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Valley-ridge-inflection point

e Valley-ridge-inflection points (VRI) of a potential energy surface (PES) may have

a strong relation to the occurence of bifurcations along chemical reaction paths.

e The calculation of symmetric VRI points has been alredy reported:

[W.Quapp et al., TCA 100 (1998) 285-299].

e We calculate special asymmetric VRI points which are placed on gradient extremals

(GE). Following a GE opens the possibility to find the VRI point on it.

e The method is based on a mathematical connection between the following of a

reduced gradient (RGF) and the calculation of GEs.

e The tangent search method to follow a GE to the smallest eigenvalue [W.Quapp et
al., TCA 105 (2000) 145-155] is extended to follow also GEs to higher eigenvalues
in order to find a VRI point.

e The new method needs gradient and second derivatives of the PES only.



1 Why it is difficult to find a ‘lop-sided’ VRI point?

It is a common assumption that a transition state of a chemical reaction connects two
minima of the PES. However, this simple definition does not exclude more complex
courses of reactions passing additional saddle points between reactant and product. A
sample PES can be described by a valley descending from the higher energy saddle
point leading into another (‘orthogonal’) valley:
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We use p=2, 1.75, 1, and 0.5 to generate a sequence of ‘orthogonal’ valleys.

Figure 1 starts with the symmetric case, u = 2. Two saddle points with orthogonal
valleys are shown. An IRC leads from SP; to SP5. The IRC here coincides with a GE.
Note that three minima of the surface exist outside the Figure where the minimum
above left is considered as reactant, and the two other minima shall represent the two
products.

Near SP,, the IRC leads down along a ridge. The point (0,0) where the first valley
ends, and meets the ridge, is the valley-ridge inflection point.

Definition 1 A VRI point is that point where, orthogonally to the gradient, at least
one main curvature of the PES becomes zero. This has two conditions:

(i) one eigenvalue of the Hessian must be zero, and

(i1) the gradient is orthogonal to the corresponding zero-eigenvector.

VRI points in the narrow sense of definition 1 are given independently of a reaction
path definition. The VRI point is a bifurcation point, from which reaction paths may
lead to one of two product minima. However, the IRC does not follow the reaction path
branching. Both, IRC and GE do not reflect that there are two valleys besides the ridge
leading to the two product minima. If (and only if) the symmetry is enforced during
the calculation, the IRC would be the method of choice to calculate the symmetric VRI
point: by taking an additional test of the eigenvalues along the path. We stop if we

find a zero eigenvalue belonging to an orthogonal eigenvector.



The reaction path of Figure 1 splits into two branches complicating the identification
of the reaction path model. The IRC leads from SP; to SP, and splits orthogonally
into two branches to the two minima. This combined, ‘cornered’ pathway is not the
‘shortest’ one.  But in Figure 1, also a special RGF curve is included. One branch
of the RGF also coincides with the TRC from SP;. At every point on this curve, the
gradient of the PES has the same direction (-1,1). The RGF curve has a bifurcation
point at the VRI point and the bifurcating branches reflect the symmetry break of the
PES. One may consider the RGF curve as a model of a reaction path. Again, we have
the problem of a ‘cornered’ reaction path model. Nevertheless, this pathway is ‘shorter’

than the IRC from SP; to minimum via the SPs.

Figure 2 shows a slightly disturbed symmetry of the surface (1) using parameter
u = 1.75. The IRC directly leads from SP; to the left hand deeper valley below, but
the GE further follows the crest of the ridge to connect the two saddle points. The VRI
point again is at (0,0) on the GE; it is not on the IRC from SP;.

A question emerges: is there a point in Figure 2 where the steepest descent meets a
direction with zero curvature of the PES being orthogonal to the gradient? The answer
is: yes, it happens at the point where the IRC meets the border of the ridge region.
That border is the thin dashed line defined by

g’ Ag=0 (2)

where g is the gradient of E, and A is the adjoint matrix to the Hessian, H. A is
defined as ((—1)""m, ;)T where m;; is the minor of H obtained by deletion of the "
row and the j* column from H, and taking the determinant. At the border, of course,
a valley-ridge transition occurs.

Definition 2: A wvalley-ridge transition point on the IRC s the first intersection of
the IRC with the manifold of solutions of eq.(2).

There, the gradient is not orthogonal to one of the eigenvectors of the PES, in the
general case, and both of the two eigenvalues are not zero. The zero curvature of the
PES along the level line comes from a suitable linear combination of the two eigenvalues.
The points on that border do not fulfill the narrow definition 1 of the VRI point, in the

general case.



