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Optimal control of the bidomain system (I): The monodomain

approximation with the Rogers-McCulloch model. Revised version

Karl Kunisch and Marcus Wagner

1. Introduction.

The present work opens a series of papers where we will set forth a basic framework for optimal control of the
bidomain equations together with related uniqueness and regularity results. ") The full bidomain system,
which represents a well-established description of the electrical activity of the heart, is given by

d
%—t + Lion(®, W) — div (Ml V@i) = I; fora.a. (z,t)eQx[0,T]; (1.1)
d
%—t + Lion(®, W) + div (M. V®.) = —I. fora.a. (z,t) € 2x [0, T]; (1.2)
ow
W—FG(‘I),W) = 0 fora. a (a,t)eQx][0,T]; (1.3)
nTM;V®;, = 0 and n" M, VO, = 0 for all (z,t) € 9Q x [0, T]; (1.4)
®(x,0) = Po(x) and W(x,0) = Wy(z) fora.a.z e, (1.5)

together with appropriate specifications of the ionic current I;,, and the function G within the gating equation
(1.3). 92) Within the cardiac muscle, which occupies the spatial domain ©Q C R, the anisotropic properties
of the intracellular and extracellular tissue parts will be described by conductivity tensors M; and M,.. The
variables ®; = ®;(x,t) and &, = P.(x,t) represent the intracellular and extracellular electrical potential;
their difference ® = ®; — ®. is the transmembrane potential. Further, I; and I, model the intracellular
and extracellular stimulation current, respectively. W, the so-called gating variable, is related to the ion
transport through the cell membrane. On a microscopical level, the intracellular and extracellular quantities
are concentrated on disjoint subdomains €2; and . of €2, whose common boundary represents the total of
the cell membranes. %) After an averaging procedure, ) the macroscopic model (1.1) — (1.5) is obtained,
where the superimposed intracellular and extracellular media occupy the same domain ().

The present paper is concerned with the monodomain equations, which arise from (1.1) — (1.5) as a special
case if the conductivity tensors satisfy M, = A M; with a constant parameter A > 0. Then ®. can be
eliminated from (1.1) — (1.5), and we get the monodomain system

0 A 1

E—FIZOH((I),W)—deV(MILV(I)) :m()\lz—le) for a. a. (.T,t)EQX[(),T], (16)
%—FG(@,W) =0 fora. a (2,t)eQx[0,T]; (1.7)
nTM;V® = 0 for all (z,t) € 9Q x [0, T]; (1.8)
®(x,0) = Po(x) and W(z,0) = Wy(z) fora.a.zeQ (1.9)

For an introduction to PDE-constrained optimal control problems, cf. [ITo/KUNISCH 08] and [ TROLTZSCH 09].

First considered in [TUNG 78]. For a more detailed introduction to the model, we refer to [ SUNDNES/LINES/CA1/
NIELSEN/MARDAL/TVEITO 06], pp. 21 — 56, and the references therein.

See [CoLLI FRANZONE/SAVARE 02], pp. 49 — 52, and [ VENERONT 06] .
Described in [ COLLI FRANZONE/SAVARE 02], pp. 71 — 75.



as a considerable simplification of (1.1) — (1.5) which, nevertheless, conserves some essential features of the
full bidomain model as excitability phenomena. For this reason, this system has deserved noticeable attention
for itself. 95)

The focus of the present paper is the investigation of the following optimal control problem:

T
(P) F(®,W,I.) / / x,t, ®(z,t) W(x,t))d:z:dt—k% / /Ie(x,t)Qd:Edt—an! (1.10)
0o Ja
subject to the state equations (1.6) — (1.9) in its weak formulation (see (2.1) — (2.3) below) and

the control restriction | I.(z,t) | < R for a. a. (z,t) € 2 x [0, T'] (1.11)

with R > 0 and a function r(z,t, ¢, w) to be specified below. In this problem, the monodomain system will
be controlled by means of the excitation variables on the right-hand side of (1.6). Since in practical situations
the application of an excitation to the intracellular part of the tissue is impossible, we have I; = o0, and the
single control variable is I.. The control restriction (1.11) reflects the obvious fact that one cannot apply
arbitrary large electrical stimulations to living tissue without damaging it.

For several reasons, it is appropriate to rely on a weak solution concept for the state equations in the
context of optimal control. First, typical control functions are nonsmooth (in fact, we will work with I, €
L= [ (0,T7), L? (Q)] ); consequently, the corresponding state variables ® and W will fit into Sobolev spaces
rather than in spaces of continously differentiable functions. Second, the existence proof for global and
local minimizers requires the closedness of the feasible domain in a suitable weak topology. The necessary
optimality conditions are stated and proved within reflexive spaces as well. Thus the monodomain system will
be included into (P) in its weak formulation, dispensing with a further regularity analysis of the solutions.
For the first member within the objective (1.10), a typical choice is a tracking-type integrand r = %(go -
D () )2 where ®; is taken, for example, from a steady-state solution (@, W) of (1.6) — (1.9). The second
summand constitutes the control costs. Its interpretation is that solutions with little intervention into the
cardiac system should be favored.

The main result of the present paper is the rigorous proof of the following set of first-order necessary

optimality conditions for weak local minimizers (<i>, W, fe) of (P), consisting of the variational inequality

T
/ / (ufe(x,t) + L Pl(x,t)) (I(z,t) — I(z,t) )dzdt > 0 for all feasible controls I, (1.12)
0o Jo

14+ A
and the adjoint system (1.13)
oP A Olion 2 oG or .~ -
- — - M; VP, i) P=-——Z(® ) for a. a. (x,t) € Qr;
5 V. (1+)\ VP )+ o (®,W) P, 8<p( W) Py &p( ,W) for a. a. (z,t) € Qr;
n' M; VP, = 0 for all (z,t) €90 x [0, T]; Pi(x,T) =0 for a. a. 2 € Q; (1.14)
8P2 oG . . 8Iion or )
— W + %((I),W) P, = — Jw ((I) W) P — 87((1) W) for a. a. ({E,t) € ng7 (115)
Py(z,T) = 0 for a. a. z € Q (1.16)

for the multipliers P; and P, related to (1.6) and (1.7), respectively (see Theorem 3.5. below). Treating (P)
as a weakly singular problem in the sense of ITo/KUNiscH, °®) the proof of (1.12) — (1.16) requires two main

%) See e. g. [PAO 92], pp. 681 fI., and the literature cited therein (p. 745).
%) [1ro/KUNISCH 08], p. 17 f.



ingredients: a stability estimate for the state equations (Theorem 3.8.), and an existence theorem for the
adjoint equations (Theorem 3.9.).

Although the bidomain system has been extensively studied under computational aspects, °) only little work
related to its optimal control is available in the literature as yet. Problem (1.10) — (1.11) was already con-
sidered in [ NAGAIAH/KUNISCH/PLANK 09 ] and [NAGAIAH/KUNISCH 11| . In these papers, the control prob-
lem has been successfully numerically accessed on the base of gradient or inexact Newton techniques, respec-
tively, but the optimality system has been derived only formally without proof. [ AINSEBA/BENDAHMANE/
Ruiz-BAIER 10] study an optimal control problem on a tridomain model. Even here, the optimality condi-
tions have been derived only formally. Another related control problem was investigated in [ BRANDAO/FER-
NANDEZ-CARA/MAGALHAES/R0OJAS-MEDAR 08] where the authors study a tracking-type functional, re-
stricting themselves in (1.6) — (1.9) to the FitzHugh-Nagumo model for I;,, and G and replacing (1.8) by
Dirichlet boundary conditions. In this particular case, the authors obtain necessary optimality conditions
by means of the Dubovitskij-Milyutin formalism. In the context of defibrillation, [ MUZDEKA /BARBIERI 05 ]
pursued a different approach. After disregarding the nonlinearities, the authors perform a spectral approxi-
mation and solve a time-optimal control problem for the ODE, which arises for the lumped mass system
resulting from the eigenmode expansion.

The structure of the paper is as follows. In Section 2, we summarize existence and uniqueness results for
weak solutions to (1.5) — (1.9) for the Rogers-McCulloch, FitzHugh-Nagumo and the linearized Aliev-Panfilov
model. In Section 3, we turn to the study of the optimal control problem (P). After restating the problem
within function spaces and confirming the existence of minimizers, we describe the adjoint system and the
optimality conditions. The main part of the section is devoted to the proof of the first-order necessary
conditions. Throughout the paper, the proofs will be worked out for the Rogers-McCulloch model. Note
that, nevertheless, they do remain valid for the FitzZHugh-Nagumo and the linearized Aliev-Panfilov model.
The corresponding alterations will be indicated. For the conveniency of the reader, we collect some facts
about Bochner integrable mappings in an appendix (Section 4). A further appendix (Section 5) contains the

proof of the stability estimate for the monodomain system (Theorem 3.8.).

Notations.

We denote by L”(€2) the space of functions, which are in the pth power integrable (1 < p < o), or are
measurable and essentially bounded (p = o0), and by whP (Q) the Sobolev space of functions ¢: Q — R
which, together with their first-order weak partial derivatives, belong to the space L'(Q,R) (1 < p < 00).
For spaces of Bochner integrable mappings, e. g. L2[(0, T), WI’Q(Q)], we refer to Section 4. Qr is an
abbreviation for Q x [0, T']. The gradient V is always taken only with respect to the spatial variables x.
The abbreviation “(V)¢ € A” has to be read as “for almost all t € A” or “for all ¢ € A except a Lebesgue
null set”, and the symbol o denotes, depending on the context, the zero element or the zero function of the

underlying space.

o7 We refer e. g. to [COLLI FRANZONE/DEUFLHARD/ERDMANN/LANG/PAVARINO 06], [ VIGMOND/AGUEL/ TRAYA-
NOVA 02] and [ WEBER DOS SANTOS/PLANK/BAUER/VIGMOND 04].



08)
09)

10)

2. Weak solutions of the monodomain system.

a) Weak formulation of the monodomain system.

