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in the literature. We show that a way of  steepest descent on a potential surface 
can be defined independently upon the choice of the coordinate systems. The 
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path is illustrated and the relations of IRC to real trajectories are discussed. 
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1. Introduction and formulation of the problem 

The concept of potential energy surfaces (PES) as a basis for the understanding 
of chemical reactions was successfully used in Transition State Theory [ 1 ], Starting 
point for this concept is the adiabatic separation of the movement of the electrons 
from that of  the nuclei in a given chemical system. The changes in the frame of 
the nuclei are controlled by a potential function U(x) depending parametrically 
on the positions of nuclei x i. Stable arrangements (reactants, products, inter- 
mediates) are minima in U(x) characterized by Xmin; transition states correspond 
to saddle points (sp) of first order [2] in U(x) characterized by Xsp. 
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A suitable definition of a continuous line connecting reactants and products is 
still subject of extensive investigation and subject of some confusion as well. This 
line should be an important guide ("reaction path", "reaction coordinate", 
"minimum energy path" (MEP)) in finding all the transition states and intermedi- 
ates between reactants and products. The first concept for reaching a saddle from 
the reactant minimum was the idea of following the way along the valley bottom 
("valley path"). This is the direction of least curvature starting from the minimum. 
Mathematically it is defined by the direction given by the eigenvector of the 
smallest positive eigenvalue of the Hessian in Xmin (identical with the force 
constant matrix) and its corresponding continuation up to the saddle. This is 
what chemists in general consider as MEP. But it would be better to call it "path 
of least resistance" as proposed by Dunitz [3]. Panci~ [4] developed a procedure 
following this kind of path on the basis of an analysis of the normal vibrational 
modes (see also [5-7]). In a number of suitable examples this path successfully 
leads to a saddle point on the surface. Furthermore, reaction pathways on simple 
two-dimensional surfaces usually presented in chemical textbooks are of such 
"valley path" type. Unfortunately, a more general treatment requires consider- 
ation of the so-called blind valleys (cf. Fig. 1) which do not lead to the desired 
saddle along the valley path. The saddle point here exists "sideways" [8-11] from 
the path. That is why the valley path cannot serve as a basis for a general definition 
of the reaction path leading to the saddle points in question. The frequency of 
the occurrence of blind valley type potential surfaces in standard chemical 
reactions has still to be investigated. 

Avoiding these problems already in 1970 Fukui [12] proposed to take the steepest 
descent from a saddle point to the minimum as reaction path introducing the 
"intrinsic reaction coordinate" (IRC). Such pathway is shown to include con- 
servation of nuclear symmetry [13]. In a number of papers, Fukui et al. (for a 
review cf. [14]) demonstrated the high utility of this concept. Other authors also 
gave substantial contributions in the application of IRC [15-18]. 

We feel that the question how to reach generally saddle points from reactant or 
product minima will be solved only by treatments including the dynamics of the 
system (contrarily to opinions presented in [19, 20]). Fukui's IRC will not describe 
real dynamical behaviour of the N-particle system of atoms. Since the IRC 
presumes an annihilation of the kinetic energy after each infinitesimal step in 
the direction of steepest descent it cannot be overlooked that the interpretation 
of the curve of steepest descent on the surface U(x) as the dynamical limit with 
Ekin"-~ 0 (infinitely slow movement [21-24] without a moment of inertia for the 
moving masses [21]) produces difficulties in the physical modelling and under- 
standing: To define an equation of motion for that case according to Newton, 
Lagrange or Hamilton remains problematic because any movement necessarily 
implicates the existence of kinetic energy in contradiction to the definition of 
that path. 

Consequently, this path is nothing else but a mathematically defined curve going 
from a higher to a lower potential. Pechukas [13] formulated it as follows: "There 
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is no dynamical significance to a path of steepest descent. It is a convenient 
mathematical device to get from high ground, around the transition state, to low 
ground where the stable molecules are". 