In Fig.2 we include couples of eigenvectors of the PES to be able to compare the
gradient and the eigenvectors of the Hessian. Along the IRC, there does not exist a
VRI point with the definition 1. But the IRC goes through a region of the ridge. Due
to this fact, one has to conclude that there is a valley-ridge transition with definition
2. Understanding the IRC from SP; to be the reaction path then there is no reaction
path bifurcation at the valley-ridge transition.

The special RGF curve to the gradient direction (-p,2) with 4=1.75 is also included
in Figure 2. It is that curve which here has a bifurcation point at the VRI point, and

which may serve as a reaction path model alternately to the IRC.

Figure 3 shows a further extension of eq.(1) to the more asymmetric lop-sided VRI
case with 4 = 1. Again, the VRI point is at (0,0) on the GE, which again connects
SP; and SP,. The GE curve carries the valley-ridge inflection. However, the IRC early
deviates from this GE by going downhill the slope to the deeper minimum.

The symmetry is so strongly disturbed that the IRC does not meet the ridge region.
However, there is a ‘remainder’ of a valley-ridge transition near the VRI point. We
show two steepest descent lines (‘meta-IRCs’) which include this region (bullet lines).
They come from a valley region with convex behavior of the PES and they pass the
ridge region with concave behavior.

Included in Fig.3 is again the border (2) between valley and ridge of the PES (dotted
lines). A curve like the GE from SP; over VRI to SPy usually is assumed to be not a
‘reaction path’ model because steepest descent lines from above intersect the GE under
large crossing angles. However, a dynamically favored non-steepest-descent path from
SP; may directly find the second minimum at the right hand side of Figure 3.

The special RGF curve with constant gradient direction (-y,2) with p=1 is included
in Fig.3. This curve has a bifurcation point at the VRI point and also passes the SP,.

It may serve as a reaction path model.



Figure 4 refers to the case of eq.(1) with 4 = 0.5. It is a further extension of
the asymmetry of the PES. The qualitative description is equal to that of Figure 3.
However, The GE between the downward valley of SP; and the uphill crest of SP,
shows two turning points (TP). So, the structure of the GE becomes more complicate.

TP; marks the end of the valley of SP; where TPy marks the end of the ridge of
SP,. The VRI point is only a point of the border between the ridge above and the
valley below. But also in this case there is the VRI point (0,0) on the GE. We conclude
that there is a border between the steepest descent valley through SP; and the steepest
ascent ridge through SP,. The existence of the TP; forms a qualitative important valley
characterization. The steepest descent , as well as a family of RGF curves through SP;
estimate the reaction channel to the minimum below. This family of RGF curves is
bounded by the special RGF curve to the constant gradient search direction (-x,2) with
#=0.5. It is the curve which has a bifurcation point at the VRI point. It may serve as
a reaction path model.

It is plausible that the IRC from SP; in Figures 2 to 4 does not find the VRI point.
However, there is in every case a special RGF curve which leads to the VRI point.
This curve could be obtained, in our case, by trial and error. However, in more than 2
dimensions, there is no straight-forward method to find the special RGF curve which
bifurcates at a lop-sided VRI point.

The only direct way is to follow the GE. A strategy to follow a GE is already
given by Sun and Ruedenberg (1993) [Gradient extremals and steepest descent lines on
potential energy surfaces| J Chem Phys 98: 9707-9714; but the method needs some

third derivatives of the PES. This will be avoided in the procedure of section 5.
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FIGURE 1.

Equipotential lines of model potential energy surface (1) with u=2. GEs are dotted
thick curves, RGFs are bold dashes. (The diagonal line is GE, RGF, as well as IRC.)
The valley-ridge-inflection point (VRI) is at (0, 0).
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FIGURE 2.
Equipotential lines of 2D model PES (1) with u=1.75. The IRC from SP; is the line

with dots. GEs are dotted thick curves, RGFs are bold dashes. Pairs of eigenvectors of
the Hessian are shown at a grit of points. Thin dashed lines are the border (2) between
valley and ridge of the PES.



2 Following the Projected Gradient (RGF)

We start at the solution of
VE(x)=0, xe€ R", (3)

a stationary point of E. By g(x):=VE(x) we denote the gradient vector of E. We
choose a search direction r being a unit column vector and define a projector, P, by
the dyadic product

P,:=1I,—rrt (4)

using the n-dimensional unit matrix I,,. The projector realizes P,r = 0. It is a
constant matrix of rank (n-1). If there is a point x where the gradient g(x) fulfills the

system of projector equations

P, g(x) =0 (5)

then this gradient is named the reduced gradient with respect to the direction r.