Let © ¢ R® be a bounded, open set, and T > 0. The weak formulation of the monodomain system

(1.6) — (1.9), on which the formulation of the optimal control problem in Section 3 will be based, reads

as follows:
L(%f+1m(q>,w))wdx+/9HAAWTMNMx = /QH%(AL-—IJWI (2.1)
Vi e WHAHQ) (V)te o, T];
/(%m(@%)zﬁdwo Vi e LA(Q) (V)te [0, T); (22)
Q
O(z,0) = Po(z) Mz e; W(x,0) = Wy(z) (V)z €. (2.3)

Definition 2.1. (Weak solution of the monodomain system)®) A pair (®, W) is called a weak
solution of the monodomain system (2.1) — (2.3) on [0, T'] iff ® and W satisfy the equations on [0, T'] in

the distributional sense and obey the initial conditions. Moreover, the functions belong to the spaces

de ([0, T], LX) n L*[(0,T), W' (Q)] N LP(Qr) with 2 <p<6; (2.4)
wec’[[0,T], L*(Q)]. (2.5)

b) Models for the ionic current.

The ionic current through the cell membranes will be described with the help of a so-called gating variable
W, which is coupled with the transmembrane voltage ® by an ODE. We will consider the following models:

a) The Rogers-McCulloch model. %)
Lion(p,w) = b-p(p—a)(p =1 +¢-w = by’ — (a+1)bp’ +abp+pw; (2.6)
Glp,w) = cw—ckyp (2.7)
with 0 <a <1,b>0, k>0 and € > 0. Consequently, the gating variable obeys the linear ODE

%—Vtv—i—EW:emI). (2.8)

b) The FitzHugh-Nagumo model. %)

Lion(p,w) = @(p—a)(p—1)+w = ¢* —(a+1)¢* +ap+w; (2.9)
Glp,w) = ew—cKkyp (2.10)

with 0 < a < 1, kK > 0 and € > 0. Consequently, the gating variable obeys the same linear ODE (2.8) as
before.

See [ BOURGAULT/COUDIERE/PIERRE 09], p. 472, Definition 26.
[ROGERS/MCCULLOCH 94].
[FITzHUGH 61], together with [NAGUMO/ARIMOTO/Y OSHIZAWA 62].
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¢) The linearized Aliev-Panfilov model. 'V

Lion(p,w) =b-p(p—a)(p—1)+p-w=bp>—(a+1)bp> +abp+ow; (2.11)
Glp,w) = ew—cr((a+1)p—¢*) (2.12)

with 0 <a <1,b>0, k>0 and € > 0. The linear ODE for the gating variable is

8872/+5W:5n((a+1)<1)7<1>2). (2.13)

¢) Existence and uniqueness of weak solutions.

There are different ways to prove existence and uniqueness results for the monodomain system. In the context
of smooth solutions, the upper-lower-solution techniques applied in [PA0 92], pp. 681 ff., could be extended
to the Rogers-McCulloch model. Another possibility would be the specialization of results on the bidomain
system, but then one has to impose additional conditions on the spectral properties of the conductivity
tensors. 12 In order to get weak solvability in reflexive spaces without additional assumptions about M; and
M., we pursue the approach of [ BOURGAULT/COUDIERE/PIERRE 09] for the existence part only and base
the uniqueness result on the stability estimate (Theorem 3.8.), which is part of the proof of the necessary
optimality conditions. Note that the monodomain system is solvable without the compatibility condition
Jo(Li(z,t) + Ie(x,t) ) de = 0 (V) t € (0, T), which is a mandatory assumption in the full bidomain case.

Theorem 2.2. (Existence of weak solutions) '®) Assume that the data within (2.1) — (2.3) obey the
following assumptions:

a) Q C R® is a bounded Lipschitz domain.

b) M;: cl(Q) — R**® is a symmetric, positive definite matriz function with L™ (Q)-coefficients, which obeys
a uniform ellipticity condition with py, ps > 0:

0< m |1 <EMi(x)E < || €)I° VEER® Vaeq (2.14)

Then for any of the models from Subsection 2.b), the monodomain system (2.1) — (2.3) admits for arbitrary
initial values ®o, Wy € L*(Q) and inhomogeneities I;, I, € Lz[(O7 T), (Wm(Q))*} at least one weak
solution (P, W) in the sense of Definition 2.1. with p = 4.

Proof. Observe first that the reformulated bidomain system in [BOURGAULT/COUDIERE/PIERRE 09],
p. 473, Lemma 28, and the monodomain system (2.1) — (2.3) have the same structure. In the monodomain
system, however, the bilinear form M: W"?(Q) x W"?(Q) — R reads as

My, o) = 1% /Q VYT M; Vipy da . (2.15)
Lemma 2.3.'Y The bilinear form M is symmetric, continuous and coercive, satisfying with 8, v > 0

Bl vz < M@, )+ 8116 2 Yo eW"(Q) and (2.16)

| M1, )| <79 lwreg) 82 lwrz) Y, ¥ € WHHQ). (217)

See [ ALIEV/PANFILOV 96]. The linearized model is taken from [ BOURGAULT/COUDIERE/PIERRE 09], p. 480. In-
stead, the original model contains a Riccati equation for the gating variable.

Cf. [BOULAKIA/FERNANDEZ/GERBEAU/ZEMZEMI 08], p. 8, (2.18), and [BOURGAULT/COUDIERE/PIERRE 09],
p- 478 f., Theorem 32.

Slightly modified from [ BOURGAULT/COUDIERE/PIERRE 09], p. 473, Theorem 30.
Compare with [ BOURGAULT/COUDIERE/PIERRE 09], p. 464, Theorem 6.



Proof. As a consequence of Assumption b), we have

A
1+ A

/\vw| dr < 1+/\ VT M; Vpde = M(p,¢) Yoe W Q) = (2.18)

A
14+ A

Ap
1012 < M@, )+ 5 19 72 Yo EWH(9).

The uniform ellipticity of M; implies the second inequality as well. m

Obviously, the form M generates a weak operator on wh? (Q) x W1’2(Q). Consequently, the existence proof
from [BOURGAULT/COUDIERE/PIERRE 09], pp. 473 ff., Subsections 5.2.1. —5.3. can be carried over to
(2.1) — (2.3) after replacing the bidomain bilinear form by M. m

Theorem 2.4. (A priori estimate for weak solutions) Under the assumptions of Theorem 2.2., speci-
fying any of the models from Subsection 2.b), consider a pair

(B, W) € (00[[0, T], L*(Q)] n L*[(0,T), w"(@)] n LP(QT)) x C°[[0,T], L*(Q)], (2.19)

which forms a weak solution of the monodomain system (2.1) — (2.3) on [0, T'| with p = 4. Then the
following estimate holds:

2 P q
120200, 0] + 12 W [o, 2wy ] 1210, + 102/,

0,7), (wh2@)"]

HIW | +low/er s,

co[[0,7],22(2) 0.7y, (wr2@)’]
2
<C- (1+H‘I>0HL2(Q + | Wo ||L2(Q)+Hfz‘ HL?[(O,T),(WM(Q))*] + || I, ||L2[(0,T),(W1’2(Q))*]) (2.20)

where p =4 and q = 4/3. The constant C > 0 does not depend on &y, Wy, I; and I,.

Proof. For the same reasons as in the proof of Theorem 2.2., the arguments from [ NAGAIAH/KUNISCH/
PLANK 09], p. 10 f., Lemma 3.5., as well as the underlying estimates from [ BOURGAULT/COUDIERE/ PIERRE
09], pp. 474 — 476, may be carried over to the monodomain system (2.1) — (2.3). m

Theorem 2.5. (Uniqueness of weak solutions) Assume that the data within (2.1) — (2.3) obey the
assumptions of Theorem 2.2., and specify within the system any of the models from Subsection 2.b). Then for
arbitrary initial values By € L*(Q), Wy € L*(Q) and inhomogeneities I;, I, € L>[(0,T), (Wl’z(ﬂ) )*],
the monodomain system (2.1) — (2.3) admits on [0, T] a unique weak solution (®,W) in the sense of
Definition 2.1. with p = 4.

Proof. In order to confirm uniqueness, apply Theorem 3.8. below to I, = I, =L, and I. ' = 1. = I.. n



3. Optimal control problems for the monodomain system.

a) Statement of the control problem.

It will be convenient to restate the optimal control problem (P) within an appropriate function space frame-

work. Let us consider the spaces
X, = L*[(0,7), W"(Q)], Xo=L*[(0,T),L*Q)], Xz=L®[(0,T),L* )], (3.1)
the subspaces

X, =X, n w30, ), (WH()"] n [0, T, L*(Q)], (3.2)

Xo = Xo N WH2[(0,T), (L*(Q)"] nc®[[o, T], L*()], (3.3)
which contain all polynomials and, consequently, lie dense in X; and X5, and the target spaces
7o = L0, T), (W2Q)"], Z2 = L°[(0,T), (L*()"], Z3 = Zs = L*(Q). (3.4)

With the aid of operators F: Xl X X2 X X3 — R, E12 )21 X Xg X X3 — Zl, Egi )zl X XQ — ZQ,
FEs: )~(1 — Zs and FEy: )~(2 — Z4, the optimal control problem (P) can be written as follows:

(P) F(®,W,I.) = /T/r(x,t,‘l’(x,t),W(x,t))dmdt—|—g /T/Ie(sc,t)Qdmdt—an!; (3.5)
0o Jo o Jo
B(®W,L) =0 < /Q(a‘git)+1m(<1>(t),vv(t))+HlAfe(t))wdx (3.6)
A 1,2 .
+m/QV1/;TMiV<I>(t)dx — 0 Yy eW Q) (W)ielo, T];
oW (1) 2
By (@, W) = 0 /( = +G(<I>(t),W(t)))z/;dw =0 YyeL)Q) (Wtel[o,T]:  (3.7)
Q
E5(®) =0 < ®(z,0)—Pp(z) =0 (V)xe; (3.8)
Es(W) =0 < W(z,0)—Wy(z) =0 (V)zeQ; (3.9)
LeC={zeL™[(0,T), %] || Z@t)| <R (V) (x.t)eQr}. (3.10)

Concerning the data, we take the assumptions of Theorem 2.2. The numbers T > 0, A > 0, ¢ > 0 and
R > 0 as well as the functions ®, € L*(Q) and Wy € L*(Q) are fixed. The functions I, and G are
specified according to the Rogers-McCulloch model. Then by Theorem 2.5., the control-to-state mapping
C > I +— (®(I), W(l)) is well-defined. The spaces in (3.1) — (3.4) have been chosen with regard to
Theorems 2.2. and 2.4.

b) Structure of the feasible domain and existence of global minimizers.