Furthermore, some mathematical questions arise from the requirement of a 
coordinate invariant definition of the path of steepest descent. Tachibana and 
Fukui presented extensive studies to coordinate invariance of reaction paths and 
indicated how to use curvilinear coordinates [25-28]. The authors of the present 
paper observe difficulties and misunderstanding in the fundamental ideas of 
Tachibana and Fukui [25, 26] in the last years as pointed out in the next sections. 

At present it seems of importance to explain the striking features of IRC 
mathematically without using the general differential-geometrical calculus. 

2. What does the independence from coordinate systems mean? 

The potential U(x) is defined by the mutual positions of the atoms in a chemical 
system. A configuration A of the atoms corresponds uniquely to an energy UA, 
any other to UB. If we have UA > UB, SO this relation holds in every system of 
coordinates chosen for the description of the positions of A and B. So we can 
speak from an "a priori potential surface". For its description one commonly 
uses the Cartesian system in R 3N (x ~, i = 1 , . . . ,  3N)  or in an internal curvilinear 
system qk, k = 1 , . . . ,  n with n = ( 3 N - 6 ) .  The description of stationary points 
(minima, saddle points) as well as the description of the path connecting minima 
over a first order saddle are given in that chosen coordinate system. A concrete 
arrangement of atoms in an equilibrium configuration has to be independent of  
the chosen coordinate system. The point xst which corresponds to a stationary 
point on U = U(x 1, . . . ,  x 3N) satisfies 3 N  conditions 

a % x )  =0,  i =  1 , . . . , 3 N ,  ( la)  
OX x=xsz 

or in vector notation 

VU(x)lx=xs,:O. 
Analogously, the n conditions 

OV(q)] =0,  k = l , . . . , n  (lb) 
Oq k q=o,, 

hold in the R n space. U =  U(x) and V= V(q) are the expressions in the two 
different coordinate systems. Of course the concrete xs, and q,~ respectively 
belonging to a stationary point depend strongly on the chosen coordinate system, 
already simply on its origin. On the other hand, the form of condition (1) is 
independent of any coordinate system. This is easy to understand, but how to 
show invariance of a path definition in the configuration space? This is a task 
for differential geometry including the theory of invariants (as tensors etc.). In 
the case of a gradient path for a function U over a coordinate space the situation 
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is clear: At first we have to define the genuine configuration space of the potential 
U with physical reasoning. Textbooks of  mathematics then show that in any 
t ransformed coordinate system the modified expression for the gradient vector 
represents the same direction of steepest descent. For our purpose follows: The 
gradient path  from a saddle to a minimum describes exactly the same sequence 
of configurations in the Cartesian R aN (with or without mass weighted coordi- 
nates) as the gradient path in the R n space of internal curvilinear coordinates. 

This elementary fact is in contradiction to the conclusions in other papers [15-18], 
where only mass-weighted coordinates are allowed, to the paper  of  Sana et al. 
[24] who derived the conclusion of a general dependence of a path of steepest 
descent upon coordinate systems, and to statements in a number  of  other papers 
[22, 30-33]. In the fol lowing section we give a more detailed analysis of  the 
evident confusion. 

3. The gradient equation for the path of steepest descent 

We start in a 3 N-dimensional  Cartesian system x = ( x l , . . . ,  x 3N) presuming this 
system to be a genuine configuration space for an N-a tomic  molecule (Gf. [62, 63]). 
Let W be a point set of  chemically important  configurations and let us consider 
the potential  function U over W (R is the real number  axis): 

U :  W o R  with W E R  3N. 

We assume that all second derivatives of  U exist and are continuous. 

Defini t ion.  A gradient system on the set W is a system of ordinary differential 
equations 

dx  i c~ U 
- - - ; ( x ( t ) ) ,  i = 1 , . . . ,  3 N  (2) 

dt ox" 

for 3 N functions of  the coordinates x i = x i(t) which describes the path of  steepest 
descent on the potential function U = U ( x ) .  Here t is a parameter  of  the curve 
length which should be not confused with a time parameter.  The employment  of  
a t or s curve length parameter  is outlined in [26, 33], where the true curve length 
s is the canonical parametrization (cf. [34]). In this paper  we use only t. 

