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Optimal control of the bidomain system (II):

Uniqueness and regularity theorems for weak solutions. Revised version

Karl Kunisch and Marcus Wagner

1. Introduction.

In the present paper, we continue our investigation of optimal control problems for the bidomain equations. In
a previous work [ KUNISCH/WAGNER 11], control problems involving the monodomain approximation of the
bidomain system have been considered. Well-posedness of the problem formulation was proved, and first-order
optimality conditions were derived. Turning now to the study of optimal control of the full bidomain system,
the present work is focussed on the uniqueness, stability and regularity analysis for weak solutions of the
system, thus establishing the well-posedness of the control-to-state mapping and examinating the possible
gain of regularity for solutions, which satisfy the optimality conditions. At the same time, the stability
estimate proved below forms itself the first part of the proof of the necessary optimality conditions for the
problem (P) below. The investigation of the control problem will be continued in a subsequent publication

with proving existence of global minimizers and completing the proof of the first-order optimality conditions.

For a bounded domain Q ¢ R® and T > 0, the bidomain system reads as follows: 1)

(B)o ag)ttr + Lion(®yr, W) — div (M; V®; ) = I; for almost all (z,t) € Q x [0, T]; (1.1)
8;;” + Lion(®y, W) + div (M. V®. ) = —I, for almost all (z,t) € Qx [0, T']; (1.2)
88—11/ + G(Py, W) = 0 for almost all (z,t) € Qx [0, T]; (1.3)
nTM;V®;, =0 forall (z,t) € 9Q x [0, T]; (1.4)
n"M.V®, =0 forall (z,t)€9Qx[0,T]; (1.5)
Dy (2,0) = ®;(2,0) — Do (2,0) = Pg(x) and W(z,0) = Wy(z) for almost all z € Q. (1.6)

Here 2 represents the domain occupied by the cardiac muscle, the variables ®; and ®. denote the intracellular
and extracellular electric potentials, and ®;. = ®; — &, is the transmembrane potential. The ionic current
Lion and the function G within the gating equation (1.3) will be specified according to the two-variable
models discussed in Subsection 2.b) below. In these models, I;,, and G depend on ¥, as well as on a
single gating variable W describing in a cumulative way the effects of the ion transport through the cell
membranes. The anisotropic properties of the intracellular and the extracellular tissue parts are modeled by
the conductivity tensors M; and M.. Finally, I; and I, describe the intracellular and extracellular stimulation

currents, respectively.

First considered in [ TuNG 78]. A detailed introduction may be found in [ SUNDNES/LINES/CAI/NIELSEN/MARDAL/
TVEITO 06], pp. 21 — 56.
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As already mentioned, our aim is to analyze optimal control problems related to (1.1) — (1.6): (1.7)

T T
(P) (@, &, W, 1) / / (st B, 1) B, 1), W, ) dr e+ / / L (2, 0)2 do dt —> inf!
0 Ja o Jo
subject to the bidomain equations (1.1) — (1.6) in its weak formulation (see (2.7) — (2.10) below)

and the control restriction ’Ie(x,t) ’ < R for almost all (z,t) € Q2 x [0, T]. (1.8)

In this problem, the bidomain system will be controlled by means of the extracellular excitation I,.%%)
Within the objective (1.7), the first term with the integrand r(z,t,¢,n,w) can be considered as a data
term, e. g. of tracking type. The inclusion of the control into the cost functional (1.7) and the pointwise
control restriction (1.8) serve different modeling purposes. While the former models the requirement that —
regardless of whether the hard bound (1.8) is active — the overall stimulus should be as small as possible, thus
favoring solutions with little intervention to the cardiac system, the hard constraint (1.8) for the extracellular
stimulus reflects the obvious fact that electrical stimulations applied to living tissue cannot be arbitrarily
large without causing damage. In mathematical terms, either the control term within (1.7) or the pointwise
constraint (1.8) is enough to ensure the existence of a weakly convergent minimizing sequence.

In the framework of optimal control, it turns out that the appropriate solution concept for the bidomain
system is the concept of weak solutions. This is sufficient to establish existence results for (P),%) A first
natural question is then whether the control-to-state mapping, which assigns to a given control I, the
state (@4, e, W), is well-posed; in other words, whether ezxistence and uniqueness of weak solutions of
the bidomain equations in correspondence to right-hand sides I; = o and I, can be guaranteed. Let us
briefly discuss the related results available in the literature. In [ BOURGAULT/COUDIERE/PIERRE 09 ], global
existence of weak solutions for the two-variable models from Subsection 2.b) was obtained. This result is cited
below as Theorem 2.5. A sufficient condition for uniqueness based on eigenvalue stability of a matrix related
to (¢ agg/gf cag&vgi“), however, could be proven only for the FitzHugh-Nagumo model. ) Similar results
can be found in [ BOULAKIA/FERNANDEZ/GERBEAU/ZEMZEMI 08 ], namely a global existence theorem for
weak solutions together with a uniqueness result requiring spectral conditions analogously to the former
ones. %) For the FitzHugh-Nagumo model, the results and methods from [ BOURGAULT/COUDIERE/PIERRE
09] have been predated in [ COLLI FRANZONE/SAVARE 02 ] where existence and uniqueness of weak solutions
has been established.®) Further, in [BOURGAULT/COUDIERE/PIERRE 09], existence and uniqueness of
strong solutions is verified locally in time.%”) Global existence and uniqueness of strong solutions has been
proved in [ VENERONI 09] for a generalized Luo-Rudy type model. °®)

Our second aim, to be addressed in an upcoming paper, is to provide a rigorous proof of necessary optimality
conditions for the control problem (P). As suggested by [ KUNISCH/WAGNER 11 ], the problem can be treated

then as a so-called weakly singular problem. Within this approach, a stability estimate for the bidomain

For physiological reasons, the intracellular excitation I; must be set zero.
Cf. [KuNISCH/WAGNER 11], p. 8, Theorem 3.3.
[BOURGAULT/COUDIERE/PIERRE 09], p. 479, Theorem 32, together with Subsect. 6.1., p. 479 f.

[BoUuLAKIA/FERNANDEZ/GERBEAU/ZEMZEMI 08], p. 9, Theorem 2.2. Besides the models from Subsection 2.b), the
authors consider the Mitchell-Schaeffer model.

[CoLLt FRANZONE/SAVARE 02], p. 64, Theorem 2.

[BoUuRGAULT/COUDIERE/PIERRE 09 ], p. 469, Theorem 20. The assumptions of this theorem are rather difficult to
verify.

[VENERONI 09], p. 854, Theorem 1.1.
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equations is required. °®) Moreover, we will investigate regularity properties of an optimal control resulting
from the first-order necessary optimality conditions. 1*)

Consequently, the present work is concerned with the proof of a global existence and uniqueness theorem for
weak solutions for two-variable models, as discussed e. g. in [ BOURGAULT/COUDIERE/PIERRE 09 | (Theorem
2.8.). The assumptions for this theorem are the natural ones for the context of optimal control. Namely, in
view of (1.8), we assume that the inhomogeneities I; and I. belong to L[ (0, T'), (W1’2(Q) )* |. Instead of
spectral conditions of the type discussed above, our uniqueness argument is based on the proof of a stability
estimate (Theorem 2.7.). At the same time, this theorem forms the first part of the proof of the necessary
optimality conditions for the control problem (P), which will be completed in an upcoming publication.
Further, in the case of controls admitting a weak time derivative, we will prove that the weak solutions of
the bidomain equations gain additional regularity as well and become, in fact, strong solutions of (1.1) — (1.6)
(Theorem 3.3. and Corollary 3.4.). The proof is based on an adaptation of the iterative procedure presented
in [ VENERONI 09].

The paper is structured as follows: In Section 2, we introduce the strong and weak solution concepts and
present the models for the ionic current, namely the Rogers-McCulloch, FitzHugh-Nagumo and the linearized
Aliev-Panfilov model. Then we proceed with the existence and uniqueness analysis of weak solutions. Higher
regularity of these solutions is investigated in Section 3. The assumptions and results are presented at
the beginning of each sections, while the rather technical proofs are given at their ends. All proofs will
be completely worked out for the Rogers-McCulloch model. For the FitzZHugh-Nagumo and the linearized
Aliev-Panfilov model, the necessary alterations will be indicated.

Notations.

We denote by L”(€2) the space of functions, which are in the pth power integrable (1 < p < o), or are
measurable and essentially bounded (p = c0), and by W"*() the Sobolev space of functions ¥: @ — R
which, together with their first-order weak partial derivatives, belong to the space L*(Q,R) (1 < p <
00). For spaces of Bochner integrable mappings, e. g. L? [(O, T), W1’2(Q)], we refer to the summary in
[KUNISCH/WAGNER 11], p. 20 f. Qp is an abbreviation for  x [0, T']. The gradient V is always taken
only with respect to the spatial variables 2. The nonstandard abbreviation “(V)t € A” has to be read as “for
almost all t € A” or “for all ¢t € A except for a Lebesgue null set”, and the symbol o denotes, depending on
the context, the zero element or the zero function of the underlying space.

2. Existence and uniqueness of weak solutions for the bidomain system.

a) Equivalent formulations of the bidomain system; strong and weak solutions.

Introducing the transmembrane potential ®;. = ®; — ®,, the bidomain system (1.1) — (1.6) can be equi-

valently stated in the following parabolic-elliptic form: V)

Analogously to [ KUNISCH/WAGNER 11], p. 11, Theorem 3.8., and p. 16, Proof of Theorem 3.5., Step 2. For the
general framework of weakly singular problems, cf. [ITo/KuNiscH 08], p. 17 f.

In the case of the monodomain approximation, a situation with improved regularity of the optimal control has been
described in [ KUNISCH/WAGNER 11], p. 10, Corollary 3.7.

See [ BOURGAULT/COUDIERE/PIERRE 09], p. 459.
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(B)1 5§)ttr + Lion(Pyr, W) — div (Ml V@tr) — div (]\/[z V@e) = [; for almost all (z,t) € Q x [0, T]; (2.1)
div (M; V) +div (M; + M) V@, ) = —(I; + I.) for almost all (z,t) € Qx [0, T]; (2.2)
ow
rra + G(Py, W) = 0 for almost all (z,t) € @ x [0, T]; (2.3)
WM, VO, + 0T M; VO, = 0 for all (x,t) € 9Q x [0, T]; (2.4)
nTM; V@, + 0T (M; + M) V®, = 0 for all (z,t) € 9Q x [0, T]; (2.5)
D (x,0) = Po(x) and W(x,0) = Wy(x) for almost all z € Q. (2.6)

To the system (2.1) — (2.6), the following weak formulation corresponds: 1?)

