Z) X RU(3) N Ro(n/\m))

where A; € L'(Q,R) and B; is measurable and bounded on every bounded subset of R™ x R"™ x (]R”(Z) X
R7®) x .. x R7M™) 1 i < ng

0
| 5o (G0 | < A6) + BV (€ vw) (4.124)
(V) se) V(E”U’w) c R"™ x R™ x (IRU(2) % RU(3) N Ra(n/\'m))

where Al(l) € Lp/(pfl)(ﬂ, R), Bl(l) is measurable and bounded on every bounded subset of R™ x R™™ x (R”(2)
x R7®) x .. x R7™) 1 <1< nm;

| (s,&,0,w) | < Al(z)(s) + BI(Z)(E,U,w) (4.125)
6(.02

(V) se V(f,v,w) e R® x R™ x (RU(2) % R0(3) N Ra(n/\m))

[DUNFORD/SCHWARTZ 88], p. 212, Definition 2.
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where AI(Z) € Lp/(p_2)((2, R), Bl(2) s measurable and bounded on every bounded subset of R"™ x R™™ x (IR”(Q)
x R7®) x .. x R7"M™) 1 <1< a(2);

a nAm nAm
| —(s.60.0) | <A™ (s) + B (€ v,w) (4.126)
6W(n/\n@),l

(V) seN V(f,v,w) c R® x R™ x (IRU(2) % R0(3) N Ra(n/\m))

where Al(n/\m) € Lp/(p_(nAm))(Q,lR), Bl(n/\m) is measurable and bounded on every bounded subset of R™ x
R™ x (R7® x R7®) x .. x R7"™) 1. <1< a(nAm).

Proof. An inspection of the proof of Theorem 4.3. reveals that conditions (4.123) — (4.126) are suffi-
cient in order to ensure that D,G(z*,u*, w*), D,G(z*,u*,w*) and D, G(z*,u*, w*) act as linear, con-
tinuous functionals on the spaces WiP(,R"), LF(Q,R™™) and L*(Q,R7®) x L*(Q,R°®) x ... x
v/ (n/\m)(ﬂ, R? (™M) respectively. Consequently, the first variation of G can be expressed as in (4.75). =

This generalization opens the way to the application of Pontryagin’s principle to problems from mathematical
image processing where, in general, the objectives depend on image data I(s) being measurable and essentially
bounded instead of continuous.

Remark 4.12. Remark 3.4. from above applies accordingly to Theorems 4.3., 4.4. and 4.11. Consequently,
only those components of w € Lp/2(Q7IR"(2)) X Lp/?’(Q,IR”(3)) X . X Lp/("Am)(Q, R7(™"™)) which appear
explicitly within the objective of (P);, must be paired with multipliers and incorporated into the conditions
(M) and (M®P), respectively.

Remark 4.13. With obvious adaptations, the proof of Theorem 4.3. applies to [ WAGNER 09], p. 549,
Theorem 2.2. as well. Consequently, the error occuring in the proof of this theorem ibid., p. 552, Step 3, can
be completely removed. Analogously, the proof of Theorem 4.4. applies to ibid., p. 550, Theorem 2.3., thus
fixing an error in the proof of this theorem ibid., p. 553, (33).

5. Application to hyperelastic image registration.

a) Unimodal image registration.

Assume that on a two- or three-dimensional domain Q C R™, m € {2, 3}, two greyscale images are given,
which will be identified with at least measurable functions Iy, I;: © — [0, 1]. Considering I, as reference
image, one searches for a deformation field z: Q — R™ satisfying the condition I (s — z(s)) ~ Iy(s), thus
modifying the template image I; such that it matches the reference image Iy in a best possible way. In this
abstract formulation of the registration problem, the single assumption is required that there is an overall
correlation between the greyscale intensity distributions as well as the geometrical properties of the template
and reference image. For the practical determination of a possible deformation field = as well as for a reliable
interpretation of the result, more information about the pictured objects and their motion behaviour is
needed. 24

In numerous situations, a reasonable approach to unimodal registration is to attribute the changes in I; with

respect to the reference image Iy to an elastic deformation of the pictured objects. This is particularly true