Proposition 3.1. The set C of the admissible controls according to (3.10) forms a closed, convez, weak”-
sequentially compact subset of L™ [(0, T), LQ(Q) ]

Proof. The convexity of C is obvious. In order to prove closedness, consider a sequence { ZN }, L™ [ (0,T7),
L? (Q)] , which converges in norm to a limit element Z. Then there exists a subsequence, which converges
a. e. pointwise on Q7 to A , and the limit element obeys the a. e. pointwise restriction as well. Then the
weak*-sequential compactness follows from [ ROLEWICZ 76], p. 301, Theorem VI.6.6., together with p. 152,
Theorem IV.4.11. m



Proposition 3.2. Under the assumptions from Subsection 3.a), the feasible domain B of the problem (P) is
nonempty and closed with respect to the following topology in X1 X X9 X Xg: weak convergence with respect

to the first and second component, weak”-convergence with respect to the third component.

Proof. The existence of feasible solutions for (P) follows from Theorem 2.2. Assume that a sequence
{ (@Y, WN I,N)}, B with @Y —X1 & WN —Xo 1 and I,V “~Xs [, is given. Then, by Proposition
3.1., I. belongs to C. Theorem 2.4. yields uniform bounds for the norms of ®N and W, which imply weak
convergence of &N /ot, VN and OWN' /ot as well as a. e. pointwise convergence of ®N' on Qp along
a suitable subsequence. Consequently, passing to the limit in (2.1) — (2.3), we see that (&, W) solves the
monodomain system with right-hand side I,.% m

Theorem 3.3. (Existence of global minimizers) Assume that the integrand r(z,t, o, w): Q@ x [0, T] x
R xR s bounded from below, measurable with respect to x and t and continuous and convex with respect to

@ and w. Then under the assumptions from Subsection 3.a), the problem (P) admits a global minimizer.

Proof. Together with r, the objective F' is bounded from below, and the problem (P) admits a minimizing
sequence { (&N, WN 1,N)1 B. Since || I,V |x, is uniformly bounded, Theorem 2.4. implies the boundedness
of | @V ||x, and [|[ W™ ||y as well, and we may pass to a subsequence {(@Nl,WN/,IeN/)} with @V — &,
WY —~ W and IeN/ —*+1],. By Proposition 3.2., (i),W,IAe) is feasible. The lower semicontinuity of the
objective may be confirmed as in [ DACOROGNA 08], p. 96, Theorem 3.23., and p. 97, Remark 3.25.(ii).

Consequently, denoting the minimal value of (P) by m, we have

m = lim . F@Y WY 1N > liminf 5, F@Y WY 1YY > F(&,W, 1) >m, (3.11)

and (®, W, I,) is a global minimizer of (P). m

Remarks. 1) The analysis of this subsection and, particularly, Theorem 3.3. remain valid if the Rogers-
McCulloch model in (3.6) is replaced by the FitzHugh-Nagumo or the linearized Aliev-Panfilov model since

the convergence arguments from the proof of Proposition 3.2. hold for the latter as well.

2) The situation where the excitations I. can be applied on a subdomain Q.,, C € only, can be treated in
a completely analogous way.

¢) The system of adjoint equations.

For the optimal control problem (P), we introduce the formal Lagrange function
L(®,W, I, Pr, P2, P3, Py) = F(®,W, 1) + (P, E1(®,W, 1)) (3.12)
+ (P2, Ex(®,W)) + (Ps, Es(®)) + (Py, E4(W))

with multipliers P, € L*[(0,T), W"*(Q)], P, € L*[(0,T), L*(Q)], and P5, Py € (L*(Q))". Dif-
ferentiating £ at the point (<i>, W, fe) in a formal way with respect to the variables ® and W, we find the

adjoint equations

DoF (&, W,I.) + (Py, Dy Ey(®,W,1.)) + (P, Do Eo(®,W)) + (Ps, Dy E3(®)) = 0 (3.13)
= / / 8P1 81“’”( W) P )wdxdt + —/ VT M; VP, de dt (3.14)
Q

b oG . .
- _/0 /Q %(q” o >P2)¢dwdt—/ﬂpgw(x,0)dx
ery[(o T), W12(Q)]7 P(z,T) =0;

15 Cf. [BOURGAULT/COUDIERE/PIERRE 09], pp. 476 — 478, Subsection 5.4.3.
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17)

Dy F(®,W,1.) + (Py, Dw Ei(®,W,1.)) + (P, Dw Eo($,W)) + ( Py, Dy E4(W)) = 0 (3.15)

<:>/ / —@+—w(q> W)P2)¢dzdt (3.16)

1T alion 17
—/0 /Q %@,WH o (<I>,W)P1)wdxdt—/QPu/J(m,O)dx
Ve L2[(0,T), L*(Q)], Pa,T) =0.

In Theorem 3.5. below, we will prove directly that this system is part of the necessary optimality conditions
for (P). The adjoint system consists of a parabolic PDE in its weak formulation, which is coupled with
a linear ODE. Assuming that P; and P, may be set to zero, the corresponding strong formulation of the

adjoint system reads as follows:

op, A OLion = oG . . or
- - M; VP SW)YP = —=—(®, W) P, — — (& Qr: 1
5V (1+A VP) + By — (@, W)~ 6'@( W) Py &P( W) (V) (,t) € Qr; (3.17)
nTM; VP, =0 Y(z,t) €I x[0,T]; Py(z,T) =0 (V)x € Q; (3.18)
(’9P2 oG . - o 8Iz‘on £ 1 or - - .
at + %(¢?W) P2 - = w ((baW) Pl - %(¢7W) (V) ('T7t> € QTv (319)
Py(2,T) = 0 (V)z € Q. (3.20)

d) First-order necessary optimality conditions.
We search for weak local minimizers according to the following definition:

Definition 3.4. (Weak local minimizer) A triple (&, W, 1I,), which is feasible in (P), is called a weak

local minimizer of (P) iff there exists a number € > 0 such that for all admissible (P, W, I.) the conditions
H‘I’_(i)”)(l <6, ||W—W||X2 <€, ||Ie_f6||x3 Se€ (3.21)

imply the relation F(®, W, 1.) < F(®, W, 1.).

The existence of at least one weak local minimizer for (P) is confirmed by Theorem 3.3. Treating (P) as
a “weakly singular problem”, we may follow the approach outlined in [ITO/KuNiscH 08], p. 17 f. and
pp. 129 ff.,16) and prove the necessary optimality conditions without recourse to the regularity conditions
of Kurcyusz-Zowe or Ioffe-Tichomirow. '”) Instead, the existence of a solution for the adjoint system will be
ensured by a parabolic existence theorem (Theorem 3.10. below), the assumptions of which, consequently,

must be carried over.

Theorem 3.5. (First-order necessary optimality conditions for the control problem (P)) We
study the problem (P) under the following assumptions:

a) QC R? is a bounded Lipschitz domain with piecewise Cl—boundary.

b) M;: cl(Q) — R>*® is a symmetric, positive definite matriz function with W (Q)-coefficients, which
obeys the uniform ellipticity condition (2.14).

Although the problem (P) does not fit all assumptions of [ITO/KUNISCH 08], p. 18, Theorem 1.17., the proof scheme
of the theorem can be carried over.

Cf. [IOFFE/TICHOMIROW 79], p. 74, Assumption c), and [ITO/KUNISCH 08], p. 5, Definition 1.5.
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¢) The integrand r(z,t,p,w): Q@ x [0, T]x R xR is bounded from below, measurable with respect to x and

t and continuously differentiable and conver with respect to ¢ and w.

The remaining assumptions from Subsection 3.a) are carried over.
If (9, W, 1) e L*[(0,T), W )] x L*[(0,T), L*(Q)] x L*[(0,T), L*(Q)] is a weak local mini-
mizer of (P) with
or ,» or . - 2
—(® —(® L7 (Q .22
So(@.17). SL(@.17) € L2(@n) (322)
then there exist multipliers P, € L2[(O, T), W2’2(Q)] N V[/1’2[(()7 T), LQ(Q)] and Py € C’l[(O, T),
LZ(Q)] nc? [[0,T], L* () |, satisfying together with (&, W, 1,) the optimality condition

T

~ 1 o

/ /(ule(x,t) n 7P1(x,t)) (I(z,t) = I(z,t) )dodt > 0 VI, €C (3.23)
o Ja 1+ A

as well as the adjoint equations (3.17) — (3.20). The functions Py and Py solve the adjoint system in the

weak sense.

Note that, by the Aubin-Dubinskij lemma (Theorem 4.6.), the multiplier P; belongs even to the space
L4[(07 T), W1’2(Q)] as required in (3.12).

Corollary 3.6. (Pointwise formulation of the optimality condition) The optimality condition (3.23)

from Theorem 3.5. implies the following Pontryagin minimum condition, which holds a. e. pointwise:

(u(1+)\) L(z,1) +P1(x,t)) I.(z,%) = Min (u(1+>\) (1) +P1(x,t)) n (V) (z,t) € Qr. (3.24)

Consequently, we have

-R ‘ Q($,t> > R7
I(z,t) = { —Q(x,1) ’ Q(z,t) € [-R, R]; where Q(x,t) = p

— 1 pa. (3.25)
R | Q1) <-R (T+x)

We may conclude that an optimal control, which never becomes active, admits the same regularity as the

adjoint variable P;.

Corollary 3.7. (Higher regularity of weak local minimizers) Under the assumptions of Theorem
3.5., consider a weak local minimizer (&, W, 1,) of (P) with esssup (2.b) € O | I.(z,t)| < R. Then I, belongs
to the space W"2[(0,T), L*(Q)] n L*[(0, T), W>*()].

In a subsequent publication, we will prove that this corollary implies an improvement of the regularity of P
and W as well.

Remark. Theorem 3.5. as well as Corollaries 3.6. and 3.7. remain valid if the Rogers-McCulloch model in
(3.6) is replaced by the FitzHugh-Nagumo model. If the linearized Aliev-Panfilov model is considered, the
theorems hold still if (3.22) is replaced by

or

—(®, W) e L*(Qr); 8TU(i),W) e L’[(0,T), L*(Q)]. (3.26)
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e) Proof of the necessary optimality conditions.