A point xst ~ W denotes a stationary (or singular) point if V U(x~t) is the zero 
vector (Eq. ( la)) .  All other configurations are regular points. Textbooks in 
mathematics (cf. [35]) show that exactly one solution of the system (2) goes 
through any regular point x. For stationary points this statement is not valid. 

Now n = (3 N - 6) internal coordinates q k are related to 3 N Cartesian coordinates 
x ~ b y - i n  gene ra l -non l inea r  transformations often containing trigonometric 
functions or roots 

qk = q k ( x l , . . .  ' x3N), k = 1 , . . . ,  n. (3) 
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They may be rather complicated. The n functions (3) should be derivable; now 
we form the expression 

3 N  
gkl= gkl(x ) = ~ Oq k Oq I k, I= l , . . . ,  n. (4) 

i = l  0 x i  Oxi'" 

Fixing the molecule in the x-system it is also described by (3) in the q-system. 
But the inverse transformation from the n coordinates qk to 3 N  coordinates x i 
will only be possible by adding still six (rather arbitrary) conditional equations 
to (3) in order to fix the molecule described rigidly in the internal coordinates 
also in the 3-dimensional ordinary space. Equations of the kind 

N - - I  

0 = • X a+31 with a = 1, 2, 3, (5a) 
/ = 0  

and the conditions [36, 37] 

N - 1  
0 ~ ~ a+31 b+31 b+31 a+31~ = tx  xst - x  xs, ), b # a, a, b = 1, 2, 3 with cyclic changing 

/ = 0  
(5b) 

are often used for this purpose. Demanding the existence of the inverse transfor- 
mation of the 3 N  Eqs. (3) and (5), 

x ' = x ' ( q l , . . . ,  q"), i-- 1 , . . . ,  3 N  (6) 

and further assuming the existence of derivations to (6) with respect to all qk 
we obtain the following relations for the mutual derivations of  these inverse 
transformations (using the chain rule) 

3 N  
Oq t Oxi ~ l  l, k = 1, n (7) 

i=lOX i Oq k " ' ' '  

if the qk, k = 1 , . . . ,  n are, as commonly assumed, independent coordinates. 

Theorem. In curvilinear coordinates the gradient system (2) has for  n functions 
qk = qk( t  ) the form 

dqk= - Y gk~(x) OV(q) k =  1, n 
dt 1=1 Oq t ' " " '  

and with the matrix (gkl) := (gkt)-l  

dq t 0 V 
gkl k'  k = 1 , . . . ,  n. 

i=1 dt Oq 

(8a) 

(8b) 

Proof  Using (6) for the solution x( t )  of Eq. (2), we suppose 

x i ( t ) = x i ( q l ( t ) , . . . , q n ( t ) ) ,  i =  1 , . . . , 3 N .  

This means the solutions in the x-system x ( t )  and in the q-system q(t )  describe 
the same path in the configuration space. Then the derivative of  x ' ( t )  is given 
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by 

dx  i n OX i dq k 

" ~ = k ~ = t  Oq k dt  " (9) 

As we have to relate U ( x )  to V ( q ( x ) ) ,  it results 

OU " OV Oqk i = 1 ,  ,3N.  (10) 
- O x  i =  --k~=l Oq k OX i' "'" 

Eq. (10) is well known as the Wilson B-matrix formula [38] with 

(0q ) 
B = \-~x'/Iq~, 

It has been used for linearized displacements dq k and dx i in Eq. (9) in the 
neighborhood of equilibrium points and, by Pulay [39], for a development up to 
quadratic terms. The B-matrix represents a rectangular 3 N  • n-matrix, its inverse 
is not explained. One can use a pseudo-inverse which can be found by an arbitrary 
matrix m. The free choice of this auxiliary matrix is related to the arbitrariness 
of the Eqs. (5) (cf. [40-43]). According to (2) both right hand sides in Eq. (9) 
and Eq. (10) are equal. For each i = 1 , . . . ,  3 N  we obtain one equation: 

ox' dq ov  Oq (i t)  
k=l Oq k dt k=~ Oq k OX i" 

Multiplying the corresponding i-th Eq. in (11) with Oqm/Ox ~ and summing up 
all the 3 N  equations we get 

k=l \ i= l  C3X i Oq k] dt  dt  k=l Oq k' m = l , . . . , n  (12) 

because the sum of the mutual derivatives on the left hand side is 6~ considering 
(7). Eq. (12) is identical with Eq. (Sa). 