0Dy,
(B)2 /Q< Btt )+ VYT M (VO + V) + Lion (P4, W)l/}) dr = /QIZ-z/de (2.7)

Ve WH2(Q), fora.a te(0,T);

/ﬂ(Vz/;TMiV<I>t7.+V¢T(Mi + M) VO, ) dr = /(Ii +1.)vda (2.8)

Q

Vi € WH(Q) with /w(a:)dx:(), fora.a.te€(0,T);
Q

/ (8371/1/ +G((I>tr,W)) Ydr =0 Ve L2(Q), fora.a.te€(0,7T); (2.9)
Q
Dy (2,0) = Pg(z) and W(x,0) = Wy(z) for almost all z € Q. (2.10)

The corresponding notions of strong and weak solutions will be clarified by the following definitions.

Definition 2.1. (Strong solution of the bidomain system (B);)'®) A triple (®,., ®., W) is called a
strong solution of the bidomain system (2.1) — (2.6) on [0, T'] iff the functions ®y., . and W satisfy the
equations (2.1) — (2.3) a. e. on Q x [0, T'] as well as the initial and boundary conditions (2.4) — (2.6) on
00 x [0, T'], respectively. Moreover, the functions belong to the spaces

®,. € L*[(0,T), W) ] n w"?[(0,T), L*(Q)]: (2.11)
d, € L[(0,T), W*(Q)]; (2.12)
wewh?[(0,T), L*(Q)], (2.13)

and for allt € (0, T), it holds that [, ®c(x,t)dz = 0.
Note that the imbedding W*? [(0,T), L2(Q)} — C° [[o,T], LQ(Q)] holds; ') consequently, the initial

conditions for ®4. and W are well-posed.
Definition 2.2. (Weak solution of the bidomain system (B), ) '®) A triple (®,, ®., W) is called a weak

solution of the bidomain system (2.7) — (2.10) on [0, T'] iff the functions @y, . and W satisfy equations
(2.7) — (2.9) and obey the initial conditions (2.10). Moreover, the functions belong to the spaces

Following [ BOURGAULT/COUDIERE/PIERRE 09 ], p. 472, Remark 27, the occuring distributional time derivatives can

be identified as functions dPy,./dt, SW/t € L* [(0, T), (le(ﬂ)) ] .

Slightly modified from [ BOURGAULT/COUDIERE/PIERRE 09], p. 469, Definition 18.
[ KUuNISCH/WAGNER 11], p. 21, Theorem 4.5.

[BourcAULT/COUDIERE/PIERRE 09], p. 472, Definition 26.
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®, € C'[[0,T], L*(Q)] n L*[(0,T), Wh*(Q)] n LP(Qr) with 2<p<6; (2.14)
o, € L*[(0,T), W(Q)]; (2.15)
wec’[[0,T], L*(Q)], (2.16)

and for almost all t € (0, T), it holds that [, Pc(x,t)dr = 0.

Assumptions 2.3. (Basic assumptions on the data in (B); and (B)2)

1) Q € R? is a bounded Lipschitz domain.

2) My, M, : cl(Q) — R**® are symmetric, positive definite matriz functions with L™ (Q)-coefficients, obeying
the uniform ellipticity conditions

0< |17 <€ Mi(x) € < pa || €11° and 0 < [ €)7 S €T Me(2)E < p2 || €7 VEER® YaeQ (217)

with i, pe > 0.
3) The initial values ®o, Wy belong to the space L*(9).
4) I; and I, belong to the space L? [(O, T), (Wl’Q(Q) )*} and satisfy the compatibility condition

/ (Ii(x,t) +Ie(x,t)) de =0 for almost all t€ (0,T). (2.18)
Q

Under these assumptions, the weak bidomain system (2.7) — (2.10) allows for a further reformulation, which

is crucial for establishing existence and uniqueness results.

Theorem 2.4. (The reduced bidomain system and the bidomain bilinear form) 1)'9) Under the
Assumptions 2.3., a triple (P, @, W) forms a weak solution of (B)g on the interval [0, T'] for the initial
values g, Wy € LZ(Q) iff it satisfies the reduced bidomain system

Bl G(@u(0). )+ A(Pu(0), ) + [ Lonl@ul). WO) b = (S0, 0) Yo eW' (@) (219)
WO )+ [ G W) vds =0 o e L) (220)

Q
Dy (2,0) = ®o(z) and W(x,0) = Wy(z) (V)ze€Q (2.21)

on [0, T in distributional sense. Here the bidomain bilinear form A: W"2(Q) x W"(Q) — R is defined
through

A, o) = /Q VL M; Vibs dz + /Q VL M; Vips da (2.22)
where Je € WI’Q(Q) is the uniquely determined solution of the variational equation

/Q VoL (M; + M) Vipde = — /Q VI M; Vipde Vi € WH(Q). (2.23)
Accordingly, the linear functionals S(t) € (W1’2 () )* are defined through

(S(), 0) = (L(t), ¥) - /Q V0L M, Vi da (2.24)

[BOURGAULT/COUDIERE/PIERRE 09], p. 473, Lemma 28, together with p. 464, Definition 5.
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where 1), € w2 (Q) is the uniquely determined solution of the variational equation

V. (M; + M) Vipdr = (Li(t) + L(t), ¥) Yo € WHQ) with |, (x,t)de =0 (V)¢ € (0, T).(2.25)
Q Q

2) 17) The bilinear form A is symmetric, continuous and coercive with

Bl liieg < AW, )+ B¢ 720 YW (Q) and (2.26)
| AW, do) | < v 11 llwre) - 192wy Yoo, v € WH(Q) (2:27)
where 3, v > 0.

b) The models for the ionic current.

For the ionic current I;,, and the function G within the gating equation, we will consider the following three

models:

a) The Rogers-McCulloch model. *®

Lion(p,w) = b-p(p—a)(p—1)+o-w =bp’—(a+1)bp’ +aby +pw; (2.28)
Glp,w) = ew—cky (2.29)

with 0 <a < 1,b> 0, Kk >0 and € > 0. Consequently, the gating variable obeys the linear ODE
OW/Ot+eW = ek Dy. (2.30)
b) The FitzHugh-Nagumo model. %)

Lion(pyw) = p(p—a)(p =) +w = ¢’ — (a+ 1)’ +ap+w; (2.31)
Glp,w) =cw—ekp (2.32)

with 0 < a < 1, k > 0 and € > 0. Consequently, the gating variable obeys the same linear ODE (2.30) as

before.

¢) The linearized Aliev-Panfilov model. ")

Lion(p,w) =b-p(p—a)(p—1)+p-w=0bp>—(a+1)bp> +abp+pw; (2.33)
Glp,w) = ew—cr((a+1)p—¢*) (2.34)

with 0 <a <1,b>0, k>0 and € > 0. The linear ODE for the gating variable is

OW/ot+eW = ek ((a+1) Py — D47 ). (2.35)

[BOURGAULT/COUDIERE/PIERRE 09 ], p. 464, Theorem 6.
[ROGERS/MCCULLOCH 94].
[FrTzHUGH 61], together with [ NAGUMO/ARIMOTO/YOSHIZAWA 62].

See [ALIEV/PANFILOV 96]. The linearized model is taken from [ BOURGAULT/COUDIERE/PIERRE 09], p. 480. In-
stead, the original model contains a Riccati equation for the gating variable.
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c) Existence of weak solutions.

The following Theorems 2.5. and 2.6. were obtained in [ BOURGAULT/COUDIERE/PIERRE 09] and [NA-
GAIAH/KUNISCH/PLANK 11].

Theorem 2.5. (Existence of weak solutions) 2" Assume that the data within (B)y obey Assumptions
2.8., and specify any of the three models described in Subsection 2.b). Then for arbitrary initial values Py,
Wo € L*(9), the bidomain system (B)a admits on [0, T at least one weak solution (P4, D, W) according
to Definition 2.2. where p = 4.

Theorem 2.6. (A priori estimate for weak solutions)?? Assume that the data within (B)s obey
Assumptions 2.3., and specify any of the three models described in Subsection 2.b). If a triple
(@0, @, W) € (CO[[0, 7). L3@)] N L*[(0, T), WH*(Q)] N L(0r) )
x L*[(0,T), w"(Q)] x C°[[0,T], L*(Q)] (2.36)

forms a weak solution of the bidomain system (B)a on [0, T'] then the following estimate holds:

+ | @l 12w e + 1020/0L]]

2
H(I)"”co[[o,T),H(Q)} £2[(0,17),wh2(@)]

+ 2|

[0, ), (wr2@)]
2

2
LQ[(o,T),WLz(Q)] + HWHCD[

+ oW/t

[0,7),L%(@)] (0.7). (wh@))"]

2 2 2 2
< O (141120 B+ 1Wo ey + 1 5l el (2:37)

(0,7, (wh2())" ] <o,T),(W1f2(m)*])
where p =4 and g = 4/3. The constant C > 0 does not depend on &y, Wy, I; and I..

d) Uniqueness of weak solutions.

Note that Theorem 2.5. does not guarantee the uniqueness of the weak solution of (2.7) —(2.10) in cor-
respondence to a given pair of excitation variables I;, I.. The following error estimate, using assumptions,
which are in accordance with the analytical framework of the optimal control problem (P), allows to prove

a unique correspondence between (I;, I.) and the weak solution (@, &, W).

Theorem 2.7. (Stability estimate for weak solutions) Assume that the data within (B)2 obey As-
sumptions 2.3., and specify within (B)y any of the three models from Subsection 2.b). If two weak so-
lutions (4, ./, W'), (®y,",®.", W") of (B)y correspond to initial values ®) = ®J = ®, € L*(Q),
WY = WY = Wy € L*(Q) and inhomogeneities I,', 1.', I,” and I." € L>[(0,T), (WI’Q(Q))*], whose
norms are bounded by R > 0, then the following estimates hold:

’ "2 / "2 / "2
H(I)tr — By ||L2[(O,T),W1’2(Q)] + ||(I)tr — Oy, HCO[[O,T],LZ(Q)] + Hq)e - @, HLZ[(O,T),Wl’z(Q)] (238)
/ "2 / "2 / "2
FIWE= T e 0.y 2] FIWE =W lco o,y a2 ] TV =W a0, 2200

2 2
< C(”IZI _Ii” ||L°°[(0,T), (Wl*Q(Q))*] + ||Ie/ _Ie// ||L°°|:(O,T),(Wl’2(ﬂ))*} ) :
H@tr/_q)tr/l ||W1,4/3|:(07T)7(W1,2(Q))*] < C'MaX(HIi/_IiH ||L2[(0,T),<W1’2(Q))*} ; (239)

2 2
He" = 1" ”LZ[(O,T),(WL?(Q))*] =57 ”LZ[(O,T),(W”(Q))*} L= L ”Lz[(O,T),(Wl’Q(Q))*] )

[ BOURGAULT/COUDIERE/PIERRE 09], p. 473, Theorem 30.
[NAGAIAH/KUNISCH/PLANK 11], p. 158, Lemma 3.5.



