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The reaction path is an important concept of theoretical chemistry. We employ
the definition of the Newton trajectory (NT). An NT follows a curve where
the gradient is always a pointer to a fixed direction. Usually, a whole family of
NTs connects two adjacent stationary points of an index difference of one. We
will name such a family a reaction channel. The border between two reaction
channels is formed by singular NTs which cross valley-ridge inflection (VRI)
points. Examples are given with the Miiller-Brown potential, and the potential
energy surfaces of formaldehyde.
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1. Introduction

e The concept of the minimum energy path (MEP) or reaction path (RP) of an
adiabatic potential energy surface (PES) is the usual approach to the theoreti-

cal kinetics of larger chemical systems [1].

e It is defined as any line in coordinate space, which connects two minima by
passing the saddle point (SP), the transition structure of a PES. The energy of

the SP is assumed to be the highest value tracing along the RP.

e Reaction theories are based either implicitly (transition state theory), or ex-
plicitly (variational transition state theory) on the knowledge of the RP [1].
These theories require local information about the PES along the RP only.
They circumvent the dimension problem for medium-sized or large molecules:

it is impossible to fully calculate their PES.

e The starting point is a geometrically defined pathway. It means that only
properties of the PES are taken into account, no dynamic behavior of the
molecule is taken into consideration.

Any parameterization s of the RP x(s)=(z!(s),...,2"(s))? is called reaction
coordinate. We use here the distinguished or driven coordinate method in the

modern form of RGF [2,3], also called Newton trajectory (NT) [6].

e Usually, in one’s imagination the MEP is situated in a valley of the PES. But
how the RP ascends to the SP is an uncertainty of the general definition of a
reaction path. That opens the possibility to use a family of similar trajectories
to define a reaction channel: it may be formed by “all” lines of a special charac-

ter which connect, for example, the reactant minimum with one SP of interest.



e We propose the definition of Newton trajectories (NT) [2,3] to define reaction
channels [4]. The older definition of an RP by gradient descent, the intrinsic
reaction coordinate (IRC) of Fukui, or the steepest descent (SD), opens the
possibility to divide the configuration space into basins of attraction, or catch-
ment basins. They are defined as the set of points that will low to it through
gradient descent. The reaction channels of the NTs are another classification
scheme for the configuration space. Thus, NTs are curves with an alternate

property, in comparison to SD curves.

e Since there are different SPs around a minimum, different reaction channels
have to exist. The question emerges, what are the borders between the chan-
nels? The answer is: every border is formed by NTs leading to valley-ridge

inflection (VRI) points, so-called singular NTs.

2. Projection Operator

It is S" ! = {x € R"|||x|| = 1} the unit sphere in R". Elements from S' - the
unit circle - are given as angles with point (1,0) € S* to be 0°.

We choose a column vector r € S* ! for a projection. It is a unit vector. The
transposed vector r’ is a row vector. The dimension of r is (n x 1) where that of
r’ is (1 x n). We form the dyadic product D, = r-r’ which is an (n x n) matrix.
D, projects with r:

D,r=(r-r")-r=r (' -r)=r. (1)

The projector which projects orthogonally to r is with the unit matrix I



3. RGF, Newton trajectories

The concept is that a selected gradient direction is fixed along the curve x(s)

Gx(s)/IGx(s)l =T, (3)

where r is the unit vector of the search direction. The property (3) is realizable

by a projection of the gradient employing P, of (2). We pose
PrG(x(s)) =0. (4)

P, is a constant matrix of rank n—1.

Definition 1 The map R : R"x S" ! — IR"!, with R(x,r) = P,G(x) will be called

the reduced gradient, and r € S™ ! will be called search direction. The equation
R(x,7) =0 (5)
18 for a fized r € S"! the reduced gradient equation to the search direction t.

Based on the explicit definition, the predictor-corrector method of the reduced
gradient following (RGF) [3] traces a curve (4) along its tangential vector by

the derivative to obtain the tangent x’

0 = L7, Gx() =P, 1CED

-4 =P, H(x(s)) x(s) . (6)

The RGF is a simple but effective procedure to walk along the PES in order
to determine all types of StPs [2]. A family of RGF curves connects the

extrema if we vary the search direction r [6,7].

Definition 2 Let r € S"~!. We will name Newton trajectory (NT) in K to the

direction r the set:

{xe KL|G(x) =rGX)|} - (7)
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FIG. 1. A family of Newton trajectories on Miiller-Brown (MB) PES

4. Branin’s method

The reduced gradient approach shows an analogy to the mathematical theory
of Branin [8], the global Newton method. It utilizes the adjoint matrix A of the

Hessian matrix H. The adjoint matrix satisfies the relation

HA=det(H)I, (8)

where det(H) is the determinant of H, and I is the unit matrix. The adjoint
matrix A is used to define an autonomous system of differential equations for

the curve x(s), where s is a curve parameter

2 — Ax(s) Glx(s)) - ©

Proposition 1 Solutions of Branin (9) are branches of Newton trajectories.



5. Extraneous singularities

A special subset of degenerate points can be interpreted to be the branching

points of reaction paths.