From (4) we conclude that the matrix (gkt) is symmetric and positive definite. 
Thus its inverse does exist. Multiplying Eq. (12) with g,,t and summing up all n 
equations for m = 1 , . . . ,  n we obtain Eq. (8b). 

It is noteworthy that in mathematics the r.h.s, of  (12) is characterized as 
"gradient",  but not the vector of the derivatives of the potential function V alone. 
The often used illustration of a potential function over orthogonal axes of internal 
coordinates leads to a distortion in nearly all directions. The interpretation of 
such diagrams has to consider that (see [61]). 

3. I. Discuss ion o f  the theorem 

(i) There is no dependence of the gradient path upon the choice of coordinates! 
Eq. (1 l) you can find in similar form in the paper of Sana and coworkers [24]. 
But these authors improperly deduce the condition B r = B  -l from (l 1). This 
condition leads to an improper restriction concerning the possible coordinate 
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systems and also to the false statement concerning a dependence upon the choice 
of the coordinate system. 

(ii) The curve q( t )  satisfying (8) in the curvilinear system q, is influenced by two 
factors. The metric tensor gkl realizes the distortion due to internal coordinates, 
while - O V / O q  k gives the direction of descent in the new coordinates. Setting 
up Eq. (8) all is involved what we need in differential geometry to trace the 
idealized reaction path defined within Fukui's IRC approach [12, 25]. The func- 
tions gkl= gk~(x ) are given a priori by the choice of the internal coordinates 
q = q (x ) .  Formulas for the establishment of B-matrices are well known [38]. 
Having B we can sum up according to (4). In the papers [,14 46] one can find 
advices concerning some problems of the transformation from Cartesian to 
internal coordinates and vice versa and other related questions. 

The so called "analytical" point by point computation of the derivatives of the 
potential V in internal coordinates was pioneered by Pulay [39, 40] and is now 
a subroutine of most quantum chemical program systems for optimizing the 
geometry by Quasi-Newton-methods. 

(iii) Some comment on the differential geometry calculus. The mutual transforma- 
tion of  the metric from different curvilinear systems q into q+, which is formally 
independent of an original 3N-dimensional space, is given by 

~ Oq'+ Oq~+ k, g ~ =  k.,-=l aq k aq t g ' r, S---- 1 , . . . ,  n. (13) 

But because of  gkl = gkt(X ) we have g~ = g ~ ( x ) .  Eq. (13) represents a generali- 
zation of Eq. (4) where gkl = 6k~. In system (8b) covariant components gk* of the 
metric tensor are necessary. They are well known as entities connected with the 
first fundamental form in the q-system [34, 47]. From the derivatives of (6) we 
get the n 3N-dimensional vectors 

~0X l OX3.._Nx~ 
ek = \ o q k , . . . ,  Oq k ] ,  k =  1 , . . . ,  n. (14) 

They are in the R 3 N  a natural basis of the tangential plane on the n-dimensional 
subspace of q-coordinates. With (14) we can define (cf. [25, 34]) 

3N OX i OX i 
gkl(q) = ek" e, = • k, 1 = 1, n. (15) i=10q k ~ q l '  " ' ' '  

Similar to (13) we have for the covariant gk! the transformation [48] 

Oqk Oq ~ 
g r+~ ( q + ) -- k./=l Oqr+ ~q~+gkt(q). 

By means of (7) it is evident that for the co- and contravariant components of 
the metric tensor the following relation holds 

g l k gk s  : ~ls, l, S = 1 , . . . ,  n.  
k=l 
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It is noteworthy that we do not need to construct the covariant terms for the 
system (8a). Only their assumed existence was used in (7). But there are in (8a) 
as well as in (8b) some specific "cliffs" for a numerical computation: 

The gk~ in Eq. (8a) are only given as function of x. Hence, from one step to 
the next it is additionally necessary to use transformation (6). 