The constant C > 0 does not depend on I,', I.', I’ and I.” but possibly on Q, R, &g, Wy and p = 4.
This estimate yields the following uniqueness theorem:

Theorem 2.8. (Uniqueness of weak solutions) Assume that the data within (B)s obey Assumptions 2.3.,
and specify within (B)s any of the three models from Subsection 2.b). Then for initial values @y € LZ(Q),
Wy € L*(Q) and inhomogeneities I;, I, € L™ [(0,T), (WLQ(Q) )* |, the bidomain system (B)2 admits on
[0, T'] a unique weak solution (P, D, W) according to Definition 2.2. where p = 4.

e) Proofs.

Throughout the following proofs, C' denotes a generical positive constant, which may appropriately change
from line to line. C' will never depend on the data I;’, I, I,” and I.” but possibly on Q, R, ®y, W, and
p = 4. We start with two lemmas, which will be used within the proof of Theorem 2.7.

Lemma 2.9. Under the assumptions of Theorem 2.7., let the pairs (®4,/, W') and (®,",W") satisfy for
almost all t € [0, T'] the equations

<%@wm,w+Ammwxw»ameammw%mwm:w5ﬁmw>v¢ewumx (2.40)

d

(S(0), 0)+ AR, ) —|—/Qlim(@tr”(t),W”(t))wdx — (S, ) Yee W Q). (241)

Then for arbitrary € > 0 the following estimate holds:

C 2 2 3e 2
! i / 1 / 12
(80 = 5"0), 0)| < 5= (10 = KO 1] o) + 1O = O 1 yragy) )+ o 16 B
The constant C' > 0 does not depend on e, I; and I, and even not on ®y and Wy. (2.42)
Proof. By (2.24) and (2.25), the right-hand sides of (2.40) and (2.41) read as

(S0, 0) = (1/(0), )= [ VoMV (870, 0) = (170), 0) — [ VOTM VI s (24
where ¥, 9, € W"?(Q) are the uniquely determined solutions of the variational equations

/vaT(Mi + MOV de = (I + 1./, ) Vi€ WH(Q) and (2.44)

: VYT (M; + M)V, do = (I" + 1., ) Vi e W3(Q) (2.45)

with [, Ele(a:,t) dx =0, [, @Z(x,t) dr =0 (V)te€ (0, T). Forming the difference of (2.44) and (2.45), we
get the variational equation

/va(MiJrMe)v(i’e—@;’)dx = ((L'=L")+ (L' - L"), %) Yiew" (@), (2.46)
Q

into which ¢ = @; —@: can be inserted as a feasible test function. Then by Assumption 2.3., 2), the Poincaré
inequality may be applied to the left-hand side of (2.46) since [ EVANS 98], p. 275, Theorem 1, holds true
together with the Rellich-Kondrachov theorem even on a bounded Lipschitz domain, cf. [ ADAMS/FOURNIER
07], p. 168, Theorem 6.3. This results in

cw%%ﬂ@ww<me—%fwmwmw%—%mx (2.47)

S I =L e =0 | + [(L = L e =) |



For arbitrary € > 0, the generalized Cauchy inequality 23) implies

—r =2 1 2 e —  —un 2
Cllve = de llwrz) < 5 I1E(#) = L(?) Fwrz@)) + 3 1¥e = Ve llwrz (2.48)

1 / " 2 g, — —n 2
+ 2% [ Le'(t) — Le"(t) H(Wl,Z(Q))* + ) | Ve — ¥ ||W1=2(Q) )

and with € = C'/2, we obtain

T =T ry < 3 (IO =T O W gy + IO =L O W iy ). (249
Further, it holds that
[(S'(t) = 8" (1), w) | = [(I'(t) = I"(t), &) — /Q VT MV (Y, — 3, ) dx | (2.50)
< (1) - I/’(t>7w>|+!<v(@’—@“) Mivw>| (2.51)
< %\|1/<t>—n"(ﬂuiwlg(m) \|w||wm<m+ T =T ey + 5 M 6 gy (252)
1

2
o 1O = 0 [ gy + 5 19 B

¢ / 7 2 ’ " 2 Cce 2
toa <|| Li(t) = Li°(t) H(Wl.z(ﬂ))* + 1L () — 17 () ||(W1,z(Q))* ) + ¥ lwizg) (2:53)
where Assumption 2.3., 2) and (2.49) have been used. Taking &’ = ¢/(2C) and equalizing the constants in

the first and third term in an appropriate way, we arrive at the claimed estimate (2.42). m
Lemma 2.10. For all v1, @2 € R, the following identity holds:
(¢l —(a+D)pi+ap) = (¥3—(a+1)ps+aps)

=(p1—p2) (P +p1pa+95—(a+1)(p1+p2)+a). = (2.54)
Proof of Theorem 2.7. Within (B)2, the Rogers-McCulloch model is specified. Assume that (@, ®.", W)
and (@4, ®.”, W") are weak solutions of (B)s, which correspond to excitations I;’, I.”, I,”, I.” € L™ [ (0,T),
(W1’2(Q) ) | with norms bounded by R > 0 and identical initial values ®o and Wj.
e Step 1. The difference of the reduced parabolic equations. By Theorem 2.4., 1), the pairs (@', W’) and
(@, W") satisfy for almost all t € [0, T'] the equations (2.40) and (2.41) above from the reduced bidomain

system. Consequently, we obtain the difference

< jt ((I)tr ( ) (I)tr”(t)) 3 flp> + A((I)tr/(t) - (I)tr//(t) 5 'l/}) (255)

" /Q(Iion@t/(t),W’(t)) — Lion(@4 (£, W"(1) ) dz = (S'(t) = $"(t), w) Ve W)

where we may insert ¢ = ®,/(t) — ®,,” (t) as a feasible test function since ®,,’(t), ®,," (t) € W"*(Q). Using
the constant 3 > 0 from Theorem 2.4., 2), we obtain
1d

5 7 120/ (©) = " () 720y + A( @0’ = 20", @0 = @4") + 5|00 = @0 |20

[ (Bon@u's W) = L@, W) ) (2~ 8, do
Q

= (S'(1) = 8"(1), @' — B )+ B @4 — B 12y = (2:50)

&.‘g‘

H (btr q’trll ||iz(ﬂ) + 5 || (I)tr/ - q-)trl/ ||?/V1v2(9) + / (Iion(q)tr/a W/) - Iion((btr”7 WH)) ((I)tr/ - (I)tr//) dx
Q

DO =

<|(S'(1) = 8"(t), Do’ — @) | + B i’ — @1 720y - (2.57)

%) Cf. [EvaNs 98], p. 622, b.
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By Lemma 2.9., the first term on the right-hand side of (2.57) can be estimated through

[(S'(t) = S"(t), @/ — @y )| < 2% (H L'(t) — L"(t) H?Wl,z(m)* + 11 (t) — I (t) ||2(W1,2(Q))*) (2.58)

351 2
7 120 = 2" Oy

with a number €1 > 0 to be fixed later. Observe now that, by Lemma 2.10., the following identity holds:

+

/ (I'Lon(q)tr/y W/) - Iion((l)tr//7 W”) ) (‘I)tr/ - (I)trﬂ) dx (259)
Q
= / ((I)tr/ - (ptrﬂ) b ( ((I)t'r/)2 + (I)tr/ q)t'r// + ((I)tr//)2 + a) (q)tr/ - étrﬂ) dl‘
Q
- (a + 1) b / ((I)t'r/ - Qtr”) ((I)tr/ + q)tru) ((I)tr/ - (I)tr//) dl‘ + / ((ptrl W/ - (btru W//) ((I)tr/ - (btru) dl’ .
Q Q

Considering further that a, b > 0 and ®,/(z,t)? + @4/ (z,t) @4 (2, t) + @4/ (2,8)? > 0 for almost all
(z,t) € Qp, the inequalities (2.57), (2.58) and (2.59) imply

d 2 2
a || (I)tr/ - (I)t'r// ||L2(Q) + 2ﬁ || (I)tr/ - (I)tTN ||W12(Q) < 20/ | q)tr/ - q)trl/ ’ : ‘ (I)tr/ + qjtr/l | : ’ (I)t'r/ - (I)tr” ‘ dl‘
Q

C 2 2
By v " " / ~ A . r_rn B
+ 2/9((1)“' Wi—o, W ) (D4 — Oy') dw + e (HIZ I; ||(W1’2(Q)) + 1 I = I H(Wl,z(Q)) )
3¢ 2 2
+ 71 100 — @0 |20y + 28 @u’ — i 720y - (2:60)

By application of the generalized Cauchy’s inequality with 5 > 0 to the first term on the right-hand side of
(2.60), we get

20/ | (Dtrl - (I)tr// | : | (I)tr/ + (ptrﬂ | : | @tr/ - (I)tr/, | dx
Q

C
<03 / |20+ 2" [* @0 = @ [P+ 5 | B0 — 20" |12 (2.61)
Q [Sp]
13 4 1/2 4 1/2 C 9
<c2 (/ o+ 0 ) (100 =0 )+ 0~ 0 e (2.62)
2 Q 262
€ 4 1/2 ) C )
<C =2 (/ ‘ 3, + o, ’ dx) | @, — @, ||W1’2(Q) + — || @) — @y, ||L2(Q) . (2.63)
2 Q 2¢e9