As mentioned in the introduction, the proof of Theorem 3.5. requires a stability estimate for the weak
solutions of the primal equations as well as an immediate existence result for the system of the adjoint
equations. We start with the statement of the stability estimate:

Theorem 3.8. (Stability estimate for weak solutions of the primal equations) Assume that
the data within (2.1) — (2.3) obey the assumptions of Theorem 2.2., and specify within the monodomain
system any of the models from Subsection 2.b). If two weak solutions (', W), (®" W") € (C’O[[O, T],
2 nL?(0,7), w?@)] nLYQr)) x ¢°[[0, T], L*(Q)] of (2.1) — (2.3) correspond with initial
values ®) = & = &y € L*(Q), W, = W§ = Wy € L*(Q) and inhomogeneities I, I,', I, and 1.” €
L>[(0,T), (Wl’Q(Q) )* |, whose norms are bounded by R > 0, then the following estimates hold:

2

12" =@ a0 m 2] 12 =" e o, my wrz ] IV =W Bpraf 0,1, 2] (3.27)
2 2

< C (I = Wm0,y (wroy) ]+ I = 2 e 0,29, (wr20)°] )

H(bl_CI)NHW1,4/3[(07T),(Wl,z(Q))*] < C'MaX(HIil_IiH ||L2[(O,T),(W1’2(Q))*] ) (328)

2 2
HIe/ _Ieu ”LZ[ |Ii/ _Ii// ||L2[ ‘Ie/_le// ||L2[

(O,T),(WI’Q(Q))*]’| (O,T),(Wl*z(ﬂ))*}" (O,T),(WI*Q(Q))*])'

The proof of Theorem 3.8. is postponed to Section 5.

Theorem 3.9. (Existence of weak solutions for the adjoint system) Under the assumptions of
Theorem 3.5., let (&, W, 1) be a feasible solution of (P), satisfying

or or

%(é,m, aTu(‘i”W) e L*(Qr). (3.29)
Then the adjoint system (3.17) — (3.20) related to (&, W, 1) admits a weak solution (Py, Py) with

Poe L[(0,T), Ww**(Q)] nw"[(0,T), L*()]; (3.30)

P, € C'[(0,T), L*Q)] nC’[[0,T], L*(Q)]. (3.31)

Proof. The proof of Theorem 3.9. is based on the following parabolic existence theorem:

Theorem 3.10. (Existence theorem for the adjoint parabolic equation) 18) Consider the parabolic
initial-boundary value problem

oprP

E(w,t) — Z V- (ai7j(x,t) VP(x,t)) +ag(x,t) P(x,t) = f(z,t) (V) (z,t) €Q x (0,T); (3.32)

oprP
>oni(z) ag i(z,t) %(m,t) = g(z,t) V(z,t) €9Q x (0,T); P(x,0) = Py(x) (V)x €Q (3.33)
,J J
and assume the following about the data of (3.32) — (3.33):
a) Q CR", n >3, is a bounded Lipschitz domain with piecewise C’l-boundary.

b) The matriz function a;j: cl(2) x [0, T] — R™" with weakly differentiable entries is symmetric and
satisfies a uniform ellipticity condition. It holds that

8aij

D, eL[(0,T), L™(Q)] with -+ 5= = 5,2 <71 < 00; (3.34)
aaij 1 o
-5 €L [(0,T), L=()]. (3.35)

[LADYZENSKAJA/SOLONNIKOV/URAL’CEVA 88], p. 170, Theorem 5.1., together with p. 180, Remark 6.3.
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c)ag € L*[(0,T), L"(Q)] NL™[(0,T), L®=(Q)] with = ~+ 7, =1, 1<r2<00,2< g2 <00
d) f € L*(Qr).

e)ge L™[(0,T), L™(0Q)] with =+ %1 =3 +
f) Py e W**(9).

Then problem (3.32) — (3.33) admits a weak solution P € L2[(0, T), WQ’Z(Q)] ﬂW1’2[(O, T), LZ(Q)],

which satisfies the estimate

]
S

+1 P (3.36)

H HLZI:(O T),W?2?2 Q)] W12[ 0, T)7L2(Q):|

<O 0.7y, 12gey] + 1191

L"3[(07T)7Lq3(69)])
with a constant C' > 0 depending on q1, q2, q3, 1, 72, r3, T and §Q.

Since the Rogers-McCulloch model has been specified within (P), the adjoint equations (3.17) and (3.19)

read as follows:

aP, A . ) ) B ar

-G V(s M VP1)+(3b(<I>) 72(a+1)b<1>+ab+W)P1 - 5/<;P2—%(<I> W) (3.37)
0P, s or . -

— o teP = —0 P - (@), (3.38)

e Step 1. Improved regularity of ® and W from I, € L™ [(0,T), L’ (2)]. Within the proof of Theorem
2.4., the following estimate is derived: 19

t
A 2 2 2 ~ 2 ~ 2
150 ey < © (15 190+ 1 Wo [ 1) o) dr+ 170 [{woey)”) - (3:39)
. 9 L2
<0 (1 + | o Hi?(n) + 1 Wo ||2L?(Q) Tl e ll2p) + 1 e ll L [(0,7),22(®)] ) (3.40)
for arbitrary ¢ € [0, T']. Consequently, de L™ [(0, T), Wl’Q(Q) ] Note that

t
W(z,t) = Wo(x)e ' +er / &(x,7) eV dr (3.41)
0

belongs to C°[[0, T'], L*(2)] together with &(r), Wy € L*(1).

e Step 2. For any P e L4(QT), the terminal problem for the adjoint ODE admits a unique (weak or strong)
solution Py € C" [(0,T), LQ(Q)] nc’ ([0, T], L*(Q) |. It is obvious that the problem

P
—Q—FEPQ:—(I)P:L—@((I) W) (\V’)(J?,t)GQT, PQ(Z‘,T)EO (342)
ot ow
admits the unique solution
T
Py(x,t) = 7/ (<I>P1 + 8—(@ W)) =) dr, (3.43)
t 8

which is continuous in time on [0, T'] and even differentiable in time on (0, T'). In order to confirm the

integrability with respect to =, we estimate

.~ 1/2 ~ 1/2
[@e R0y < ([1oora)” ([ 1) (3.49

19 From [BOURGAULT/COUDIERE/PIERRE 09], p. 474, (67), using the Gronwall inequality and inserting I; = o.
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where the right-hand side is finite due to the continuous imbedding ®(t) € W"?(Q) < L*(€2). Consequently,
P, belongs to the space C’l[(O7 T), LQ(Q)] N CO[[O, T], L2(Q)].

e Step 3. For any ﬁg € L2(QT), the terminal-boundary value problem for the parabolic adjoint equation
admits a unique weak solution P € Lz[(O7 T), WQ’Q(Q)] N Wl’Q[(O, T), LQ(Q)}. In order to confirm
this claim, we must check whether the assumptions of Theorem 3.10. are satisfied. Note first that the
assertions of the theorem will not be afflicted by the fact that time runs backwards from 7. Assumption a)
is identical with Assumption a) of Theorem 3.5.; in order to confirm b) note that the Lipschitz entries of
M; are time-independent, thus (3.34) is satisfied e. g. with 1 =4, ¢; = 6, and (3.35) holds true as well. By
Step 1, ® belongs particularly to L™ [(O, T), LG(Q) ], which implies (@)2 € L™ [(0, T), L3(Q) ] Since
W e C’O[[O, T], L4(Q)} as well, we find that

ap = (3b(ci>)2—2(a+1)bci>+ab+W) e L®[[0, T], LI} ()], (3.45)

and Assumption c) is satisfied with 7o = 2, ¢go = 3. By (3.29), Assumption d) holds true as well, and the
functions g(z,t) = 0 and Py = 0 fulfill e) with e. g. r3 = 4/3, g3 = 2, and f) as well. Consequently, the
terminal-boundary problem (3.17) — (3.18) admits a weak solution P; with the claimed regularity.

e Step 4. For two functions P|, P{’ € L*(Qr), the corresponding solutions of the terminal problem for the
adjoint ODE satisfy

T
2 2
I P3(t) = P (t) 120y < C /t I PL(7) = P{'(7) 1 d7 - (3.46)

The solutions of the ODE have been calculated in Step 2. Consequently, applying Jensen’s integral inequality
and Holder’s inequality, we find

T T
Py(a,t) — P(x,1) :/ S (P - P dr = [Py Pl </ (B[P~ Plldr —  (3.47)
t

1 TA
| Py — Py > < (T —t)Q(ﬁ/| |- | P — P{’\dT)Z\ /|<1>|2 |P| — P/ ?dr — (3.48)

/2
/\Pg 1 dr < C/ /|e1>|2 |P| — P/ ?dxdr < C/ /|<I>|4da; (3.49)
Q
1/ N , 2
([ir-rritas)ar = / 19(7) 3400 - I PLT) — PY(0) [2eqgy - (3.50)

From Step 1, we know that & € L[ (0, T), W"*(Q)] < L*[(0, T'), L()]. Consequently, the norms

5 2
[ @(7) || 1) are uniformly bounded with respect to 7, and we arrive at the claimed inequality.

e Step 5. For two functions Py, Py € L*(Qr), the corresponding solutions of the terminal-boundary value

problem for the parabolic adjoint equation satisfy

T
2 2
I Pi(t) = PY'(t) 12y < C /t I Py(7) = Py (7) |20 dT - (3.51)

In its strong formulation, the difference of the linear parabolic equations determining P; and P’ reads as

0 A

8t(P1 Pll/)_v (>\+1

M;V(P{—P/)) (3.52)
+(30(8)* —2(a+ 1)bd+ab+ W) (P = P') = ex (P~ PY);

"M V(P -P]) =0; (P —P)@T)=0, (3.53)
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and from Theorem 3.10., we get the a-priori estimate

T 1/2
/ /1012 o / 7
([ 1P-Pyle@ar) " = CUB = PH ey ) o] (3.54)
> C (N =PV oy wooiey] P IBE = P a0y 2] ) (3.55)
> H‘Pll _‘Pl” ||C°[[t,T]7W1’2(Q)] = ||P1( ) _Pl//(t> ||L4(Q)7 (356)

cf. [Evans 98], p. 287, Theorem 3.

e Step 6. Application of Banach’s fized point theorem.??) We consider the operator

7: (L[(0,7), LX) x L) )~ (L[ (0. T), LX@)] x L*(2r) ), (3.57)

which assigns to a given pair (P, Py) the new pair (ZP;,ZP) arising from the solution ZP» of the adjoint
ODE after insertion of P; and the solution of the adjoint parabolic problem after insertion of ZP. In
order to prove the contractivity of this operator, we start with two pairs (P}, P}), (P/', Py) € L* [(0,T),
L*(Q)] x L*(Qr). By (3.46) and (3.51), it holds that

T
2 2
IZP{(t) = ZP/ (1) I3y < C/t I1ZP5(7) = IRy (7) Il 2 d7 (3.58)

