Serie 6

- **1.** a) $(2 \ Pkte)$ Betrachte (\mathbb{R}^n, d) mit der Betragssummen-Metrik aus Serie 3, Aufg. 4a). Zeige: $(x_k)_{k \in \mathbb{N}}$ mit $x_k = (x_{k,1}, \dots, x_{k,n}) \in \mathbb{R}^n$ konvergiert in (\mathbb{R}^n, d) genau dann, wenn jede der n Koordinatenfolgen $(x_{k,i})_{k \in \mathbb{N}}$, $i = 1, \dots, n$ für $k \to \infty$ konvergiert.
 - **b)** (2 Pkte) Sei a > 0. Zeige: $\lim_{n \to \infty} a^{\frac{1}{n}} = 1$. Hinweis: Fallunterscheidung, $a \le 1$, benutze Monotonie und betrachte Teilfolge $a^{\frac{1}{2n}}$.
- **2.** a) (2 Pkte) Gegeben $(a_1, \ldots, a_k) \in \mathbb{R}^k$, zeige

$$\lim_{n \to \infty} \left(\sum_{i=1}^k |a_i|^n \right)^{\frac{1}{n}} = \max_{1 \le i \le k} |a_i|.$$

- **b**) $(2 \ Punkte)$ Seien $p(x) = a_k x^k + \ldots + a_1 x + a_0$ und $q(x) = b_l x^l + \ldots + b_0$ komplexe Polynome vom Grad k bzw. l, d.h. $a_0, \ldots, a_k, b_0, \ldots, b_l \in \mathbb{C}$, mit $a_k, b_l \neq 0$. Seien $q(n) \neq 0$ f.a. $n \geq n_o$. Zeige: Die Folge $c_n = \frac{p(n)}{q(n)}$ für $n \geq n_o$ konvergiert dann und nur dann, wenn $k \leq l$. Berechne im Falle der Konvergenz den Limes.
- **3.** (3 Pkte) Sei (a_n) konvergent mit $a_n > 0$ f.a. $n \in \mathbb{N}$ und

$$b_n = (a_1 \cdot a_2 \cdot \ldots \cdot a_n)^{\frac{1}{n}}.$$

Zeige (b_n) ist konvergent und berechne den Grenzwert.

- **4.** Seien $a_2 > a_1 > 0$ und $a_{n+1} = \frac{a_n + a_{n-1}}{2}$ für $n \ge 2$ rekursiv definiert. Zeige:
 - a) $(1 Pkt) (a_{2n})$ und (a_{2n-1}) sind monotone Folgen.
 - **b**) $(1 Pkt) (a_{2n})$ und (a_{2n-1}) konvergieren gegen den gleichen Grenzwert.
 - c) $(2 \ Pkte) \lim a_n = \frac{2a_2 + a_1}{3}$.

Rückgabe: spätestens Dienstag, 25.11.08, 10.30 Uhr in den Briefkästen