The second term on the right-hand side of (2.60) can be estimated through
2 / ((I)trl W/ - (I)trl/ WH) (q)t’r/l - q)tr/) dr = 2 / (q)t’r/ - (I)trl/) W/ (Qt'r/ - q)trll) dx (264)
Q Q
+ 2 / (W’ — W”) (I)tr” ((I)t'r/ — (I)trl/) dm
Q
7\2 ’ ”2 1 / 72
< €3 Q(W )@’ — @y " de + o [ @6 — Pur (|20 (2.65)
1
+é&4 / (q)t'r'” )2 } (I)tr/ — @tr” |2 dx + a || W/ — W” ||§,2(Q)
Q
1/2
< e (/ (W) az) " (low - @ I3, )
Q ()
4 1/2 4 /2 1
= (/Q(%") dm) (H 0y’ — 0y ||L4(Q)) o I =W [0

2 2 1 2
< C€3 || W/ ||L4(Q) || (I)tr/ — q)trll ||W1'2(Q) + 5 || (I)tr/ — (I)t,,\// ||L2(Q) (267)

1/2 1 2
=+ % | @4 — @4 HLz(Q) (2.66)

2 2 1
+Cey] @4 22 | Oy — 4" 2 + o W’ —w" Hi?(g) ;
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applying the generalized Cauchy’s inequality again with €3, £4 > 0. Combining now (2.60), (2.63) and (2.67),

we end up with the inequality

d 2 2
p || @trl — @trﬂ ||L2(Q) +20 || CI)tT/ — (I)trn ”W“(Q) (2.68)
) 4 4 1/2 2 C 2
< OZ (100 sy + 196" ey ) 190" =@ ey + 5 196" = 00 3200
C w’ 2 &, —d," 2 i &, — P,V 2
+ €3 ” ||L4(Q) H tr tr ||W12(Q) + €3 ” tr tr ||L2(Q)

2 2 1 2
+ Ceal| @0 a0y | 26’ — o w120y + o W =W }2q)

C 2 2
+ a (” L/ (t) = 1" (t) ”(Wl,z(Q))* + 1L/ (1) — L (t) H(W1:2(gl))* )
3¢ 2 2
+ 71 [ @4 — o 2y + 28 2o’ — o |12(q) -

As a consequence of Theorem 2.6. and the assumed L™-regularity of the excitations I;’, I/, I;” and I.”, the

inequalities

[ o wtar < o (14180 + Wl (2.69)
I W o,y (wrze ) ]+ Wm0 (woaen) ] )

[ w0t de < € (141900 + 1 Wo 2o (270)

2 2
T e [0, 0y, (wrz) ] I o [ 0,7y, (wra@))] )

hold. 2*) Further, since W’ is the unique (strong or weak) solution of the initial value problem (2.3), (2.6), it
belongs to the space C* [(0,T), LQ(Q)] nc° [[0,T], LQ(Q)] and admits the representation 2°)

t
W' (z,t) = Wo(x)e = +erne / &/ (z,7) e dr, (2.71)
0
which implies the estimate
[ W0t ds < CIWolls +C (1+11 B0 e + 1 Wo 2o (2.72)

2 2
+IIE HL‘X’[(O,T),(WI'Z(Q))*] +IIL ||L°°[(0,T),(W1v2(m)*} )

Combining finally (2.68) with (2.69), (2.70) and (2.72), we may fix the numbers €1, €2, €3, £4 > 0 in such a
way that the terms with || @, — @, ||?,V1,2(Q) will be annihilated. We arrive at

d 2 C 1 2
% || q)trl — (btr,«” ||L2(Q) g (E + g + 25) || q)tr/ - (bt'r// ||L2(Q) (273)
C

€1

2

1 2 2
+ | W =W [z + ( 15 (@) = L) (g1 ) + IO = L@ W g2 ) ) :

24 Cf. [KuNiscH/WAGNER 11], p. 23.
25) [WARGA 72], p. 192, Theorem I1.4.6.
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e Step 2. The difference of the gating equations. The pairs (®,,/, W’) and (®,,”, W) satisfy for almost all
t € [0, T'] the equations

(%W’(t),w = —A(EW’(t)—EK@tT'(t))wdx Vi e L*(Q) and (2.74)
<%W”(t), V) = —/Q(EW"(t)—Enq)tr”(t))d)dx Vo e LA(Q). (2.75)

Inserting the feasible test function ¢ = W’ (t) — W”(¢) into the difference of (2.74) and (2.75), we get

(= (W'(@t)=W"(1t)), W'(t)— W"(t)) (2.76)

SIS

- _s/(w'_W")Qde/(@,f_@t//)(W'_w")dx —
Q Q

d 2 2 2
= (HW’— W ||L2(Q)) < (25+M) IW! =W 320y + el @0 — B0’ 7210y - (2.77)

‘W WP and

e Step 3. The estimates for the differences || @y — @4 || L2(@r)
T

2
r=[(o.17). 22 ]’ |
(|w’'—w" Hioo [(0.7). 2] After equalizing of the constants on the right-hand sides, the inequalities
(2.73) and (2.77) give together

d

2 2 2 2
p (H Dy’ — @y |2y + W =W ||L2(Q)) <C- (|| Cp' — @ |20 + W =W ||L2(Q)> (2.78)

+§ (” Ii/(t) . Iill(t) ||2(W1’2(Q))* + H Ie’(t) - Ie//(t) Hz(Wl,z(Q))* ) )

By application of Gronwall’s inequality, 26) (2.78) implies

2 2 2
[ @4 (t) = @ (1) [I720) + W' (1) = W' (1) 1720y < et (” 04,'(0) — @4 (0) [[72(q) (2.79)
’ " 2 C K ’ " 2 / " 2
WO = WO s+ o [ (1) = 1) gy + 1) = L sy ) )
C 2 2
< oCT A . 1 .
s o (IIIZ I; HLz[(OyT),(Wl,z(Q)) ]+||Ie I HLZ[(O,T),(WLQ(Q)) ]) (2.80)

From the last inequality, we get the desired estimates:

2 c 2
H q)t’f', - (DtTH ||L°°[(O,T),L2(Q)] < eCT g (HIII _Ii/l HL2|:(O,T),(W1’2(Q))*]

+ | - 1" ||iz[(07T)7 (wrz@)"] ) ;(281)
IW =W oy, ] < <7 5 (1 =1 a0 2y, (whocon )]

+I L - 1" ||i2[(O,T),(W1‘2(Q))*]); (282)
HW/_WNH2L2(QT) < T€CTQ (HIi,_Ii” ||i2[(O,T),(W1’2(Q))*]

€1
+||Iel_le// HiZI:(O,T),(Wl’z(Q))*])' (283)

26) [Evans 98], p. 624, j.
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e Step 4. The estimate for the difference || ®4,' — @4, ||2

2 (0,1), wha)]" We go back to (2.68) — (2.72)

and choose the numbers €1, ... , €4 > 0 alternatively in such a way that
d 2 2 c 1 2
@0 = @0 (20 + Bl @6’ = i[5y < (E ot 25) | @0~ 0 13200 (2.84)

1 , 1 o 2 ’ I 2 .
+ W -w ||L2(Q)+ (||1 (&) = LW [{(wraggy) + 1) = L@ (120 ) )

This leads to the following modification of (2.78):

d 2 2 2
7 (H Oy’ — @4 2 + 1W =W ||2L?(Q)) + 01 Pu’ = i 12 < C- (|| Py’ — 4" |12 (0

2

2 C 2
FIW W gy )+ & (10 K0 ) + 1O~ 1O ) ). 59

Together with (2.80), we arrive at (2.86)

" ||2

’ " 2 ’ "2 ’
[ @4/ (t) = Pu (1) 120 < C(IIL —I; IILQ[(O’TL(WLZ(Q))*} + |1 - I Lz[(O,T)y(Wl,z(Q))*})
which implies

" ”2

20,1y, (w2@)" ]

+||Iel*IeH ||i2[(O,T),(W1’2(Q))*]>' (287)

! 1 I
18’ = @0 52 (o, wreey] < C (15 =

e Step 5. The estimate for the difference |W' — W' ||? ] Into the difference of (2.74) and

wh2[(0,7),L2(Q)
(2.75), we insert the test function ¢ = (AW’ (t)/t) — (W (t)/dt), which obviously belongs to L*(Qr) and
is therefore admissible. Then we get with the generalized Cauchy’s inequality

ow’'  ow” ow’  ow”
155 = S 2 < =215 —77wﬁ@

g 2
—fnwtwvwﬁm (2.88)

(9W 8W” 2
- T a, ||L2(Q) H (I)tr (I)trﬂ ||L2(Q)

for arbitrary €5, g > 0. Fixing the numbers 5 and €4 in such a way that ee5 + e keg = 1, we find together
with (2.81) and (2.82):

ow’ 8W’ !

g 2 EKR 2
[ % — 320 < = —[|W' = W"|[}2q) + . @4 — P |12 (2.89)
/ "2 ’ 7”12
C(HIZ -1 ”L?[(O,T),(Wl,?(g))*]+HI6 — I ||L2[(O,T),(W1’2(Q))*]) —
ow’ aW" R
155 = 3 e fiomy @] < CT (I = 1[0 7). (wr@)']

I = L a0 (o) ] )+ (290

and with (2.83), we get the estimate

HW’ WNHW12[(O Ty, LZ(Q)] < C(”Iil_Ii”Hi}[(mT),(Wl,z(Q))*] (2'91)

2
L~ L ||L2[(0,T)7(W1~2(Q))*} )
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. . / 1
e Step 6. The estimate for the difference || 4’ — Py HW114/3[(07T),(W1,2(Q)
nition of the dual norm where ¢ = 4/3. Then (2.55) yields

)] . We will exploit the defi-

T od,/(t) 09, (1) T 0%,  0d,," q
- Ldt = - , dt 2.92
/0 |~ o (wiem) /0 uwn;},lim:l“ o o (292
T
< C./ (sup“S’(t)fS"(t),1/}>|q+sup‘A(<I>t/f<I>W”,1/1)|q (2.93)
0
+SUP | / (Iion((I)tr/aW/) - Iion(q)tr”vwn)’l/)dx |q ) dt -
Q
T oe, 0%, , 1/q
(/0 I ot ot ||(W1‘2(Q))*dt> (2.94)
T 1/2 T 1/2
<O.(/ sup]<S’(t)—S”(t),¢>|2dt) +C-(/ sup|A(¢>t,.’—q>t/’,¢)|2dt)
0 0

T / / " " q /q
$C- ([ (s I Lin(®, W) = Lin @1, W) a1 1o )"
We estimate the three terms on the right-hand side of (2.94) separately. For the first term, we get from (2.51)
’ 1" 2 ’ " 2 — —n 2
s [(S'(0) = 8", v) [ < C (sup| (1) = 1"@), ) |* +sup [ (V (8, =), M V) [*)