T T T
2 2
c / / | PL9) — P () |24 A dr < CT - / | L) — PL0) [y 0. (3.50)
t T t
Defining the functions

F(t) = | ZP{(t) = P! (t) 31y and F(t) = | P{(t) = P'(t) |71, - (3.60)

this inequality reads as

t) < C/Tf(ﬂ)dﬁ S /TeAltf(t)dt < c-/TeM(/Tf(ﬂ)dﬁ)dt (3.61)

0 t
- Mt / f(o dﬂ +C/ Mt f(t) (3.62)
:%(/ eMEF(t) dt — /f d19 \Acl/ AMEF(L) dt (3.63)

since the second member within the brackets is positive. Consequently, the operator Z is with respect to its
first component contractive on the space L* [ (0,T), L4(Q)] if this space is equipped with the equivalent
norm

T 1/2
1P = (e IR0 i ) (3.64)

with sufficiently large A; > C. Analogously, we may estimate
2 r 2
IZP3(t) = IPy (1) 20y < C'/t I P{(r) = P{'(7) |1 q dT (3.65)

T T T
<c [ [ 1P0) - B sy avdr < CT- [ IP0) = P{0) a0y 0. (3.66)
t T t

20) Cf. [VENERONI 09], p. 866.
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With the abbreviations

2 = 2
h(t) = | ZP5(t) — P (t) |20y and h(t) = || P3(t) = P5'(t) [ 120 » (3.67)
the last inequality reads as
T T T _
0 < ht) < C/ ) do = / Mt h(t) dt < C’~/ ekzt(/ h(ﬂ)dﬁ)dt (3.68)
t 0 t
1
= C[—e’\2t~/ d19 +C/ /\2th )dt (3.69)
A2 '
T T T
_ ¢ (/ e 2 h(t) dt—/ h(¥) d19> < Q/ e th(t) dt (3.70)
A2 \ o 0 A2 Jo

since the second member within the brackets is positive again. This implies the contractivity of the operator
T with respect to its second component on the space L? (Q2p) if this space is equipped with the equivalent
norm
T 1/2
A 2
1Pl = ([ e 1P e ) (371)
with sufficiently large Ao > C'. Summing up, Banach’s fixed point theorem yields the existence and uniqueness

of a weak solution for the adjoint system, which admits the regularity guaranteed by Theorem 3.10. and
Step 2 above. m

Remarks. 1) If the Rogers-McCulloch model in (3.6) is replaced by the FitzHugh-Nagumo model, Theorem
3.9. remains valid. Then the adjoint equations (3.17) and (3.19) read as follows:

8P1 A 2 \92 ~ 81"

-G V(S MR (3(@) —2(a+1)<1>+a)P1 _snpg—%(@ W) (3.72)
OP )

-5 HeP = —Pi - 87"(@ W), (3.73)

and the proof runs as above with minor alterations. In (3.45) and (3.52), the variable coefficient must be
replaced by ag = (3( P2 —2(a+1)d+ a ), which belongs to LQ[(O, T), LB(Q)] as well. In Steps 2 and
4, the right-hand side of the adjoint ODE simplifies accordingly.

2) In the case of the linearized Aliev-Panfilov model, Theorem 3.9. remains valid if the assumption (3.29) is
replaced by (3.26). Here the adjoint equations (3.17) and (3.19) become

oP, A . ) )
_E—V.(mMiVPl)—&-(?.b((IJ) —2(a+1)b<1>+ab+W)P1 (3.74)
o or ~ .~
:€ﬁ((a+1)—2<I>)P2—£(<I>,W);
BPQ - 87’

In Step 2, noticing (3.26), we must work with P, € L%(Q7) in order to get P, € C’l[(O, T), LS(Q)] N
c’ ([0, T], L*(Q) |. In Step 3, Assumption d) of Theorem 3.10., namely (<i> P, ) € L*(Q7), can be confirmed
by inserting P, € Lz[(O7 T), LS(Q)]7 thus getting again P, € L2[[07 T],W2’2(Q)] N W“[[o, T],
LQ(Q)] < L°(Qr). Accordingly, (3.46) and (3.51) will be replaced by

T
3 3
I P3(t) = Py (t) 20y < C'/ I Pi(7) = P{'(7) oo dr  and (3.76)
t

T
3 3
I Pi(t) = PY'(t) [ 76¢0) < C /t I P(7) = Py (7) 730 d7 (3.77)
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and the proof can be completed accordingly.

Proof of Theorem 3.5. o Step 1. Assume that (&, W, I.) is a weak local minimizer of (P). If I, € C is an

arbitrary feasible control with || I, — I, || < ¢ then, by Proposition 3.1., all controls

=[(0.7),22@)]
I(s)=I.+s(I.—1I.), 0<s<1, (3.78)

belong to C as well. By Theorem 2.2., for every I.(s) € L™ [(0, T), L2(Q)}, there exists a corresponding
weak solution (®(s), W (s)) € X; x Xy for the monodomain problem on [0, T']. Consequently, the triples
(®(s),W(s),I.(s)) are feasible in (P) for all 0 < s < 1. On the other hand, from Theorem 3.8. it follows
that every feasible triple within the neighborhood K(®,C'¢e) x K(W,Ce) x K(I.,¢€) can be generated in
this way.

e Step 2. Lemma 3.11. For all I, € C, || I, — I, || < ¢ implies that

=[(0,7),22®)]

1 22 1 22

lim — [ ®(s) =Py, =0; lim —||®(s) -z, = 0; (3.79)
s—0+4+0 S s—0+0 S

. 1 . . 1 A2

lim —[[W(s) =W, =0 and lim —[W(s)-W]x, =0. (3.80)
s—0+0 S s—0+0 S

Proof. From Theorem 3.8., (3.27), we derive

A 2 A 2 A 2
H‘b(s)*@Hxl = | <D(5)*‘I)”L?[(O,T),le?(ﬂ)] < C'||Ie(5)*IeHLOO[(O,T),(W”(Q))*]

L2 A2
< C'HIe(S)_I6‘|L°°[(O7T)7L2(Q)] = Cs? ||I6_IeHL°°[(O7T)7L2(Q)] = (3.81)

i 1 A 2 . A 2

lim —[[®(s) =@y, < lim C’s||Ie—Ie\|Loc[(07T)7L2(Q)] =0 (3.82)
s—0+0 S s—0+0
as well as

A2 A2 ~ 2
[W(s)=Wlx, = | W(S)—W||L2[(0,T),L2(Q)] < O Le(s) — e ||L°°[(O,T),(W1’2(Q))*]
A 2 A 2
< CNEls) = Lol [0y, 2] = O e~ Ee im0y, 2] = (389)

. 1 A2 ) A2
lim —[[W(s) =W, < lim C’s||Ie—Ie\|Lx[(07T)7L2(Q)] =0. (3.84)
s—0+0 S 5—040

The relation with || W (s) — W Hf}z can be confirmed analogously. Finally, (3.28) implies that

| o(s) = @115, = 119(s) = & lyrasol (o7, (wra) '] (3.85)
< % Max (11 () = Lol [co,7), (wiege) ] 1e() = Lo~ [0, 7). (waa) ] ) (3.86)
< C-Max (& | Lo = Fe g [0, 7y, 2@] » 8 1Me = Felli [0, 1) 2] ) = (3.87)
LR L ORI (389)

. A 12 3 A~ 4 .
§ SBBI}FOO'MaX(SHIefle ||L°°[(O,T),L2(Q)] , S ||I€716HL°°[(O,T),L2(Q)}) =0. =m

*

e Step 3. By Theorem 3.9., there exist solutions P; € (L4/3[(07 T), (W”(Q))*]) = L4[(0, T),
WI’Q(Q)] and P, € (LQ[(O7 T), (LQ(Q) )*] )* = L*(Qy) for the adjoint system in relation to (&, W, 1,).

Using these functions, we get the following estimates:
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Lemma 3.12. With the notations of Subsection 3.a), it holds that

ligno 1 (Py, Dy E((®,W, 1) (®(s) — ) + Dy E1 (&, W, 1) (W(s) = W)) (3.89)
s—0+0 S

+<P1,D18E1(‘§,W7 ) (Ie = 1)) = 0;

hfﬁoé (P, D Ex(®,W) (®(s) — @) + Dw Eo(&, W) (W(s) —W)) = 0. (3.90)

Proof. The proof relies on the principal theorem of the calculus in its Bochner integral version, 2" which
becomes applicable due to our assumptions about the differentiability of r. We start with the feasibility of
(D(s), W(s), I(s)) and (, W, L,):

W1 (W(s) = W), L+ 7(Le(s) — L)) (B(s) — &, W(s) = W, L.(s) — L.)dr = (3.91)

W(s) = W, L(s) = L) = Diaw.r.) Br(®,W, ) (@(s) — &, W(s) = W, L(s) ~ I.) ) dr )
+ (P, D w1y BEi(®,W, 1) (®(s) — &, W (s) — W, L(s) — L)) (3.92)

= (P, /1(D¢E1(¢>+T...,W+T...,f€+T...)(q>(s)—é)—DéEl(é,W,fe)(@(s)—cﬁ)
0

+ DwE\( @47 WAHT. Io+7..)(W(s) = W) — Dy Ey (&, W, 1,) (W(s) — W) (3.93)
)ffe)) dr )

+{(P1, Do BEy(®,W,1.)(®(s) — &) + Dw E1(®, W, L.)(W(s) — W) + Dy E((®, W, I.)(I.(s) — L) ) .