- -Using  (8b) and (15) we have to solve a linear system of equations in each step. 
But the matrix of  the coefficients gkl(q) has favorable properties: It is symmetric 
and positive definite. 

The ordinary mathematical device to take over the metric from R 3N to R n is 
given by Eqs. (6) and (15) using the dependence gkl = gkl(q) t o  get the inverse 
gkt = gkl(q) as function of q in Eq. (8a). Then in Eqs. (8a) and (13) we would 
have to deal with internal coordinates only. But experience shows the possible 
difficulty of the inversion process. It is hoped that our way of getting (8a) can 
serve as a good compromise. 

(iv) What happens with the degrees of  freedom for overall motions? The introduc- 
tion of  the gradient systems (8) involves a two-fold difficulty: Additional to the 
differential geometrical problems we have to reduce the 3 N degrees of freedom 
to n = ( 3 N - 6 ) .  The crucial point are Eqs. (5) for the backtransformation (6). 
With q ~ x ( q )  we get from R n in R 3N only a parametric representation of an 
n-dimensional submanifold, which is fixed by "initial values" (5) somewhere in 
the R 3N. But we do not get the whole R aN itself. In fact we lose a 6-dimensional 
manifold. 

Nevertheless, the system (8) is correct because of the special structure of our 
problem. We explain this in view of system (5a): We choose n internal coordinates 
qt, . . . ,  qn and additional three coordinates for the geometrical center of the 
molecule with respect to the laboratory origin: 

N-- l  

q " + a : = l / N  ~ x "+31, a = 1 , 2 , 3 .  (16) 
/=0  

Thus contrarily to (5a) we do not constrain the q"§ to 0. We get 

Oq "+~ ~ I / N  f o r a = b ,  a , b = l , 2 , 3  
OXb+3t -- I (17) 

/ 0  for a • b, / = 0  . . . .  , N - 1 .  

We assume the potential to be independent of the locus in the ordinary 3- 
dimensional space. Let h be a displacement in any direction, e.g. in the x-direction: 

U ( x I ,  . . . , x 3 N )  = U ( x  1 - t -h ,  x 2, x 3, x 4  q - h ,  . . . , x 3 N )  

thus 

OU N-I OU 
Oh = 0 = ~ tgxl+3/, /=0  

(18) 
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and consequently 

OV 
Oq,+ a =0,  a =  1,2,3 

if we take for example 

N - 1  
q n + a + h = l / N  ~ (xa+3t+h). 

/=0  

So the first n equations in the system (8a) have not to be changed. For the three 
new coordinates we get three additional equations 

dq "+~ ~, g(n+a)k OV 
dt k=l Oqk, a = l, 2, 3. (19) 

With definition (4) and the particular property (17) the trivial factors 1 / N  or 
zero are obtained in the new g(,+,)k giving 

N-I Oq k 
g(n+a)k= 1/ N F, Oxa+3r 

I=0  

Now we expand: 

O V { L ~ ' ~  1 N - I  OV Oq k 

k = 1 OX-~3 l k = l  Oq k 

1 N-1 O U  

"ox ~176 (20) 

where we used the chain rule and Eq. (18). Hence we have in Eq. (19) always 

dq"+a-O f o r a = l , 2 , 3 .  
dt 

The geometrical centre of the chemical system does not move and we can really 
cancel the three Eqs. (19) in the system (8a), as we did above. 

(v) The use of mass weighted coordinates. Our theorem additionally clarifies the 
question of  using mass weighted coordinates for the path of steepest descent 
[15, 33, 49, 50]. In system (2) the trivial metric tensor is gO = g0, i , j  = 1 , . . . ,  3N. 
Now we choose the centre of mass as origin. The transformations 

Qi= ml/2xi and V(Q ~)= U ( Q i / m Y  2) (21) 

give the mass weighted Cartesian system Q~ and the transformed potential (rn,+3~ , 
a = 1, 2, 3; l = 0 , . . . ,  N -  1 labelling the ( l+  1)th atomic mass). According to (4) 
we have 

3N__l/2Rki__l/2~ij {OJ f o r k = j  gkj = ~. ,,,k . . . .  j u = (mkrnj)l/26kj = (22) 
i=1 for kCj .  
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additionally to Eq. (24a) [49]. Eq. (5b) will be changed similarly. For a simul- 
taneous displacement of all nuclei we have 

N-1 OU 
~ 0xa+az-0 (see Eq. 18). 