I+ HW1,2(Q) =1

— — 2
< (W = B @I 1) + I 1T =5 ey ) (2.05)

and with (2.49), we arrive at

2

sup | (87(t) = 5"(1), ) | < c(lll/(t)—l/’(t)ll? ))»«+\lk’(t)—IJ(t)H(Wl,Q(Q))*)=> (2.96)

W1’2(Q

([ sty (M@ - 1@ - (1@ - 120) ) o) Par)

2
< (I =1 W0,y o)) TV =2 Moo,y (o) ] ) (297)

For the second term, we obtain from Theorem 2.4., 2), and (2.87):

2 2
T Y e L R 1 A (299)

T 1/2
(/ sup ’ M((I)tr/ - (btrﬂ ’ 11[}) |2 dt) < C || (I)t'r/ - (I)M"” ||L2[( (299)
0

0,7), W2(@)]

2
< C(HIZ/ _Ii// ||iQ[(O,T), (WlQ(Q))*] + HIel _Ie// ||L2[(O,T), (WI'Z(Q))*] ) . (2100)

By Lemma 2.10., the integrand within the third term may be rewritten as follows:

H Iion((I)trlv W,) - Iion(q)trllv WI/) ||LQ(Q)

< H b ((q)tr/)Q + (bt’r‘l q)tr// + ((I)trI/)Q . (a + 1) ((I)tr/ + q)trll) + a) ((I)tr, . (I)tr”) HLq(Q) (2.101)

(@0 = 20" ) Wl pagqy + I (W = W) @4 [l paiq) = J1+ 2+ J5. (2.102)
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For Jy, we get with ¢ = 4/3
D= ([0 (@0 4 0 0 @0 (k1) (@ 4 2 4 0) (2 -0, ) (2103)
< (/ngq/2 (((I)tr/)z + @y’ 4+ (D4,")°
—(a+1) (Dy’ +Dy") +a)*? d:c)wq (/Q(%’ —®,” )3q)1/3q (2.104)
C(1+ ]’ () [0y + I @6 () a0y ) - 1 ®ar’ = @6 yyrazo (2.105)

due to the continuous imbedding W"?(€2) < L*(€). Further, using (2.72) and the boundedness of the norms
of I/ and 1./, J, may be estimated through

1/3q

Jy = (/Q(‘I)tr/—@tru)q(W’)qdm>l/q < (/52((1)”’_@”//)2d$>2/3q(/Q(W/)4dm> (2.106)

4/3 a3 \3/4
= ( | D, — @y ||L/2 () |l w’ HL/4(Q ) = | o, — @, ||L2(Q) |l w’ HL“(Q) <O Py’ — @y ||L2(Q) (2.107)

Finally, (2.70) allows to estimate .J3 through

1/q 2/3q 1/3
Jy = (/(W’—W”)q(@t/’)qczx) < (/(W’—W”)2daz) (/(@tr")‘ldx) ! (2.108)
Q Q Q
4/3 a3 \3/4
= (H W —w" HL/2(Q 3 A Q)) = W =W" 20 120" 2y < CIW =W 12(q) - (2.109)

The estimates (2.105), (2.107) and (2.109) together imply that
T 1ot " oypsi 4/3 3/4
( A (sup [ Lion(®er' s W) = Lion(®4, W) ||L4/3(Q) Iy ||L4(Q)) dt) (2.110)
T 4 4 2
<C- (/0 ((1+ 190’ () gy + 1 @ (1) 1ag0y) ™ 1 @6’ = @0 Il g (2.111)
/ 1 ! 1 4/3 3/4
+ [Pt — Pty 20y W =W HLZ(Q)) dt)

8/3 4/3

T
4 4
< C- (/0 (14120’ () ) + 1 @6 (8) s (y) wh2(Q)

r ’ 1 4/3 / 1 4/3 8/
+/0 Hq)tr — Dy ||W12(Q) dt+/0 ”W w ||L2 (@) ) '

With (2.69), (2.70), (2.80) and (2.86), we obtain

ey — @, || (2.112)

T Lo (&) W — I (P, " 4/3d 3/4
) (SUP || wn( tr s ) wn( w W )||L4/3(Q) : ||7/}||L4(Q)) t (2~113)

T 2/3 3/4
’ "2 / "2
<30 (/0 (I -1 22 [0y, (wrey) ] T — 1o 120,70, (wre)]) )

! " / "
< O Max (I =1 st gy (woge) ] 1 =2 a0,y (i) ] ) (2.114)
Summing up, we get from (2.97), (2.100) and (2.114)
8(I)tr/ acbtrll / "
- L <C-M ( I — 1 ., 2.11
H 8t at HL4/3[(O7T)7(W1*2(Q)) ] C ax || ||L2[(O,T),(W1’2(Q)) } ( 5)

2 2
HIe/ _Ieu HL?[(O,T),(WLQ(Q))*] ) ”Ii/ _Ii// HLZ[(O,T),(WL?(Q))*} ) HIe,_IeH ”LQ[(O,T),(WI*Z(Q))*] )
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and, considering (2.81), we arrive finally at

@, — @," | < O Max ( 11— 1" (2.116)

‘/111,41/3[(0771)7 (WI’Q(Q))*] LZI:(O,T),(WI,Z(Q))*} )

2 2
||I€/ _Iell ||L2[(O,T),(W1’2(Q))*:| I ||I’il _Ii// ||L2|:(O,T),(W1’2(Q))*] ) ||I€/ _Iell ||L2|:(0,T),(W1’2(Q))*} ) .

/I ||

e Step 7. Derivation of the estimate for || ®. — from the difference of the elliptic

£2[(0, 1), wh2(@)]
equations. Forming the difference of the equations

/ (wTMNth/ + VT (M; + M,) vq>e') dx = / (1/ + Ie’) Ydx and (2.117)
Q

Q

/ (VwTMNcbt/’ + VT (M; + M,) V<1>e”) de = / (1/’ + Ie”) b dz (2.118)
Q

)
Vi e WH(Q) with / Y(x)de =0,
)
which are valid for the pairs (@, ®.') and (®;,”, ®.”) for almost all t € [0, T'], we get
/ (VwTMN( @y’ — @, )+ VYOI (M; + M) V(0. — @) ) dz (2.119)
)

= /Q((J/ ~- L")+ (I - 16”) Ydz Vi e WH(Q) with /Qz/)(x) de =

Inserting ¢ = ®./(t) — ®.”(t) as a feasible test function (cf. Definition 2.2.), we obtain from Assumption
2.3., 2) and the Poincaré inequality

Cll 0. (1) = " () [Zyngy < / V(8. 8. ) M V(B — By ) da (2.120)
Q

+ /(Iz‘/ _ Ii”) ((I)e/ _ (I)e//) dz + /(Ie/ _ Ie//) ((I)e/ _ (be//) dr
Q Q

1 " / " " 2
< G 1M V0 = 0" oy + Z N VB = VO ) + 5 1O~ 1O ey
€6 1
+ 28 =0 [+ 5 I <t>—fe”<t> e ) +5|| o ey (2.121)
<= 1@ — @0 | +2 || o/ — " T 153/ (1) — 1" () [ -
X 2es tr tr llwt2Q) wl Z(Q) 2e6 i i (W1’2(Q))
€6 2 [S3rd 2
+ 5l B — . [[y, 2o T 5 || L/(t) - 1" (t) ||(W1,2(Q))* +5 D' — D" |y (q) - (2.122)

Fixing €5, €6, €7 > 0 in an appropriate way and normalizing the constant on the left-hand side, we arrive at

2 2
@/ (t) — @." (t) [lyr20y < C ( [ @4/ (t) — @4 (t) [l1.2 (0 (2.123)
2 2
IR = 1O 1] o) + 10 = L0 W ) ) =

/ "2 / "2
H¢€ 7(1)6 ||L2|:(0,T),W1’2(Q):| g C(”@t?" 7©t7‘ ||L2|:(O,T),W1’2(Q)]

2 2
+I L= 1" Koz co,m), (wraw) ]+ 12"~ 1" e[ 0,7y, (wre2) 7] ) ’

(2.124)

from which we get with (2.87) the estimate

" ”2

2 =@ a < € (I = 1 a0, 1y, (woaen) ]+ = LW (0,2, (wren) ] ) - (2:129)
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e Step 8. Conclusion of the proof. In order to confirm that the left-hand side in (2.81) can be replaced by
/ 1

H (I)t’r - (bt"‘ ||CO[[0,T],L2(Q):|
3 ! 1

09], p. 478, Subsection 5.3. The bound for || W' — W HCU[[O,T] 2@

NER 11], p. 21, Theorem 4.5., from (2.82) and (2.91). Finally, the estimates (2.38) and (2.39) take the

claimed form due to the continous imbedding L[ (0, T'), (WlQ(Q))*] — Lz[(O7 T), (W1’2(Q))*],

, we may simply repeat the arguments from [ BOURGAULT/COUDIERE/ PIERRE

is obtained with [ KuNiscH/WAG-

and the proof is complete. m

Remarks. 1) Considering the system (B)y with the FitzHugh-Nagumo instead of the Rogers-McCulloch
model, thus replacing the nonlinear coupling term ¢ w by w and setting b = 1 within the ionic current, the
preceding proof can be repeated with almost no alterations. The only difference concerns the estimation of

the term
/ (Iion(q)tr/7 W/) - Iion(q)tr”a W”) ) ((I)tr/ - (I)tr”) dz (2126)
Q

within (2.57).

2) Assume now that in (B)y the linearized Aliev-Panfilov model is specified. Then in the proof above, the
estimates for the gating equation in Steps 2 and 5 must be changed. Namely, the difference of the gating
equations for two weak solutions (®,’, ®.', W’) and (®,,”, ®.”, W") turns into

(5 (W@ =W 0),0) = —¢ [ (WO -W0) b (2.127)
ter(at) /Q(cpt/(t) ~®,"(t)) bde — ek /Q(q%,!(t)2 S8, (1)) dde Vo€ LA(Q).