+ D, E\(®471... WHT. Io+7..)(I(s) — I,) — Dy, By (®, W, 1) (I(s

Observe now that 22)

1 1 1
|<131,/0 (.)dry| < IR ZT.H/O (w)drl,, <A ZT.~/(J el dr. (3.94)

Consequently, for the first term within the last equation, we have

1 1
1i — P < I P
Jim SR [ an < tm

1
Z,{(/ | Do By(® + 7. WA L+ 7.) (3.95)
0

— Do E1(®, W, 1,)

1 ~
||L(il,zl) 5 H q)(s) - Hil dr

1
+/ | Dw By(@ 4 7o Wt 7 e 7) = Doy Bu(@,W. 1) ||z, 1)
; ,

1 -
W) =W g, dr

1
A o ~ ~ o 1 o
+ / | Dr, Ex(@+ 7., W+7T..,lc+7..) = Dp, E1(®, W, I.) y|£(X3 A I Te(s) — I |Ix, dT)
o :

1
. . X . 1 .
< tim Py ( / Lir (0() = @z, + W) = Wlg, + 1 1.(5) — L, ) £ | @(s) = & |1, dr
1
~ ~ ~ 1 ~
+ / Lo (19(s) = ®lig, + 1 W(s) = W lig, + I 1e(s) = Lo I, ) < W (s) = W lig, dr (3.96)

1
A A A 1 A
+ [ Lar(190) = I, + W) =Wl + 1)~ e, ) 5 1e(s) = T I, ar )

2D [BERGER 77], p. 68, (2.1.11).
22) For the last inequality, cf. [YosIpa 95], p. 133, Corollary 1.
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with Lipschitz constants Ly, Lo, L3, whose existence is ensured by the twice continuous Fréchet differentia-
bility of E7 with respect to ®, W and I.. With Lemma 3.11., we may further estimate:

1 1
lim - |(Pp, .. )dr 3.97
dim (P [ () an)) (.97)
< dim | Pyl 5 (Lo + Lot Ls) - (I18(s) — g, + [ W(s) ~ W llg, + 1 Le(s) ~ L, )
X 5040 1 zx 2 1 2 3 s X, Xo e e llXs

1 A2 1 A2 1 £2

< . . - _ ~ _ _ ~ — e — le = s .
< tim P © (S 106) — @, + S IW) ~ WK, + 12:09) ~ Lellx, ) = 0 (3.98)
which implies that

1 A Al A - A Al oA A
lim (P1, Do Ex(®,W,1.) (®(s) — ®) + Dy Ey(®, W, 1) (W(s) — W) (3.99)
s—04+0

Analogously, the following equation holds:
0 = Ey(®(s), W(s)) — Eao(®, W) (3.100)

1
:/O Dow) E2(®+7(0(s) = D), W47 (W(s) = W)) (D(s) — D, W(s) —W)dr =

0= (P, /Ol(D@,W) Ey(®+7(R(s) — @), W7 (W(s) = W)) (B(s) =, W(s) — W) (3.101)
~ Dia.w) Ba(®, W) (D(s) = &, W(s) = W) ) dr ) + ( Po, Diaw) Bo(®,W) (D(s) = &,W(s) — W))
= (P, /01(0@ Ey(d+7.. WHT...)(D(s) — D) — Do Eo(D, W) (®(s) — ®) (3.102)
4 Dy Eo(® 47, W 7. ) (W(s) — W) — Dy Eo(®, W) (W(s) — W)) dr)
+ ( Py, Do Ex(®, W) (®(s) — @) + Dy Ex(, W) (W (s) — W) ).

For the first term, we find

1
lim 1|<132,/0 (.)dr] (3.103)

s—0+0 S

1 N
S (s) - @z, dr

1
< SEEI_IH)HPQ HZ; (A HD¢. E2(@+T...,W+T...) — D.:p EQ((I),W) ||[,(§1,Z2) 5

1
¥ i A s 1 .
+ /0 H Dw Ey(® +7... ,W+7..) — Dy Eo(D, W) HL(%,ZQ) " |W(s) —W ||iz dT)
' = A 1 .
< Jim Pl (/0 Lir (1 0(s) = @iz, + I W () = W g, ) < [l @(s) = @ lg, dr (3.104)

b [ rsr (190 -l + 10 - W, ) 2w - Wi ar)

with Lipschitz constants L4, L5, whose existence follows from the twice continuous Fréchet differentiability
of Ey with respect to ® and W. Thus the estimate (3.104) may be continued as follows:

.1 ! . 1 1 - . 2
s£$0;’<P27/0(...)dT>| <35$0||P2||Z;§(L4+L5);(H<I>(s)—¢>\|il+||W(s)—W||§2) (3.105)

. 1 A 2 1 a2
< tim | Pallyy C (S 106) =@ %, + - IW(s) - W, ) = 0. (3.106)
s—040 S S
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This implies that

1 A 4 A A 4
lim B (Py, Do Ex(®, W) (®(s) — @) + Dy Eo(®,W)(W(s) —W)) =0. = (3.107)
s—04+0
e Step 4. Choose now € > 0 small enough in order to ensure that the difference F'(®(s), W (s), I.(s)) —
F(®, W, I.) of the objective values is nonnegative for all triples (®(s), W (s), I.(s)) € K(®,Ce) x K(W,C¢) x
K(fe, €). As a consequence of our analytical assumptions about the integrand r, the first variation may be

written as

s—04+0
(3.108)
Together with Lemma 3.12., we obtain
1 A .
0< lim - (Dq, F(&,W,1.) (3(s) — B) (3.109)
s—040 S

+ DW F((i’v W’ fe) (W(S) - W)

+( Py, Dy Ey(&,W,1.) (W(s) = W) ) + ( Py, Dw Eo(®, W) (W(s) — W))

+ D1, F(&,W, 1) (Ie(s) = L) + ( Pr, Dr, Ba(9,W, 1) (1. = 1.)) )
where the first two parts vanish since P;, P» solve the adjoint equations

Dg F(®,W,I,) + (Py, Dg E1(®,W,1,)) + (Py, Do Ey(®,W)) = 0 and (3.110)
Dw F(®,W,1.) + (Py, Dy E1(®,W,1.)) + (Py, Dy Ey(®,W)) = 0. (3.111)

Note that, by Subsection 3.c) above, these equations take the claimed form. Consequently, we arrive at

0< tim * Dy F@W, L) (I(s) ~ L) + (P Dy, By(#.W. 1) (I ~ 1)) ) (3.112)
s—0+0 S
T

= /0 /Q(,Ufe(%t)-l‘ﬁpl(x,t)) (Ie(z,t) — Ic(x,t)) dvdt. (3.113)

This implies the claimed optimality condition (3.23), and the proof is complete. m

Proof of Corollary 3.6. The non-Lebesgue points of fe, P, 23
(u (14N L(2,8) + Py(x, 1) ) L.(z,t) and (u (1+\) L(2,8) + Py (2, 1) ) " (3.114)

form null sets for arbitrary n € [—R, R] since the set of Lebesgue points is conserved under linear combi-
nations. Assumption a) of Theorem 3.5. implies that the boundary 9Q x [0, T'] of Qr forms a null set as

well. %) Denote by N the union of all these subsets, which is still a Lebesgue null set, and consider a point

23) For the following arguments, cf. [ WAGNER 09], p. 553 {., Proof of Theorem 2.3.
24 [WAGNER 06], p. 122, Lemma 9.2.
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(z0,t0) € int (Q7) \ N and a number 1y € [—R, R]. From a Vitali covering of Qr, ?*) choose some decreasing
sequence { EN'} of closed subsets of Qr with () y EV = { (z0,%0) }. Together with I, all functions

IV (2,t) = Lpn (,t) 10 + Liq\ rvy (2, 1) - Le(x,t) (3.115)

belong to C C L™ (Qr) C L7[(0,T), L*(Q) |. Consequently, we may form the Lebesgue derivative

1'1T 14+ N Lo(z,t) + Pi(z,t) ) (IN(z,t) — I(z,t)) dzdt

i [ (@D L)+ P ) (1Y) = L)) do
= lm o EN(M(1+A)fe(J;,t)+P1(a:,t)>(no—fe(x,t))d(a:,t) (3.116)
B (M(l+)\)fe($07to)+P1($o,to)) (10 — Ie(wo,t0)) > 0, (3.117)

and this implies the claimed conditions (3.24) and (3.25). m

Proof of Corollary 3.7. If (&, W, I.) is a weak local minimizer of (P) with esssup (2.4) € O | I(z,t)| < R
then (3.25) implies that

- 1

e(w,t) = oy et (3.118)

for almost all (z,t) € Qp, and I. and Py belong to the same space Wl’z[(O, T), L2(Q)] N Lz[(O, T),
w*(Q)] . =

4. Appendix I: Bochner integrable mappings.

a) Survey of spaces of Bochner integrable functions.

Let X be a Banach space. Then a mapping f: [0, T] — X is called strongly measurable iff there is a
sequence { fV} of simple mappings fV: [0, T] — X of the form fV(¢) = Zle 1a, (t) z with 2, € X
and Lebesgue subsets Ay, C [0, T'] such that || fN(¢) — f(t) |x — 0 for almost all t € [0, T'] .29

Definition 4.1. (Bochner function spaces) 1) Let 1 < p < co. Then the space L”[ (0, T), X | consists
of all strongly measurable functions f:[0, T] — X with

T 1/p
1o x) = (] 170 1xat) ™ < o, (4.1
2) The space L[ (0, T), X| consists of all strongly measurable functions f:[0, T] — X with
oy ] = 550021 170 I < oo 42
3) The space Wl’p[((), T), X] consists of all functions [ € Lp[(O, T), X], admitting a weak derivative

df /dt, which belongs to L¥ [ (0,T7), X] as well. The weak derivative is defined by the usual formula wherein
the integrals are interpreted in the Bochner sense.

[ DUNFORD/SCHWARTZ 88], p. 212, Definition 2.
Here and in Definition 4.1., we follow [ EVANS 98], pp. 285 f. and 649 f.
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e space , , contains all continuous mappings f:|0, — X wit
4) Th c’l1o,T], X ins all conti ings f:[0, T] — X with

17 heof0,21.x] = Maxeeqo.r) 170 lx < oo (4.3)

b) Imbedding theorems for Bochner spaces.

Proposition 4.2. Assume that @ C R™ is compact and 1 < p, q < oo. Then LI’[(O7 T),Lq(Q)} 18

continuously imbedded into [Min(®.a) (Qr).

Proof. This is a consequence of [ ELSTRODT 96], p. 232, Theorem 2.10. m

Proposition 4.3.%7 If 1 <p < ¢ < oo then LP[Q, LI(0, T)] is continuously imbedded into L[ (0, T'),
L' Q)].

Proposition 4.4. If 1 < p < ¢ < o0 and X is a Banach space then L? [ (0,T7), X} 1s continuously imbedded
into LP[ (0, T'), X].

Proof. Follows from [ELSTRODT 96, p. 232, Theorem 2.10., as well. m

Theorem 4.5.2% If 1 < p < 0o and X is a Banach space then Wl’p[(O, T), X] s continuously imbedded
into C°[[0, T], X].

Theorem 4.6. (Aubin-Dubinskij lemma) 29) Consider three normed spaces Xg C X C Xy where the
imbedding Xo — X is compact and the imbedding X — Xy is continuous. If p, p' € (1, o0) then the space

Y:{feLp[(O,T),Xo]|%€Lp/[(O,T),X1]} (4.4)

is compactly imbedded into L*[ (0, T'), X] for arbitrary ¢ € (1, o0).