A detailed introduction to the registration problem may be found in [ HINTERMULLER/KEELING 09], [ MODERSITZKI
04] and [ MODERSITZKI 09].
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for the imaging of living tissue, which behaves according to hyperelastic material laws. 2>) Consequently, a
large part of the literature is concerned with variational or PDE methods where z is sought as a linear-
elastic 29) or hyperelastic deformation.?”) In the latter case, the problems involve polyconvex stored-energy
functions. 28

The interest in an optimal control access to the elastic registration problem is caused by the fact that the
validity of the underlying elasticity models depends crucially on the uniform boundedness of the maximal
shear stress generated by the deformation z.2% Consequently, it is advisable to incorporate restrictions for
the partial derivatives of x into the given variational models. In the present paper, we confine ourselves to
convex restriction sets. However, in a forthcoming publication we will extend our approach to polyconvex
control restrictions as 0 < Ry < det (J(x)) < Ry < co. In the following, we reformulate a two-dimensional
registration problem within the framework of optimal control and provide the necessary optimality conditions
for the problem.

b) A two-dimensional registration problem with polyconvex regularizer.

Let us consider the following two-dimensional image registration problem with polyconvex regularizer: 30)

2
R Fa) = [ (B(s =)~ 1o(e) ) ds - [ (e ][ 52057 (5.1)
+z (det (By — Ju(s)) = 1)" ) ds — inf!;
ze WiP(Q,R?); Jx(s) € K R¥? (V)5 € Q. (5.2)

As discussed in [ BURGER/MODERSITZKI/RUTHOTTO 13] and [ DROSKE/RUMPF 04 ], the objective can be
regarded as a stored-energy functional, which is connected with a generic hyperelastic model. We assume that
4 < p< oo, cy, ca > 0. The image data Iy and I; belong to L™ (9, R) and C'(l)(Q,IR), respectively. K C
R**? is a convex body with o € int (K). We use the matrix norm || (Zi ) I” = |v1|P+| vz [P 4| vs [P+ ]| va |?,
which is continuously differentiable with respect to its arguments since p > 4. FE5 denotes the (2,2)-unit
matrix.

In [ WAGNER 10] and [ WAGNER 12], after an appropriate approximation of the data term, a direct method
was employed for the numerical solution of this problem. In [ ANGELOV 11] and [ ANGELOV/WAGNER 12],
p. 5 f., the problem (R); was incorporated into a larger scheme for hyperelastic registration of multimodal
image data. Applying Theorems 4.1. and 4.2. to (R)2, we obtain the following set of necessary optimality

conditions:

Proposition 5.1. (Pontryagin’s principle for (R);) Consider (R)y under the analytical assumptions

mentioned above. If (x*,u*) is a global minimizer of (R)y then there exist multipliers Ao > 0, y1) €

See e. g. [OGDEN 03].

We refer e. g. to [FISCHER/MODERSITZKI 03], [HABER/MODERSITZKI 04 ], [HENN/WITSCH 00], [HENN/WITSCH
01] and [ MODERSITZKI 04], pp. 77 ff.

See e.g. [ BURGER/MODERSITZKI/RUTHOTTO 13], [ DROSKE/RUMPF 04], [ DROSKE/RUMPF 07] and [LE GUYA-
DER/VESE 09].

Examples may be found in [ BALZANI/NEFF/SCHRODER/HOLZAPFEL 06 ] .
This is even true for living tissue, cf. [ GASSER/HOLZAPFEL 02], p. 340 f., and the literature cited therein.