Inserting now the feasible test function ¢ = W'(t) — W"(t), we obtain

(G (W0 =W (0) W0 W' 0) = —¢ [ (=) ds (2.128)

+51€(a+1)/

(@ — @, ) (W =W")dz —er / ((®4,)2 = (2,")?) (W =W )dz =
Q

Q

d /1
% <§|| W' —w" ||i2(9)) < €|| W' —w" ||i2(9)+g,‘ﬁ‘,(a+1) ‘(Dt7-/—¢)tT//| . ’WI—W”|CZZ‘ (2129)
Q

+m/|(¢>t,.’)2 — (@)W =W |dz =

Q
d
(W =" ) < (2e+er(at ) )W =W |Zag) +er(a+ D@0 = @0 I2q)  (2130)
1
+258/ ((I)trl + (I’trll)Q (¢tr/ — (I)tT//)QdJ? + — (WI - W//)2d.’E
Q 258 Q
< O (120" =@ 2y + | W =W [2(qy ) (2.131)
114 "4 1/2 ’ "2 1 ’ "2
+Css( Q(|(I)t'r "+ | @y, )dx) | @4 — By ||L4(Q)+278||W = W12

where the generalized Cauchy’s inequality with eg > 0 has been applied. Together with (2.69), (2.70) and
the imbedding W"?(Q) — L*(Q), we find

d 2 1 2 2
(I =W ey ) < (€ 5) (126 = 20" agay + 1 = W a0 ) (2.132)

2
+C€g || @trl — (ﬁt// HWl’z(Q)
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as a replacement of (2.77). In Step 5 above, the corresponding alterations will be applied.

Proof of Theorem 2.8. For any of the three ionic models, the existence of a weak solution (P, ®., W)
of (B)s is ensured by Theorem 2.5. In order to prove its uniqueness, Theorem 2.7. has to be applied to
Ii/ = Iiu = Il and [e/ = IeN = Ie. |

3. Higher regularity of weak solutions for the bidomain system.

a) Veneroni’s iterative procedure.

In order to prove a further regularity theorem for the weak solutions of (B)s3, we strengthen the assumptions
on the data. In particular, we will assume throughout this section that the sum of the excitations I; and I,
possesses a weak time derivative.

Assumptions 3.1. (Stronger assumptions on the data in (B); and (B)3)

1) Q C R® is a bounded domain with C""'-boundary.

2) M;, Mq: cl(Q) — R>® are symmetric, positive definite matriz functions with W (Q)-coefficients,
obeying uniform ellipticity conditions:

0< |17 <E™TMi(x) € < pa || €1° and 0 < [ €)7 S ETMe(2)E < p2 || €7 VEER® VaeQ  (3.1)

with py, pe > 0.

3) The initial values belong to the following spaces: ®y € W2’2(Q), Wy € L™(Q). Moreover, ®q satisfies the
compatibility condition described in [ VENERONI 09], p. 853, and p. 854, Remark 3.%7)

4) I, I. belong to the space LT[(O, T), LQ(Q)] with v > 4; the sum I; + I. belongs even to the Sobolev
space WY2[ (0, T), L*(Q)], and it holds that

/Q(Ii(a:,t)—&—le(x,t))dxzo (W) te (0, 00). (3.2)

Note that Assumption 3.1., k) implies Assumption 2.3., k) from Subsection 2.a), 1 < k < 4.

The following theorem is part of an iterative solution procedure for the bidomain system, which has been
presented in [ VENERONI 09]. In the present investigation, Veneroni’s result will be used in order to improve
the regularity of a given weak solution of (B)s.

Theorem 3.2. (Iterative solution of the bidomain system) 2®) Let Assumptions 3.1. hold. Further, let
a function d, € L2[(0, T), W1’2(Q)] be given, which is reqular enough to ensure that Iwn(zlgtr, W(&)tr))
belongs to L*[ (0, T'), L*(Q) |, q>1, where W (®,,) € C’O[[O7 T], LQ(Q)] is defined as the (weak or strong)

solution of the initial value problem

~ ow

Blogar S +G(@:r, W) = 0 () (@) € 2% (0,T), Wi(a,0)=Wolx) (V)€ Q. (3.3)

In contrast to the condition from [ BOURGAULT/COUDIERE/PIERRE 09], p. 469, Theorem 20, this condition can be
verified in a constructive way.

[VENERONI 09], p. 856 f., Proposition 3.1., together with p. 861.
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1) Then the initial-boundary value problem

(B)o.par 6;” + Lion(®p, W(D,)) — div (M; V®;) = I (V) (x,t) € Qx [0, T]; (3.4)
6;” F Lion (@, W(D,) + div (M. VD, ) = —I, (V) (2,8) €2 x [0, T]; (3.5)
WM VO, =0 V(x,t) €2 x[0,T]; (3.6)
WM, VO, =0 V(z,t)c0Qx[0,T]; (3.7)

Q)tr(l',O) = (I)z<x70) —Cbe(l',O) = (I)O(x) (V)CU € Q; /(I)e(xat) dr =0 (V)t € [0’ T] (38)
Q
possesses a uniquely determined solution (®;,®.) € LY[(0,T), WQ’Z(Q)] x L[(0,T), WZ’Q(Q)] with
Dy =@ — @, € WH[(0,T), L*(Q)] n LI (0, T), W**()]. (3.9)

2) The solutions ®;, ®. satisfy the estimates

H (b'b ||Lq I:(O,T),W2’2(Q)} + || ¢t7‘ ||W1’q|:(0,T),L2(Q)} < C ( || (I)O ||W2'2(Q) (310)
+ || IiOTL((I)“WW(q)tT)) ||Lq[(O,T),L2(Q)j| + H Ii ||L“|:(O,T),L2(Q)j| + || IZ +I€ ||W1'2[(0,T),L2(Q)] ) 7
19 a0,y wazcen] 1B (0,0 22y] < C (120 w22y (3.11)

+ [ Lion(®ir, W (@) | i+ L |

e[ (0,1), 29| + I Le ||L<I[(0,T),L2(Q ] wh2[(0,7),L2(@)] )

3) If ¢ = 2 then for a pair of solutions (@tr L0 W, (@, @ W) of (E)(Lgat and (E)O,pary corresponding
to the entries (®,, ., W') and (9., ", W"), we have the estimate

/ T 17/ 2
@0/ () — D0 (1) 720y < / [ Tion(® W (1)) = Lion(®,(9), W (9)) || 2y A Yt € [0, T]. (3.12)

Proof. Parts 1) and 2) of Theorem 3.1. are identical with [ VENERONI 09], p. 856 f., Proposition 3.1.,
except for the fact that Iion((i;tm W(étr)) is assumed to belong to Lq[(O, T), L2(Q) ], 1 < ¢q < r, instead
of L" [ (0,T), L2 Q) ] However, a closer inspection of the proof in [ VENERONI 09], pp. 858 — 861, reveals
that all arguments remain in virtue for the above assumed weaker regularity since the Wl’q—regularity of the

solution of (E)O,par depends on the regularity of

— Lion( ®u(t), W(®4,(1)) ) € LI(Q) (3.13)

only. Then the estimates in Part 2) and 3) follow from | VENERONI 09], p. 861, Theorem 3.1., together with
p. 860, (3.27), (3.28) and (3.30), in a completely analogous way. m

b) Higher regularity of weak solutions.

Imposing the Assumptions 3.1., the regularity of a given weak solution of (B)s can be considerably improved.

Theorem 3.3. (Higher regularity of weak solutions) Let the Assumptions 3.1. with r > 4 hold, and
specify within (B)g one of the models from Subsection 2.b). Assume that a triple (P4, Do, W) forms a weak
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solution of the bidomain system (B)2 on [0, T'] in correspondence to initial values ®¢ € W2’2(Q) and

Wo € L™(Q) where p=4. Then the functions possess the higher reqularity

®,. € W[ (0, T) @] n L0, T), w**(Q)] n C°(Qr); (3.14)
o, € L*[(0,T), L*(Q)] n L°[(0,T), W**(Q)]; (3.15)
wec[(0,T ) <] N [[0 T], L=(9Q)]. (3.16)

Consequently, (P4, P, W) forms even a strong solution of (B)g and (B);.

Corollary 3.4. (Higher regularity and uniqueness of weak solutions) Let the assumptions of Theo-
rem 3.83. hold. Besides Assumption 3.1., 4), let the inhomogeneities I; and I. belong even to the space
L>[(0,T), LQ(Q)]. Then the bidomain system (B)y possesses on [0, T] a uniquely determined weak
solution (P, @, W), which admits the regularity described by (3.14) — (3.16) and, consequently, forms a

uniquely determined strong solution of (B)o and (B)1 as well.

As pointed out e. g. in [COLLI FRANZONE/GUERRI/TENTONI 90], p. 159 f., the eigenvector bases of the
conductivity tensors M;, M. : cl(Q2) — R3*3, reflecting the direction of the muscle fibers within the heart
tissue, should be identical. Consequently, let us assume that the representations

el(x)T )\17(1') O O

M;(z) = [ ex(2)T 0 A2 () 0 (e1(z) ea(x) es(z)) Vaec(Q); (3.17)
es(x)T 0 0 Asi(z)
er(2)T ALe() 0 0

M. (z) = [ ex(2)T 0 Az.e(x) 0 (e1(z) e2(x) e3(z)) Vaec(Q) (3.18)
es(2)T 0 0 Aze()

hold. As a consequence, the boundary conditions as well as the compatibility condition for the initial datum

®y may be simplified in the following way:

Corollary 3.5. (Geometrical consequences of higher regularity) Let the assumptions of Theorem
3.3. hold. Assume further that the descriptions (3.17), (3.18) are valid together with

)\1’1'(.%) 0 0 )\1’6(1') 0 0
M;(z)n(x) = 0 A2 () 0 n(z), M(x)n(z) = 0 Ao.e() 0 n(z) (3.19)
0 0 )\371'(37) 0 0 )\376(.%‘)

Ve

while ey, eg, e3: cl(Q) — R? are continuous functions.

1) Then any weak solution of (B)s on [0, T] is a strong solution of (B)o and (B); where the boundary
conditions (1.4) — (1.5) and (2.4) — (2.5) can be replaced by

nT Ve, =0, nTVe, =0 V(r,t)€cdNx[0,T] and (3.20)
nt'Ve, =0, nTVd, =0 V(x,t)€dx][0,T], (3.21)
respectively.