5. Appendix II: Proof of the stability estimate.

Proof of Theorem 3.8. Throughout the following proof, C' denotes a generical positive constant, which
may appropriately change from line to line. C' will never depend on the data ®q, Wy, I; and I, but, possibly,
on 2 and p = 4.
e Step 1. The difference of the parabolic equations. From the parabolic equations, satisfied by the pairs
(@', W') and (®”,W") for almost all t € [0, T'], we obtain the difference
d
(5 (21(0) = @"(2)), ) + M(P'(t) - 2"(t), ¥)
+ / (Lion(®'(£), W/ (£)) = Lign(®"(), W (1)) ) ¥ da
Q

= <1+% (A(I/(t) —L"(t)) - (L'(t) fI@”<t))),w> vy e WHQ). (5.1)

Inserting into (5.1) the feasible test function ¢ = ®'(t) — ®”(t) € W"?(€2) and applying inequality (2.16)

from Lemma 2.3., we arrive at

1d
5 g 1 = @ i) + 8112 = ey + / (Lion( @, W) = Lign (@, W) ) (@ = @) da
1 / " / " / 1z / "2
< |<m<)\(fi L") = (I - I )),‘I’ - ") |+ 8P - 1220y (5:2)

2D [GARLING 07], p. 52, Corollary 5.4.2.
28) [EVANS 98], p. 286, Theorem 2.
29) [DUBINSKLJ 65], p. 612, Teorema 1, and p. 615, Teorema 2.
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The first term on the right-hand side can be estimated through

s (VO - 10) - (10 - 17@) ) @ = 87| < 5= (110 = 1O yr0(0y)

2 3¢1 2
+ || I/ (t) — 1" (t) ||(W1,2(Q))* ) +— [@'(t) = @"(t) 12y (5:3)

with arbitrary €; > 0. The second term will be estimated with the help of the following lemma.
Lemma 2.10. For all v1, @2 € R, the following identity holds:

(P —(a+1)p?+apr)— (3 —(a+1)¢p3+aps)
=(p1—p2) (Pl +p1p2+9s—(a+1)(p1+p2)+a). m (54)

Consequently, we get
/Q(Im(@’, W) — Lion(®", W”)) (& — @) do (5.5)
= /Q(<I>’ —®")b((®')?+ @' 0"+ (2")* +a) (' — ") dx
—(a+1)b Q(@' — ") (2 + ") (® — ") dx + /Q(fb’ W —@"W") (@ - ") dx.

Since ®'(z,t)% + @' (x,t) & (x,t) + ®" (z,t)? > 0 for almost all (z,t) € Qr and a, b > 0, the inequalities (5.2),
(5.3) and (5.5) imply

d
I =0 [y + 2818 = 0 [ragg) < 2C [ |0 = 07| |0+ 8[| &'~ 0" |z

! yx7! "y " / C / "2 ’ "2
+ 2A(¢ W' —®" W )((I) —<I>)dx + g(”[z -1 ||(W1’2(Q))*+HIE —1I. ||(W1*2(Q))*)

821

T3

2
1@ — @ i) + 28118 — @ 2. (5.6)

Applying first the generalized Cauchy’s inequality with €5 > 0 and subsequently Holder’s inequality to the
first term on the right-hand side of (5.6), we get

20/|<I>’f<I>”|~|<I>’+<I>”|-|<I)’—<I>”|dx
Q

1/2 1/2 C
coZ([lwrarw)” (190 ) e e, >0
€2 ’ 7|4 1/2 ’ "2 ¢ ! "2

The second term on the right-hand side of (5.6) will be estimated through
2 /((b/W,—@HWH)(@N—@/) dl'
Q
=2 / (@ — "YW (@ — ") dx + 2 /(W’ - W"o" (® — ") dx (5.9)
Q Q
<€ (VV')2|<I>’f<I>”|2d:c+i||<I>/fq)”||2 (5.10)
X <3 0 £3 L?(Q) .

1
Ty /(@//)2|(IJ/7(I)H 2d$+;” W — w" ”iz(ﬂ)
Q 4
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7\4 1/2 ’ " 1/2 1 ’ "2
<a([wytan) " (1o -t ) 18 -0 i (5.11)
1/2 12 1
ea([@)tan) (10 =01 ) Diw W,
Q €4
2 2 1 2
< Ces | W pagq) 17 = @7 [[rzq) + o [ @ — 2" |72 (5.12)

2 2 1 2
+Cey || " L) 12" — " 120y + o W =W"L2q)

applying the generalized Cauchy’s inequality again with €3, €4 > 0. Assembling now (5.6), (5.8) and (5.12),
we arrive at

% (K ||i2(s2) +28( 0" - @" Hivlv?(n) (5.13)
< C%Q <|| @’ ||i4(9) + @ ||i4(9) )1/2 1@ — " |51, 2@ T o H '~ ||iz(sz)
+ Cea | W'l |2 =@ o) + — || O — 0" |72
4 Cel ¥ [ 1@ = " raggy + = W =W g
(IO = KO 1 sy + 1O = 17O ) )
381

2 2
1 — @ ([0 + 28| @ — " |72 (g

Analogously to [NaGA1aH/KUNISCH/PLANK 09], p. 10, (33), we may derive
op 2 P
=— || ®(t) ||W1,2(Q) + [ a|®()|Pdx (5.14)
4 Q
t t
C (21 2(0) 32y + 1W(O) 20, + / el QUdr+C | I [ yay) 47

+c/0 H[e(7')|‘2<W172(Q))*dT)+C|Q|+ (||I()II(W1,2(Q))*+er(t)|\?wlfz<m)*)-

Due to (5.14), the L*-norms of ®'(t), ®”(t) are bounded through

T
2 2 2
/Q<I>’<t)4dx < O(1+g|| @'(0) |72 (0 + [l W(0) ||L2(9)+0/ (1L (7) Iwr20)°

L (7) ||2(W1,2(Q))*)d7) + c|Q|+ (||I ()||2(W1,2(Q))* L @) ||2(W1,2(Q))*) (5.15)

2 2 2
<C (1 +ollPollzzq) + 1 Wollz2o) + |l I ||L2[(0 + 1L

[(0.7), (wr2(2)" ]

2 2
I i [g0.19, (wri) ) 1 e 0,29, (wes) ] ) 619)

T
2 2 2
/Q<I>”(t)4dx < c(1+g||<1>”(0) 12+ W7(0) [I2(q +C/(HL-”(T) l(wre@)”

), (W) ]

+ 1 1" (7) ||2(W1,2(Q))*)d7) + CIQ|+ (HI”()II(WI,Q(Q))* + || 1" (t) ||2(W1,2(Q)>*) (5.17)
<O (140l o + 170 320y + Hf/’HLz[(o,T),(Wm(mm I a0,y (o)

2 2
+[11" ||L°°[(0,T), (wi2) ] T 12" HL%[(O,T), (wr2@)"] ) - (5.18)
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Here the assumed L*°-regularity of the excitations I;’, I.”, I;” and I.” has been used. As the unique (weak

or strong) solution of the initial value problem (1.7), (1.9), W’ admits the representation 3*)
t
W' (z,t) = Wy(x)e = +erne / &' (z,7) e dr, (5.19)
0

consequently, it belongs to the space C' [(0,T), L2(Q)] N CO[[O7 T], LQ(Q)]. Together with Theorem
2.6., the L*-norm of W'(t) can be estimated through

4 4
jgwﬂafdxs;cwuuﬂhﬂ9,+05Hn¢wh%Qﬂ (5.20)
4
S CWollpaq +Cer (1 + [ ®o ||2L?(Q) + [ Wo \@2(9) (5.21)

2 2
+IIE ||L2[<0,T),(W1v2(m)*} I ”LZ[(O,T),(WLZ(Q))*} )

Inserting now (5.16), (5.18) and (5.21) into (5.13), we may fix the numbers 1, €q, €3, €4 > 0 in such a way
that the terms with || &' — ®” ||?,V1,2(9) will be annihilated. We arrive at

d 2 C 1 2
% ||(I)/_(I)// ||L2(Q) < (Eﬂ-g—f—?ﬁ) H@’_(I)//HLZ(Q) (522)
C

€1

2

1 2 2
W =W gy + (0 = K0 [z ) + 110 = L0 [ yray) )

e Step 2. The difference of the gating equations. Inserting into the difference of the gating equations for
(®',W’) and (", W"),

d
<% (W (@) —=W"(t)),v) = —¢ / (W'(t) = W"(t))pde+ ek / (®'(t) — @"(t)) pdx (5.23)
Q Q
Vi e L*(Q),
the feasible test function ¢ = W' (¢t) — W”(t) and applying Cauchy’s inequality, we get the estimate
d
W =W [Ty < (2e+en ) IW = W |2y +er 8 =& 2. (5.24)

e Step 3. The estimates for the differences || ® — ®" H2L°°[(o .2 @) (|w’'—w" H;[(o ). 1@ and

(|w’'—w" Hioo [(0.7). 222 After equalization of the constants on the right-hand sides, the inequalities

(5.22) and (5.24) yield together

d 2 2 2 2
= (110 = @ oy + W =W 20y ) < C- (19 = @" 2y + | W = W" |2y ) (5.25)
C / " 2 ’ " 2
= (150 = B O W gz + 1O = L O {0y ) -

and Gronwall’s inequality finally implies that

2 2 2
191(6) = 8 (6) 30 + | V7(6) = W (0) [ 720y < < (119/0) — #"(0) 320 (5.26)
t
/ " 2 ¢ K g 2 . / s 2 .
WO =W O) o+ = [ (E @ =10 ) + 1) = L) ] ) ) )
C 2 2
cT X A . A .
Sy (”IZ Lol o.my, (wreee) ] F I = LT[0, 2y (w2 ])' (5:27)

30) [WARGA 72], p. 192, Theorem I1.4.6.
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From the last inequality, we get the following estimates:

C 2
e R (LR RN

I = L W o 7y (woey)'] ) (B28)

W —w|; e

C 2
cr (”I/ 'H||L2[(0,T),(W1>2(Q))*}

I = 1" ”iQ[(O,T), (wr2@)"] ) i (5:29)

=[(0, 1), 2] <

HW/ W//H } <T€CTC(||[/ ‘//”12[

(0.7), (wh@))"]
+ ||Ie/ . Ie//

£2[(0,7),L%(Q)

2
||L2|:(O,T), (WI’Q(Q))*] ) .
e Step 4. The estimate for the difference || ®' — @ |? In (5.13), the numbers ¢4, ... ,

€4 > 0 may be alternatively chosen in such a way that

C
2¢e9

L2[(0,17),w2(@)]"

d
@ =" [0y + BN =@ [y < (5= + = + 26) 19 = 0" |30 (5.31)

2

1 / "2 c / " ’ " 2
+ a ”W -W ||L2(Q) + g (HIz (t) — I (t) H(le(Q)) + ”Ie (t) — I (t) ”(le(Q)) ) .