Sligthly modified from [WAGNER 11], p. 218, (4.15), and [WAGNER 10], p. 5, (2.16) — (2.19). Note that the
reference points within the regularization term must be chosen in accordance with the deviation of s — z(s) from the
identity.
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Lp/(pfl)(Q,IR‘l) and y?) € Lp/(pfz)(ﬂ, R) such that the following conditions are satisfied:

(MP)1 Xopcy Z Z <|vij 1" — | ug;(s) }p) + Ao ez ((v11 +1)22)2 — (uti(s) +u§2(s))2 (5.3)

=1 j=

+ 2 detu*(s) (v11 + vaz — uiy(s) — usy(s) ))

— 22: 22: ( V(s )—i—aij det(u*(s))y(Z)(s)) (vij—uf;(s)) =20 (V)seQ Voek;

(MP)y Ao pco ( (w2)2 - (detu"‘(s))2 — 2 (ufy(s) + udy(s)) (wo —detu*(s))) (5.4)

+ (wo —detu*(s))y@)(s) 20 (V)seQ Vwr eR;

(%) —AOA(%(s_ﬁ(s))(m(s)_m;(s))+%(3_;¢*(3))(xz(s)—x;(s)))ds (5.5)
202 ox; ox} 1p 9

LPIP Q(asj )= Garls $) )y (s)ds = 0 Vo e WiT(Q,R?).

Proof. In order to apply Theorems 4.11., 4.1. and 4.2. to (R)2, we must to verify that the data of the
problem satisfy assumptions 3)’ and 4)" from Remark 3.5. as well as the growth conditions (4.123) — (4.125).
Obviously, assumption 3)’ from Remark 3.5. is satisfied. For the polyconvex integrand f(s, &, v), we choose
the convex representative g: Q x R? x R* x R — R defined as

g(s,&v,we) = (Ii(s =€) —10(5)) +per Z Z |vij [P+ pes (w2 —on — g’ (5.6)
i=1 j=1
with the partial derivatives

3g 3[1

Fe (s Evw) = =2(h(s =6 = Ih(s) GoHs =€), 1<i <2 (5.7)
dg p—1

8@11(S’£’U’w2) =pM01|011| —2,u02(w2—v11—v22); (5.8)
0 _

E)vi (8,€,v,w2) = puc ‘U12 ‘p 1; (5.9)
0 _

3UZ1 (87671}7“}2) =ppc ‘021 |P 1; (510)
89 p—1

81]22(3»5,%(02) = pper|vae | —2pey (wa — v —va2); (5.11)
dg

@(Svgavau&) = 2H02(w2*7111*1122)~ (5.12)

Let us confirm the growth condition (3.5), thus establishing assumption 4)" from Remark 3.5. Since Iy(s) is
essentially bounded on Q and I (s), after extension by zero to R? \ €, is bounded on R?, we get for almost
all s € Q and for all (&,v,w;) € R? x R* xR (5.13)

2 2
| 9(s,& v,w2) | < C1<|Io(5)‘2+lf1(5—5)’2>+ per Yo 0 vy |p+/~L0202(|U11|2+|022|2+|w2‘2>
i=1 j=1
<20 +4pe|ol +perCo (2] 0] +]we|?) < 205+ Co (14| 0]” +]we|”?) (5.14)

since p > 4. Thus (3.5) is satisfied with Ay(s) = C3 and By(€) = Cs. Further, we have

== (s,&0,w) | < 2(| (s =& [+ |To(s) ) I I ller < 2Cs5 [ Lflgr, 1<i<2, (5.15)
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and (4.123) is satisfied with A;(s) = Cs || [1 |1 and B;(§,v,w2) = Cs5 || I1 ||, 1 < i < 2. Concerning (4.124)
and (4.125), we see that the right-hand sides in the inequalities

0 _

|8vi(s,§,v,w2)} < pper|on |7 1+2u02(2]v|+|w2]), (5.16)
0 _

| oy (56 v)| = puer a7 (5.17)
0

|a—j2(s,£,v,w2)’ < 2pe (2|v] + |w2 ) (5.18)

are measurable and bounded on bounded subsets of R? x R* x R. The derivatives 0g(s,&,v,wy)/0ve; and
0g(s, &, v,wsz)/Ovaz can be estimated in analogous way. Consequently, (4.124) and (4.125) hold with Al(l)(s) =
0, A®(s) =0 and Bl(l)(g, v,wy), 1 <1< 4and B® (& v,ws) as given through (5.16) — (5.18). Consequently,

for a given global minimizer (x*,u*) of (R)2, the necessary optimality conditions take the claimed form. m
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