Solutions of the eq.(5) connect stationary points which differ in their index by one,
if no bifurcation point is crossed. We numerically follow the curve (5) by tangent
continuation. We use a predictor-corrector method. The tangent to curve (5), x'(t), is

obtained by the derivative to the curve parameter

d dg(x(t))

0 = =[P, g(x(t)] = P, "B = P H(x(1) X(1) (6)

In general, the search direction, r, and the tangent, x'(¢), to the RGF curve with re-
spect to r are different. The predictor-corrector method of RGF is the predictor step
along the tangent x'(t), and Newton-Raphson steps of the corrector to search (usually
orthogonal to this direction) a solution of curve (5). The simplicity of RGF is based on

the constance of the P, matrix which is intrinsically used in eq.(6).

Like steepest descent curves, also RGF curves form a dense family of curves in the

coordinate space.



3 Gradient Extremal (GE)

Be g(x) # 0, and we assume to be on a ‘valley ground’ of the PES. A point showing the
gentlest ascent of the valley is defined by the condition that the norm of the gradient
forms a minimum taken along an equi-subsurface, L. := {x|E(x) = ¢} where ¢
is constant, i.e. in all directions perpendicular to the gradient. The measure for the

ascent of the PES, F(x), is the norm of the gradient vector

o) = 5 g ©

The implicit condition E(x) = ¢ may be fulfilled by the sub-hypersurface x(u, ¢), where
u may be an (n-1)-dimensional parameter. We treat the parametric optimization prob-
lem to minimize o(x) subject to x € L,

o(x) —» Min | (8)

x(+0)

where the nonlinear constraint is E(x) = c¢. Thus, the function to optimize and the
constraint are developed from the PES itself. We are interested in following a path of
local minima as the parameter increases (if we do an ascent on the surface) or decreases

(if we go downhill). Using the normalized gradient
w(u,c) := g(x(u,c)/|lgx(u,0))|| and Py =1—w(u,c) w(u,c)", (9)
the requirement for an extremal value of ¢ is expressed by
Pyu,eV o(x(u,c)) = 0, with c¢= constant . (10)

Because of V o(x) = H(x) g(x), and setting A := wT Hw for the Rayleigh quotient,

it results in the basic eigenvector relation for a gradient extremal

H(x) g(x) = A(x)g(x) (11)




FIGURE 3.
Equipotential lines of model PES (1) with p=1. The IRC from SP; is the line with

dots, and two further steepest descent lines are given by dots. They go from valley to
ridge: the thin dashed lines are the border (2) between valley and ridge of the PES.



FIGURE 4.
Equipotential lines of model PES (1) with x=0.5. A family of RGF curves (bold dashes)
is additionally shown where corresponding branches lead from SP; to MIN. TPs are
turning points of the GE from SP; to VRI to SP,.



3.1 Relation between GE and RGF

A point x where the tangent of an RGF curve through this point is parallel to the
gradient belongs to a gradient extremal.

The proof is easy. If eq,...e, are the eigenvectors of H with eigenvalues Ai,.., A\,
then they are also the eigenvectors of the adjoint matrix, A, but with the eigenvalues
pi=I1;2; Aj. This is due to the equation H e; = A; e; , and, by multiplication with

A, we get
AH e, = Det(H) e, = AZ A e; , with Det(H) = H )‘j . (12)

The gradient is eigenvector of H and also of A on a GE. RGFs are also solutions of

the differential equation of Branin by

dx

o =x(1) = £AX(1)) g(x(t)) - (13)

This gives the proof.

3.2 Relation between GE and VRI

The definition of a GE is that the gradient is itself an eigenvector of the Hessian. It is
clear by definition 1 that, if another eigenvector becomes a zero eigenvector, the point
of the GE where this happens is a VRI point. Walking along a GE from a convex to a
concave region, where an orthogonal eigenvalue has to change its sign, must lead to a
VRI point.

Vice versa, if a GE intersects the convezity border (2) then it meets a VRI point.
There the gradient is eigenvector of H with eigenvalue A;, and the gradient also is
eigenvector of A with eigenvalue p=[[;_,\; = 0. To fulfill eq. (2), one of the Aj,
j = 2,...,n has to be zero, the corresponding eigenvector orthogonal to the gradient is

the zero eigenvector.