2) The compatibility condition for the function ®y € WQ’Z(Q) from Assumption 3.1., 8) reduces to
nf Vo, =0 VaeoQ. (3.22)

The proofs of Theorem 3.3. and the Corollaries 3.4. and 3.5. will be given in the following subsection.
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Remark. By a slight modification of the full iteration procedure from [ VENERONI 09 |, the uniqueness of the
weak solutions of (B)z2 can be confirmed exclusively under the assumptions of Theorem 3.3. without reference
to Theorem 2.8. In the optimal control problems for the bidomain system, however, the intracellular excitation
I; is set zero for physiological reasons; consequently, Assumption 3.1., 4) implies I, € wh? [ (0,T7), L? () ],
which is continuously imbedded into CO[[O, T], LQ(Q)] c L™[(0,T), LQ(Q)] by [KuNIscH/WAGNER
11], p. 21, Theorem 4.5, and we arrive at the analytical situation of Corollary 3.4. from the outset.

¢) Proofs.
Before starting with the proof of Theorem 3.3., we establish the following two propositions.

Proposition 3.6. (Iterative definition of the entries for the bidomain system I) Under the as-
sumptions of Theorem 3.3., let a triple (O, ®o, W) € (CO[[O, T], LQ(Q)} N L2[(0, T), Wl’z(Q)] N

L4(QT)) X LQ[(O, T), W1’2(Q)] X CO[[O, T], LQ(Q)] be a weak solution of the bidomain system (B)a
on [0, T].

1) In the case of the Rogers-McCulloch and the FitzHugh-Nagumo model, the (weak or strong) solution
W of the initial value problem (E)o,gat from Theorem 3.2. belongs to the space Cl[((), T), LQ(Q)] N
CO[[O, T], Lz(Q)] and coincides with W .

2) In the case of the linearized Aliev-Panfilov model, the (weak or strong) solution W of the initial value
problem (E)O,gat from Theorem 3.2. belongs to the space Cl[(O, T), LI(Q)] N CO[[O, T], LQ(Q)] and
coincides with W.

Proof. 1) In the case of the Rogers-McCulloch model and the FitzHugh-Nagumo model, the (weak or strong)
solution of (B)g, 4q¢ is given through

t
W(z,t) = Wo(z)e =" + 6/@67”/ Oy (z,7) e dT, (3.23)
0

cf. [WARGA 72], p. 192, Theorem I1.4.6., and (2.71) above. Obviously, this function admits the claimed
regularity. Since (3.23) is the uniquely determined weak solution of (g)o,gat as well, the solution W of
(E)o, gat must agree with W, which is already known as a weak solution of (E)o’ gat- Consequently, W and W

agree even within the space C’l[(O, T), LQ(Q)] N C’O[[O7 T], LQ(Q)].
2) In the case of the linearized Aliev-Panfilov model, the (weak or strong) solution of (E)O,gat reads as

W(z,t) = Wo(z)e ' +erne /0 ((a +1) By, 7) — B2 (x, 7')) e dr, (3.24)

and the same implications are true except for the lower integrability of W (z,t)/dt with respect to z. m

Proposition 3.7. (Iterative definition of the entries for the bidomain system II) Let the assump-
tions of Theorem 3.3. hold. Consider a triple (O, ®o, W) € (CO ([0, T], L2(Q)] nL? [(0,T), W1’2(Q)} N
L4(QT)) X L2[(0, T), Wl’Q(Q)] X CO[[O, T), L2(Q)], which forms on [0, T] a weak solution of the
bidomain system (B)y with initial values ®o € W>(Q) and Wy € L™ (). Assume further that ®,, is regular

enough to ensure that Iion(fitr,W(EJtr)) belongs to Lq[((), T), LQ(Q)], q > 1. Then the solutions ®4,., O,
of (]A?;)oypar coincide with @, and ®, within the space L [(0,T), w3 (Q) ]

Proof. The assumptions about &)tr guarantee the applicability of Theorem 3.2., 1). Consequently, the system

(B)o,par admits the uniquely determined solutions
®;, d, € LI[(0,T), W*(Q)] with (3.25)
Dy = @ — @, € WH[(0,T), L*(Q)] n LI (0, T), W**()]. (3.26)
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Due to Proposition 3.6., we have W (®,,) = W, and the difference of (1.1) — (1.2), (1.4) — (1.6) and (3.4) —
(3.8) reads as

0

a((ftrf@t,ﬂ)fdiv(MiV(EDif@i)) =0 (V)(z,t)eQx][0,T]; (3.27)
%(5”—@”)+div(MeV(<T>ef<I>e)) =0 (V)(z,t)eQx[0,T]; (3.28)
nTM; V(B —®;) =0 and nTM. V(P —®,) = 0¥ (x,t) € Q x [0, T]; (3.29)
By(2,0) — Dyp(2,0) = 0 (V)z € Q; A(%e(x,t)—¢e(x,t))dx =0 (Wtelo,T]. (3.30)

Obviously, this system matches the assumptions of Theorem 3.2., 1) with I;,,, (¢, w) = 0; consequently, the
zero solution (®; — ®;) = (¥, — ®,) =0 € L* [(0,T), Wl’Q(Q)] is uniquely determined, and the functions
®;,. and Dy, as well as P, and P, are identical. m

Proof of Theorem 3.3. Throughout the proof, C' denotes a generical positive constant, which may ap-
propriately change from line to line. C' will never depend on the data ®q, Wy, I; and I, but possibly on €
and p = 4. Within (B)g, (B); and (B)2, the Rogers-McCulloch model is specified. In order to apply Theo-
rem 3.2. and Propositions 3.6. and 3.7., we rename the given weak solution as (;I;tr, 56, W) and study the

outcomes W = W(E)tr) and (P, @) of Veneroni’s procedure.

e Step 1. The function ®,,. belongs even to the space L4[(O, T), LG(Q)}. We start with the following
estimate, which is taken from the proof of Theorem 2.6. in [NAGAIAH/KUNISCH/PLANK 11], p. 158, (33):

= 2 2 2
| Ber(®) 2y < € (14190 320 + | Wo l32(0 (3.31)

t t
2 2 2 2
IO o + 1O @+ [ T graey) a7+ [ 1O yra ) d)

Due to Assumption 3.1., 4), the following may be derived from (3.31):

3 4 4 4 4 4
[ ®er(t) 12y < C (1 [ o llr2) T [ Wollpzq) + 1 1:(E) [[12(q) + [ 1e(t) [[12(q) (3.32)

4 4
+||Ii HLQI:(OVT),(ng(Q))*] + ||Ie ||L2[(O,T),(W112(Q))*j| ) —

= 4 4 4 4
[ ®@erllzs[ 0,7y, wr2@)] < CT (1+ 190 lI20) + 1 Wo ll 2y + 11 1 ||L4[(07T)7L2(Q)] (3.33)

4

+||IC ||L4[(O,T),L2(Q)]

4 4
L I N

0.7, (Wh@)"] <0,T>,(W1~2<m)*}>'

Since the imbedding W"?(€) < L°(Q) is continuous, @4, is contained in the space L* [(0,T), L%(Q) ]

e Step 2. The function Lipn(®yy, W)= Lion(®yr, W) belongs to the space L3 [(0,T), L*(Q) B 29) By (2.28),

we may write

Note that, from [BoURGAULT/COUDIERE/PIERRE 09], p. 471, Lemma 25, we only know that Iion@tr(t),w(t))
belongs to L*?(€) for almost all ¢ € (0, T').
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| @0 W) [0y = [ (Lon@r(0). W (2)))

Q
t
- /(b%tr(itr—a) (&)trf1)+e*€tW0<5tr+€ne*5t&)t,ﬁ/ &)tr(z,ﬁ)egﬁdﬂfdx (3.34)
Q . B B Ot R ,
<c/(q>§r(q>§r a?) (32 1 1) + | Wy |2 32 ﬁ@i(/ |Bue0)|-|e? |d9) Vdr  (3.35)
Q 0
< o(/\%tr\ﬁdﬂ/\étr\‘*dﬂ/ﬁ»”mx (3.36)
Q Q Q
~ |9 ~ T _ 2
+/|WO~<I>W| dx+ezET/<I>fr~(/ |<I>tr(x,19)|d19) dx) —
Q Q 0
| o @un®). W) 350y < O ([ |0 das [ [0 ["dos [ |8 (3.37)
Q Q Q
~ ~ T 2 2/3
+/|Wo-q>tr|2dx+/<1>$,(/ | B, 9) [d9) " da )
Q Q 0
< C(/‘5tr|6dx)2/3+0(1+/|§>tr|4d$+/|&>tr|2dx (3.38)
Q Q Q
~ ~ ro_ 2 2/3
|W0-<I’tr|2dx+/<1>fr~</ | Bin(w,9) [d9) " da )
Q Q 0
< C(/|&>tr|6dx>2/3+6’(1+/|§>W|4dx+/|<f>w|2dx (3.39)
Q Q Q
~ 9 ~ T 2
+/]W0~<I>tr\ dx—&—/(bfr-(/ | ®ur(w,0) i) dz) =
Q Q 0
~ 4/3 T ~ 4/3
H]ion((bt'm )HL“/S[(O T), LZ(Q)] - /0 Hlion((btr(t) ()) ||L2 Q) dt (340)
~ ~ 4 ~ 2
< C(1+ H‘I)tr||L4[(o ry,5@)] TI®wllca[ o, 1), o] + 11 Perllz[ 0,7y, 22()] - (3.41)
FIWo oy 1850, o)) € [ [ Bt ([ 1Bt av) ara
Due to the continuous imbeddings L*[(0,T), L°(Q)] — L'Qr) = L'[Q,L%0,T)] — L'[Q,

L*(0, 7)],%9 all norms within the brackets on the right-hand side of (3.41) are finite. The last term

can be estimated by

T
/ /@2 (z,t) /|<I>trx19 |d19 S dwdt = // O (z,t)dt - (/ |<5tr(x,19)|d19)2d:17 (3.42)
0

2 ~ 2
= /Q [ (I)tr(x) ||L2(0,T) |l (I)tr(m) ||L1(07T) dr < /Q | (I)tr(x) HLQ(o,T) || Pep() ||L2(0,T) dzx (3.43)

~ 4
< H‘I)trHLél[Q,L?(o,T)} ) (3.44)
which is finite as well, and the claim has been proved.

e Step 3. The functions ZI;t,« =, ;136 =®, and W=Ww belong to the spaces

o, e WA (0, T), L2 Q)] n LY*[(0,T), W(Q)] N L*(Qr), 4< 5 < o0; (3.45)
o, e L*[[0,T), L*(Q)] n L**[(0,T), W>*(Q)]; (3.46)
Wec'[(0,T), L=®)] nc’[[0,T], L=(Q)]. (3.47)