Definition 3 A valley-ridge-inflection point (VRI) is located where the gradient
is orthogonal to a zero eigenvector of the Hessian.

The subset of such points is Ext(K).

We use results of Diener [9]. On a 2D PES the VRI points are single, isolated
points. They form a “zero-dimensional manifold”. For an n—dimensional PES
the VRI points can be a manifold of a dimension up to n — 2.

Such manifolds are found for the PES of water by Hirsch et al.[10], for form-

aldehyde by Quapp and Melnikov [11], for C;H; by Quapp and Heidrich [12].

e It is a fundamental property that the VRIs are not isolated points in higher
dimensions. In theoretical chemistry it is practice to report single VRI points.
However, for molecules, these points are part of the high-dimensional manifold
of VRI points of the PES.

A VRI point in two dimensions is characterized by a 1-dimensional kernel of

the reduced Hessian P.H(x). Thus, there are two tangents to the NT at x.

Proposition 2 (Index theorem [9]) Let x,; and x, be stationary points connected

by a regular branch of a Newton trajectory. Then it holds
indg(xl) 7é indQ(Xg) . (10)

A regular branch of a Newton trajectory connects an StP of an odd index and
an StP of an even index. The index theorem has direct practical use: if one
numerically follows the branch of an NT, and one connects StPs of a “false”

index by the procedure then one has a tool to detect the error.



FIG. 2. Index theorem. The surface shows two adjacent SPs of index one. There is no
regular branch of an N'T connecting the SPs. Between the SPs a VRI point has to exist.

The singular N'T is shown which leads to the VRI point and branches there.

At least one change of the index of a regular NT is given by an inflection
point of the energy profile. Every continuous connection of two StPs has at
least one such inflection point. The extraneous singularity breaks the index
along an NT by an additional odd number (by +1), see Fig.3: the change of
the index happens at the VRI point. We find the index transformations O-
2 and 1-1’. Around the VRI point there are regular branches of neighboring
NTs which connect 0-1' and 1-2, or 0-1 and 1'-2, correspondingly. The word
creation “valley-ridge inflection” point is coined by the 2D imagination of a
valley branching. Such a singularity has a phase portrait of saddle type, see
Figs. 4 and 5.

The imagination in the n—dimensional case is difficult. For 3D there are three
different types: center type and saddle type, and for the transition between

both the cusp type.
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FIG.3. Index theorem. Typical scheme for the relation of StPs with different index

surrounding the VRI point of an NT (center). Side parts: neighboring regular N'Ts.
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FIG. 4. Phase portraits of Newton trajectories

FIG. 5. Phase portraits of NTs around extraneous singularities. From left to right: center

type, cusp type and saddle type



6. Example: VRI points along an NT on the PES of formaldehyde

120

100

FIG. 6. Newton trajectory on PES of HyCO. The path is given in reduced configuration
space with x=rcp, y=rgc, z=ZHCO in Cy, symmetry. The NT goes from global minimum

(top) to an SP of index 3 (bottom).

The formaldehyde is calculated with the restricted Hartree-Fock method (RHF)
and STO-3G basis set. There are many StPs up to SPs of index 3. The example
NT starts with the global minimum and follows the search direction of the sym-
metric bending. Along the curve the energy strongly monotonously increases
from the global minimum left-above to the SP of index 3 right-below.

Along the NT there are two VRI points.

The Figures 7, 8 are 2D sections of the 6-dimensional PES passing the two VRI

points.

TABLE 1. Two stationary points on PES of H,CO connected by an NT [2].

Index Energy (a.u.) Symmetry 7rco (A) 7rem (A)  anco (deg.)

0 -112.3544 Coy 1.217 1.101 122.74

3 -112.0122 Cay 1.770 1.095 65.44
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FIG. 7. PES section of HoCO with VRI1. y axis: dihedral angle, x axis: change of rco and
the symmetric agco. At VRI point the valley branches uphill and breaks the Cs, symmetry

to C's symmetry.
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FIG. 8. PES section of H,CO with VRI. y axis: deviation of the symmetry of the angles
QHCco, T axis: parameter with roo and agco. At VRI point the valley branches and breaks

the Cs, symmetry to Cy symmetry.



7. Newton channels

Every StP is on all NTs.

Definition 4 Two stationary points are adjacent if they are connected

by a regular branch of a Newton trajectory.

Now, we look for all branches which start at a fixed StP, A. Which part of that
family connects A with other StPs? To any branch beginning at A belongs a
direction r € S"~!. Thus, since we fix A, we can turn the point of view to S"!,
if we identify the directions r» with their corresponding branches by the help of
the trajectory map r = G/||G||. We put A for the initial point of all branches,
and identify the search directions of all these NTs with all points of S*!. Every
branch has three possible final points:

(i) an StP with an index difference of 1 to A, or

(ii) a VRI point, or

(iii) a point of the border of the configuration space.