4 Following the Tangent of the Previous Predictor Step

We change the projector of RGF after every predictor step: the tangent direction of
the previous curve point, from eq.(6), iteratively becomes the search direction used in
the projector. The procedure is named the TAngent Search Concept (TASC).
(The task is: find the valley floor line!) But the calculations of the predictor-corrector
method of the former RGF were continued to do.
TASC step:
Assume we are at x; with g(xx)/|/g(xx)|| = rx, where ry is RGF search direction.
(i) Solve former eq.(6):

P, H(xx) X'y =0, (14)

to get the tangent direction t(xy) = x'x/||x'k|| for the predictor step to an RGF curve
with respect to ry, and do the step to x; & spt(x;). The s is a step length.
(ii) Change the search direction to rg.; = X'x/||x'k|| and compute Py, to solve the

modified equation
Prii1 8(x) =0 (15)

(instead of P, g(x) =0 ) by Newton-Raphson steps Ax*
(Prpp H(X))AX = P 1g(x), X =x'+Ax', i=0,1,., x"=x, . (16)

If eq.(15) is approximately fulfilled then use the solution as new point xx,1. The point
is situated at an RGF curve with respect to direction ry ;. The key idea is that like in
the former derivation of (6) we have now also assumed a ‘constant’ Pys(;) matrix, in the
current step. This is here an approximation, but it works self-consistent. In the limit,
this numerical procedure leads to the valley GE. The approximation of a ‘constant’

P, (t) matrix allows us to avoid third derivatives of the PES.



5 Approximative Search for GEs to higher eigenvalues

The TASC method uses the property of the valley floor: the GE of the floor and a swath
of RGF curves along the valley are nearly parallel. It is possible to calculate the floor
GE by using an RGF curve to tangent direction t. That property does not generally
hold for higher GEs. RGF curves may intersect the GE to a higher eigenvalue under a
large angle, in the limit up to 90°.

On the GE, there is the gradient g an eigenvector e; of the Hessian. We search for

a curve point where it is

Pei g(X) = 0 (17)

The equation is trivially fulfilled on the GE, and it is used for the corrector step. After
the prediction of a point near the GE, we start with the e; of that point and use the
corrector for eq. (17) to get point x;. Next we iteratively have to calculate the e; at a
solution point xi, kK = 1,2, ... and repeat the corrector for eq. (17) up to convergence.

Locally, at points near the GE, the method works.

The tangent of an RGF curve to the eigenvector e; cannot be used to get the predictor
step, as it is possible with TASC or RGF itself, because the tangent of that curve usually
is not near the tangent of the GE, if the GE follows a higher eigenvalue. A way out is
a very simple predictor step using the secant step of the two previous points, x; and
Xy _1, of the GE:

d=x; —x; 1, and =Xy =%x,+d. (18)

The method is very cheap and works well. Note that we do not economize derivations of
the gradient, because in order to solve eq. (17) by Newton-Raphson needs again second

derivatives, or updates of the Hessian, like in RGF or TASC.



6 Conclusions and Perspectives

The IRC is the most used model of the reaction path . This is due to the following
properties:

(i) simplicity,

(ii) computational economy,

(iii) reproducibility, and

(iv) conceptually free of error.

The simplicity (i) of the IRC is evident. For point (ii), there are sometimes convergence
problems near the minimum on a flat valley floor, because the IRC shows an affinity
to zigzagging, and (iii) needs a careful definition of the coordinate system. If there
is a continuous valley from saddle point to minimum (convex isopotential hypersur-
faces with respect to the minimum) the IRC may best serve as a reaction path model.
However, in case of the existence of concave VRI regions along the reaction progress,
point (iv) is generally not fulfilled. One has to look for other reaction path models or

modifications which may bifurcate at the VRI point.

The new model should include the RGF approach, as well as the valley extremals, spe-
cial GEs.

— Starting at a stationary point, one can follow the GE in a valley or cirque direction
and search for the next VRI point.

—Beginning at this point (using the gradient at this point for the search direction) one
can calculate the branches of the corresponding RGF curve and can assign the reaction

path model to the branches which show the ‘good’ direction.

RGF fulfills (i) to (iii), however, the numeric GE calculation does not fit (ii). There-
fore, we propose to calculate the pathways along any GE more simply. We use the
evaluation of gradient and Hessian matrix per iteration step. The procedure is a new
method for studying the GEs of a multidimensional hypersurface. The method is im-

plemented as a separate FORTRAN shell. It will be distributed on request [#].
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