30) For the last imbedding, cf. [ KUNISCH/WAGNER 11], p. 21, Proposition 4.3.
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In view of Step 2, we may apply Proposition 3.6., Theorem 3.2. and Prop051t10n 3.7. to the triple (<I>tr, <I>e,
) Consequently, the according solution (@, <I>€,W) of ( )0,gat and ( )o,par coincides with (<I>tr,<I>E,W)
for almost all ¢t € (0, T') in the first and second component, and for all t € [0, T'] for the third component.
This proves the claimed regularity except for the relation ®;. € L*(2r), which will be derived from the
Aubin-Dubinskij-Lions lemmas: 32 Choosing Xo = W>?(Q), X = €°(Q) and X; = L*(Q2), we find that
df
dt
belongs to L°[(0,T), C°(Q)] ¢ L°(Qr) for all 1 < s < oco. Hereby the claimed regularity of W with

respect to the spatial variables is confirmed as well.

o, € {fel[(0,T), W Q)] | = eL[(0,T), L*(Q)]} (3.48)

e Step 4. The function Iion(zl;tr, W) = Iion(&)try W) belongs even to the space L6[(07 T), L2(Q)]. We

estimate

HIian(&)tr(t)?W(t)) ||i6(52) = /Q(Iion(&)tr(t)vw(t)))6dx

t
/(bciw(cftﬁa) (B — 1) + et WOEJWJreHe’EtCT)W/ &y (2, 9) eeﬁdﬁ)ﬁdx (3.49)
t - ‘ 6
c/ (304 a®) (354 1) + | W [ B $§(/ | Bue,0) |- |7 |d9) ) de (3.50)
0
/‘(I)tr‘lgdx—f—/]%”]udx—&—/];I;tr‘ﬁdm—&—/]Wo‘ﬁ-];I;tr}ﬁd:v (3.51)
Q Q Q Q
~ o 6
+/|<Dtr|6o</‘@tr(z,0)|~|e€ﬁ|dﬁ) ) —
Q 0
~ — 6 T ~ —~ 6
HIion(q)tr(t)»W(t)) ||LG[(O,T),L6(SZ)] :/0 Hlion((btr(t)>W(t)) HLG(Q) dt (352)
~ 18 ~ 12 ~ 6
<0 (1 T Perll sy + | Per 12y + [ Por Lo (3.53)

~ 6 T ~ T _ 6
W ||§w(m.||q>ﬁ\|L6mT))+c/ /|<1>tr<x,t)‘6.(/ | Bue. )| d0)” daat
0 Q 0

From Step 3 we know that all norms within the brackets on the right-hand side of (3.53) are finite. Analogously
0 (3.42) — (3.44), the last term will be estimated through

//‘(I)tra:t /‘@trxﬁ‘dﬁ) da dt = //Tyétr(x,t)\ﬁdt. /T\étr(x,ﬁ)\dﬁ)de (3.54)

= / H‘I)tr )”LG 0,7) I ‘I)tr( )HL (o, T)dx = C/ H‘I)tr )”LG 0,7) I ‘I)tr( )HLG(O T)dx (3.55)
= H‘I)trHLH[Q,LG(o,T)}a (3.56)

which is by (3.45) finite as well. Now the claim follows from the continuous imbedding L° [(0,T), L*(9) ] —
L°[(0,T), L°(Q)].

e Step 5. The functions Cf)tr =&, 56 =®, and W=Ww belong even to the spaces

@, e WH[(0,T), L2 ()] n L°[(0,T), W**(Q)] n C°(Qr); (3.57)
®, € L*[[0,T), L] nL'[(0,T), W**(Q)]; (3.58)
wec'[(0,T), L)) nc’[[0,T], L=(Q)]. (3.59)

31 [DUBINSKLJ 65], p. 612, Teorema 1, and p. 615, Teorema 2; cf. also [ SHOWALTER 97], p. 106, Proposition 1.3.
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In view of Step 4, Proposition 3.6., Theorem 3.2. and Proposition 3.7. may be applied again to the triple
(&)tr, %e, W), and the new solution (®y,, ., W) of (E)O,gat and (E)omm coincides again with the former one.

Using interpolation space arguments, the claim ®;,. € C’O(QT) follows from

o, € {feL’[(0,T) ]| eLﬁ[ 0,7), L*Q)]} (3.60)
by repeating the arguments from [VENERONI 09], p. 864 f.

e Step 6. Conclusion of the proof. Let us finally note that the regularity (3.14) — (3.16) of a weak solution
(P4, @, W) of (B)2 allows for partial integration in all terms where Vi occurs. At the same time, it is
consistent with Definition 2.1. Consequently, (P4, ®., W) forms a strong solution of (B); and (B)o as well,
and the proof of Theorem 3.3. is complete. m

Remarks. 1) If the Rogers-McCulloch model in (B); is replaced by the FitzZHugh-Nagumo model then the

proof of Theorem 3.3. runs as above with only minor alterations in Steps 2 and 4.

2) In the case of the linearized Aliev-Panfilov model, the relation ®,, € L* [(0,T), LG(Q)} is confirmed as
above. However, Step 2 of the preceding proof must be replaced by the following calculations, which show
again that the function Ii(m(&)m W)= Ii(m(&)m W) belongs to the space L3 [ (0,T7), L2 Q) }:

i@t W) 2@y = [ (Fen@ute). W10 ) do (3.61)
= / (b&)tr(&)tr —a) (P — 1) 4 e Wy Oy 4 c et By, /Ot ( (a+1) Dy, ) — 2 (x, 19)) e dﬂ)2 dz
c/ (@2 4 %) (B2 4+ 1) + | W 2 2 (3.62)

+52/€2<I>%T(/0t(|(a+1)<f>tr(17,19)|+|<A13tr(:c,19)|2) : |e“9|d19)2)dm

C(/|<T>tr|6dx+/‘<T>tr|4dx+/|<f>tr|2dx+/ | Wo - &y | dee (3.63)
Q Q Q Q
~ T ~ ~ 2
—l—eQET/(I)fT-(/ ([@+1)@u(@,0) |+ | (e, 9) [ )9 ) do) =
Q 0
| (@0 W) [0y < O ([ | B0 dat [ [80["dos [ |8 [ (3.64)
Q Q Q

~ ~ T . - 2 2/3
+/|WO.<I>tT|2dx+/<I>§T.(/ <|(a+1)<I>tr(x,q9)|+‘(I>tr(x,19)|2>d19) d;v)
Q Q 0

C(/‘E)tr|6dx)2/3+0(1+/|<i>tr|4dx+/|<i>tr|2d:c (3.65)
Q Q Q
~ |2 ~ T ~ ~ 9 2 2/3
+/|W0.q>tr| d:c—i—/(l)fr.(/ <|(a—i—l)q)tr(x,ﬂ)|+|<I>t,«(a?,19)| )dﬁ) dz)
Q Q 0
< C(/|§>tr|6dx>2/3+0(1+/|<T>tr|4dm+/|§>tr|2dx (3.66)
Q Q Q

—|—/Q’Wo-zf’tr‘2dx+/ng>fr-(/OT(’(CL+1)5”($,19)‘-&-’;Iv)tr(x,z?)lz)dﬁfdac) —

~ 4/3 T ~ — 4/3
HIion((I)tTa ) HL4/3[(O T), L2(Q)] - /0 HIzon((I)tr(t),W(t)) ||L2(Q) dt

~ ~ 4 ~ 2
< C(1+ H‘I’tr||L4[(o,T),L6(Q)] + H‘I’tr||L4[(o,T),L4(Q)] + ||(I)t7"HL2[(0,T),L2(Q)] (3.67)

2 ~ 2
1 Wo ey 1 8ur 2 [ (0,7, 2] )
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+ C/OT/Q;I;?T(JJJ)'(/OT<|(G+1)‘$tr($,ﬂ)’+|&)tr(.r,l9)|2)d19)2dxdt_

The finiteness of the norms within the brackets on the right-hand side of (3.67) is confirmed as in the proof
above. For the last term, we get the estimate

/ /q>2 (2, 1) / (1@ +1) Bu(w,0) | + | Bpplw,9) | ) a9 ) dw
T . 2
// &2 (x,t) dt - / | (a+1) By (z,9) {d19+/ @fT(x,ﬂ)dﬂ) dx (3.68)
0
/H(I)tr ||L2(0 T) (”q)tr HL (o, T)+|| @tr( )||L2(0,T))d$ (3~69)
~ 2 ~ 4
< C/Q”(I)t?”(x)HLZ(O,T)'(” P4p(2) IILz(o,T)+H<I>tr(x)|\L2(o,T))dx (3.70)

6
LG[Q,L2(07T)])~ (3.71)

~ 4 ~
< O (I18ulla[a, 20.79] + 1 Bor|

As in Step 2 in the proof above, we see that the first member on the right-hand side is finite. Due to
[ KuNiscH/WAGNER 11], p. 21, Proposition 4.3., the imbeddings L* [(0,T), LG(Q)] — L° [, LY (0, T)]
— L° [ Q, L2( 0,T) ] are continuous, and the second member is finite as well. Step 4 is subjected to analogous
alterations.

Proof of Corollary 3.4. Under the assumptions of the Corollary, (B)2 possesses a uniquely determined
weak solution (®4, @, W) on [0, T'] by Theorem 2.8. By Theorem 3.3., this solution admits the regularity
described in (3.14) — (3.16) and is, in fact, a strong solution of (B)y and (B);. m

Proof of Corollary 3.5. 1) By Theorem 3.3., any weak solution of (B)y is in fact a strong solution
of (B)y and (B); with ®,, ®&. € L"[(0,T), W>*(Q)] at least. By Assumption 3.1., 1), the bound-
ary of Q is Cl’l, and by Assumption 3.1., 2), the entries of M; and M, are Lipschitz continuous. Since
the eigenvalues Mg ;(-) and Ape(-), 1 < k < 3, depend Lipschitz-continuously on the matrix elements
(cf. [SCHABACK/WENDLAND 05], p. 270, Corollary 15.4.), the functions are continuous on cl (€2). Now the
assertion follows from [ BOURGAULT/COUDIERE/PIERRE 09], p. 462, Lemma 1.

2) Under the assumptions above the compatibility condition for ®; reduces to nT M, V&, = 0 on 9Q after
[ VENERONI 09 ], p. 854, Remark 3. By Part 1, this condition may be further reduced to the claimed form. m
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