Sn—l(A)

FIG. 9. Scheme of S? for the Newton channels starting at A. The representation is opened
like a map of the world in Mercator projection. Points B to E depict the sets of different
search directions belonging to the Newton channel, respectively. Every Newton channel
leads to one StP (B, C, D or E). If A is minimum then the points B to E will be SPs of

index one.



The VRI points can form pieces a manifold of a dimension up to (n—2). Branches
which meet the VRI points are singular branches. They form a 1—-codimensional
submanifold on S"~!. It divides the S" ! into a disjunct system of open sets.

The border of the sets of S"~! is formed only from singular directions.

Definition 5 Regular branches of different Newton trajectories will be named
equivalent f they can be transformed from one to the other without meeting
a singular branch, where the transformation is a continuous variation of the

search direction. The corresponding equivalence class is the Newton channel.

e The Newton channels starting in one StP are divided by walls formed by
singular branches. The walls are “thin” because they have a lower dimension.
The walls are a separatrix and there is a disconnection of the sets formed by
the regular NTs. An NT starting at a point that is strictly on a wall will never
leave the border (by definition).

e The StP, to which a channel leads, has to belong to the wall of the channel
as well, thus, to the component of connection of the singular NTs forming the
wall. Singular NTs usually lead to at least three StPs because they bifurcate
at a VRI point.

e We interpret the Newton channels as approximations of reaction channels.
Fig.9 is a model of the region around reactant A for reactions A — P; over
the transition structure B and A — P, over the transition structure C, taking
place from the same reactant A to the product systems P; and P,, and so on.
To every reaction belongs one reaction channel, and the channels are divided
by thin walls. Pathways going on in the walls meet a bifurcation from which
branches lead aside to the two transition structures. Thus, the singular NTs of

the wall between B and C belong to both SPs.



e To every point of the PES belongs an NT. Thus, it is possible to divide the
PES into Newton channels, totally. All channels are partitioned by thin walls
of singular branches of NTs.

Theoretically, there can be channels without StPs.

Theoretically, the system of channels needs not be simply connected.

e It emerges that we can connect the StPs of a PES by Newton channels in

form of a graph.

Conclusion 3 A PES can be represented as a Newton graph: wertices are the
StPs, edges are the Newton channels. With the index theorem it follows that
a Newton graph cannot contain circles with an odd number of edges. Further,

Newton graphs do not have loops (edges connecting one vertex with itself).

e To any Newton channel belongs the volume of the induced tangents. We can
assign to every edge a weight by the volume of the Newton channel. It is the
measure of the set of directions of S" !, the NTs of which have branches in this
Newton channel.

e In this kind we can assign many NTs, or few NTs to a region of the PES !

It is not trivial because to every point of the PES belongs one NT.

The “density” of NTs differs from region to region.

e Conclusion: we can define an RP as the region of the PES where the density
of NTs is high and the PES forms a valley. The devise will be useful at least
in the cases where the SP is on the top of the valley, and where the RP does
not bifurcate [15]. In these cases the imagination of a reaction channel is well

adapted to reality.



8. Example Miiller-Brown potential

FIG. 10. Singular branches of Newton trajectories on Miiller-Brown potential dividing the

configuration space in channels

It is possible to fully study the 2D PES with NTs. We follow an NT along its
branches. We begin at the global minimum M, in all directions (r € [0°,360°)).
In Fig.1 the distance of the search directions from one trajectory to the next is
always equal. It can be observed that the trajectories concentrate in valleys, or
on ridges. It can be seen that the more NTs lead through a region the more the
equipotential surfaces are curved. This effect will grow dramatically in higher

dimensions.

Now we treat the Newton trajectories to all search directions in the interval
[0,180°), K = (—1.6,1.1) x (—0.4,2.3). Four NTs meet singular points, see Fig. 10.
The other NTs belong to 4 sets of the topological equivalence classes of regular
NTs in Fig.11. The singular branches of MB potential are the “walls” (here
lines) of the Newton channels. The classes of regular branches, which connect
two stationary points, respectively, are shown summarily in Figs.11 and 12.
Newton channels are depicted by K1 to K8, where the channels K7 and K8

lead from a minimum to the border of K.
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FIG. 11. Representatives of the 4 classes of regular N'Ts.

In Fig. 11 four representatives are shown, respectively. Class 1 is best suited for
the search of StPs. It connects all StPs with one line, one connected component.
Class 1 has a measure of 143.6° from 180°.

Figs.10 and 12 show, that the Miiller-Brown potential is separated into an
internal and an outer region of NTs, correspondingly. The outer region itself
is again separated into two parts. It is covered with regular trajectories only
from the minima M1 and M3. Starting at minimum M2, two Newton channels
lead only to the SPs S12 and S23. Starting at the minima M1 and M3 a main
channel leads to direction of M2 (K1 with 39,9% of all branches, or K4 with
56,8% of all branches). Side channels (K5 with 1.3%, or K6 with 2%) “jump

over” the central minimum M2.



—®  Newton channel @ stationary point
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FIG. 12. Graph of Newton channels (arcs are pointer to SPs), and singular Newton tra-

jectories on Miiller-Brown potential. Vertices are minima and SPs.
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