This implies the following modification of (5.25):

d 2 2 2 2
= (19 =@ oy + | W =W |2y ) + 8119 = @ [z < C- (19 = @ 72

/ 172 c ’ " 2 ’ 7 2
W =W ey )+ S (1O = B ) + IO - 1O o)) 632
Together with (5.27), we arrive at: (5.33)
/ " 2 ’ "2 ’ "2
19°t) = %) w2 < C(“L’ [0 my, (wre) ] T~ L ||L2[(07T>,(W1’2<m)*])
—

" H2

20,1y, (w2@)" ]

I = 1 e o0 (wiaey)] ) - (5:30)

/! 1 !/
19 =" 32t o2y wroiey] < C (I~

e Step 5. The estimate for the difference || W' — W" ||W1 2[(0.7). 12(®)
test function v = (AW’ (t)/0t)— (OW" (t)/dt), which obviously belongs to L?(Q7) and is therefore admissible.

] Into equation (5.23), we insert the

Then we get with the generalized Cauchy’s inequality

ow'  Ow" ow' ow" ow'  ow"
< at 6t ot ot )= ot ot 122 (5.35)
8W’ oW €
|| —iHLz(Q EIIW’—W”HB(Q)
& 8W’ 8W” 2
+5’€56||W— ||L29)+ ||‘I’I " |72

for arbitrary €5, g > 0. Fixing the numbers 5 and ¢ in such a way that ee5 + e keg = 1, we find together
with (5.28) and (5.29):

ow’ 8W”
e

2 ER 2
— H W =W 120 + P @ — " [|}2(q) (5.36)

" ”2

2
(HIZ'/_IiH||L2[(O’T)7(W1,2(Q))*]+HIe/_Ie L2[(O’T)7(W1,2(Q))*j|) -
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ow’ 6W” 9
1% = 5 e omy o] < €T (M =2 s 0,2 (woocan) ]

I =1 a0, () ] )

and with (5.30), we get finally: (5.38)

(5.37)

2 2
(U WNHW”[ 0,T), L?(Q)] (HI/ L HLQ[(O,T),(Wl*z(Q))*]H'Ie/_Ie// ”LQ[(O,T),(W“(Q))*} )

e Step 6. The estimate for the difference || &' — @ || Let ¢ = 4/3. Exploiting the

W1’4/3[(0,T) , (lez(ﬂ))*] .
definition of the dual norm, we see that

T /t 8@”() B T 8;{)'_31#’ ,

/ | ||(W1,2(Q))*dt_/o I\w\lvffin):l“ 5 ) [Tt (5.39)
T 1 , 9 , . .

< c./o (s_l_l_pHm(A(Ii () - L") - (L'®) - 1" (1) ), )| (5.40)

+sup | M (@ — @, )|+ sup| / (Iion(q"vw') ~ Tion(®",W") ¢ da | ) i =

T (3@/ 6@”
/ (5.41)

9 ., *dt)l/q

(w2())

: O'(/o S??P“H%(A(fi’(t)—fi”(t))—(Ie’<t>—fe”<t>)),¢>\2dt)”2
+C'(/OTS{I_10|J‘4(<I>’<1>",¢)|2dze)”2

4 !/ !/ 12 1" q 1/q
+C- ( A (SUP [ Lion(®', W) = Lion(@", W") ”Lq(Q) K% ||LP(Q)) dt)

We estimate the three terms on the right-hand side of (5.41) separately. For the first term, we get

1 2
sup (—— (MNL'®) L") - (L'(t) = L") ), )
nwuwm(m:l' 1+A( ( )= )) |
1 PN 2 . TiyN T M 2
<y (AE O = 10) = (10 = 1"©) ) 17100 (5.42)
N 2 2 ey T ! 2 .
< O(IHO =L OF o) + 12O LOf gy ) = 643
T
1 ’ " ’ " 2 1/2
(/0 sup | (=5 (M(Z/0 = 1) = (10~ L") ) . )"t )
T2 12 .
<O =" Wt g 1y (o) ] 1 = W [0,2y (win)]) (5.44)
For the second term, we obtain from Lemma 2.3. and (5.34):
| M(& —2" p) " <20 — " ”?/VLQ(Q) N lree = (5.45)
T 1/2
. T Y/ 2 TR Y/
([ swlar(@ o 0)Par) < IO =" 1af 1) punge] (5.46)

/ "2 / "2 .
< C(HIZ -1 HL?’[(O,T),(WN"(Q))*] +||I€ — I HLZ[(O’T)’(WLZ(Q)) ]) (547)



27

In order to estimate the third term, we write, relying on Lemma 2.10.,
[ ion(®', W) = Lion(®", W") || ya(q)

<o ((@)?+ 0" " + (") — (a+ 1) (¢ + ") +a) (&' =2") || 4 (5.48)
(@ = @)W | pagqy + | (W = W) " || paiq) = i+ o+ J5. (5.49)

For Ji, we obtain with ¢ = 4/3
1/
J = (/ b (@) + @' " + (")~ (a+1) (¥ + &) +a)" (& —@")* dx) ! (5.50)
Q

< 3q/2 /N2 & 1\2
\(/Qb ((8)2 + @' 0" + (")

2/3 1/3
—(a+1) (@ + ") +a)" d) ! (/(@’—@”)3‘1) * (5.51)
Q
4 1 2
C1+[® (1) sy + 12" M) zagqy)” - 19" = " [l (5.52)
due to the continuous imbedding W'?(€2) < L*(Q). Further, with (5.21) we get
1 2/3 1/3
5= ([ (- wyra) " < ([ (o —a)2a)" ([ ovyrae)”™ 5.53
2 X
) Q Q
4/3 a3 \3/*
= (12" = @" 3550, - IW' Ii00) ) = 19" =@ llay - 1V llpaay < C IO =" [l (g (5.54)
Finally, J5 will be estimated together with (5.18) through
1/ 2/3 1/3
Jy = (/(W’—W”)q(@”)wx) "< (/(W’—W”)de) q(/(@”)"‘dm) ! (5.55)
% Q Q
4/3 a3 \3/4
= (W =W [y @ 1) ) = W =W 2y 1197 sy < CHW =W [y (5:56)

Together, the estimates (5.52), (5.54) and (5.56) imply that
g R Ve " oy 4/3 8/4
( 0 (Sup || Iion((b vW ) - Iion(q) 7W ) ||L4/3(Q) : || ¢ ||L4(Q) ) dt) (557)
T 4 4 2
<o / (1@ s + 1971 ga))* - 18 = @ (g (5.58)
4/3  \3/4
@ = @ ey + W =W 2y ) )

8/3 4/3

T
4 4
< C . (/O (1 + || (I)/(t) HL4(Q) —+ || (b//(t) ||L4(Q)) Wi 2 Q)

T 4/3 T 4/3 3/4
+/0 ||@/_@//||W1’2(Q)dt+,/0 W =W d ) '

With (5.16), (5.18), (5.27) and (5.33), we find

e — " (5.59)

T / / " " 4/3 3/4
( (50 [ Lion (@ W) = Lion(@, W) [ sy 19 o)) dt)

r / "2 ’ "2 2/3 3/4
<30 ([ (1 =1 Bty ) (o] 1 =2 o[ 0my. (wio )] ) ) (560

< C-Max(HIi’ R 1L — 1" (5.61)

20,1y, (wr2@) |’ | 20,1y, (w2@)" ] )
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Summing up, we get from (5.44), (5.47) and (5.61)

oo’ 99"

I ot ot ||L4/3[(0,T),(W1’2(Q))*]
| I —1." |

< O Max ( 11— 1" | (5.62)

(o, 1), (wr2@)" ]’
2 2
LQ[(O,T),(WLZ’(Q))*] ’ ”Il/ _Iil/ HLQ[(O,T),(WI*?(Q))*} ) HIC/_ICH ||L2[(O,T),(W1’2(Q))*:| )

and, considering (5.28),

@ — 3" | < C-Max(Hli'—[/’ I (5.63)

wh/s[ 0,1y, (wh2@))"]

1" = 1] =10 ”22[(0,T),(W1*2(Q))*] I = 1" ||2L2[(0,T),(W1>2(Q))*} )

2[(o, 1), (w2 @) ]’

2 (o,1), (w2@))"]

e Step 7. Conclusion of the proof. In order to confirm that the left-hand side in (5.28) can be replaced by
|®" — ®” HCO[[O @]’ the arguments from [ BOURGAULT/COUDIERE/PIERRE 09], p. 478, Subsection

5.3., may be repeated. Note that, by Theorem 4.5., (5.38) implies a bound for || W' — W" ||CO[[0 7). 2]

as well. Finally, the continous imbedding L[ (0, T), (Wl’z(Q) )*] — LQ[(O, T), (Wl’Q(Q) )*] yields
the claimed form (3.27) and (3.28) of the estimates. The proof is complete. m

Remark. If the Rogers-McCulloch model is replaced by the FitzHugh-Nagumo model, the proof can be
repeated with some obvious modifications. The same is true in the case of the linearized Aliev-Panfilov
model, where (5.24) and (5.35) will be replaced by

d 2 1 2 2
- (H W' W" ||L2(Q)) <(C+3) (H O — O |32y + | W — W ||L2(Q)) (5.64)
+Ces || @ — " 5120
and
ow’ 8W” ow’ BW” € 2
15 = S e < 21 5 = T P+ 5 1W/ = W7 2o (5.65)
€10 8W BW” ER 2
+ex(a +1)— ||7 e 2, 20t 5 e10 (a+1) @ — " |[72 0
1/2 1, oW  ow”
74 74 / "2
+Cen (19 ) 19 2y ) 19 = ey + 5 15 = T g
respectively, where €g, ... , €11 > 0 result from further application of the generalized Cauchy’s inequality.
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