/ = 0  

Thus we can satisfy Eq. (25) if we change the displacement of the steepest descent 
dxi /d t  of Eq. (2) by the mass-weighting of Eq. (24a). (Note that contrarily to 
the weighting in (24a) the so-called mass-weighted coordinates Qi are only 
weighted by m~/2. Eq. (24b) looks like a pure steepest descent path, if we take 
the mass-weighted potential for the genuine one by mistake. This is caused by 
the weighting of both the coordinates and the potential itself.) 

The difference in the effect of Eqs. (2) and (24a) for the solution is evident in 
the simple case of two atoms. If r is greater than the equilibrium distance, - a  V/Or 

Instead of (2) we get the following new gradient system 

dQ i OU 1 1 / 2  OV 
= - m i - ~ 7 (  Q /rnl , . . .  Q31~ / m ~ )  = - mi oQi, (23) 

dt 

i = 1 , . . . ,  3N, for the former path of steepest descent. It is easy to see that (23) 
is identical to (2) because the following relationship is valid 

d(Qi/m~/2) aU(Qi /ml /2)  

at ~( Q'lml/2) " 

Consequently, the curves solving both systems will be the same in the configuration 
space of the real molecule if we start from the same initial point. 

Our descent path is only related to the potential energy and does not depend on 
atomic masses, because the genuine potential itself is independent from these 
masses and depends per definition only on the charges and the mutual distances 
of the atoms and electrons [62, 63]. 

Contrarily to (2) or (23), Fukui et al. [49, 50] use the following system of ordinary 
differential equations 

dx i OU dQ ~ OV 
mi-d-~- = - ~xTx ~ or d t = - O Q i ,  i = l , . . . , 3 N  (24a, b) 

for pure Cartesian or mass weighted Cartesian coordinates respectively (see also 
[15-18, 22, 30, 31, 33]. It results a curve crossing the equipotential lines of the 
genuine potential in general not rectangularly, but in a skew angle (cf. Fig. 5 in 
[51]). Nevertheless, the solution curve is a descent path, which explains the 
success in the treatment of chemical model reactions. The use of (24) was claimed 
to be necessary for fixing the centre of mass of the chemical system instead of 
the geometrical centre. That means to replace (5a) by the requirements 

N-1 dXa+3l(t) 
~, ma+31 = 0, a = 1, 2, 3 (25) 
l=o dt 
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acts as a push on both nuclei to come closer. But there are different possibilities 
to displace two nuclei A and B: Firstly, the geometrical center can be held on 
�89 +B) ,  secondly, the center of masses can be conserved, or it is possible to fix 
any other particular "weighted" point between them. For example, A itself is 
fixed and only B moves towards A. We can realize this by cancelling three 
equations in (2) or in (23) for x A, yA, zA. The same is available by the limes of 
a mass-weighting in (24) taking ma ~ o0, mB = 1 with the desired consequence 
dx  A = dy A = dz  A = O. 

Now we can interpret our set of gradient equations as follows: 

- -Eqs .  (2), (8), or (23) are the defining systems of ordinary differential equations 
for the invariant path of steepest descent on a genuine potential surface. 

- -Eq .  (24) defines the ordinary differential equation for a modified descent path 
which preserves the centre of mass. It is in general not the path of steepest 
descent on the genuine potential. We can call it the mass weighted path. 

Regarding the masses, the latter path is defined in a similar sense as it was done 
in trajectory calculations [33, 52] or in vibrational analysis [38, 54] but it cannot 
be interpreted as a trajectory (of. also (vi)). The arbitrariness in this definition 
was already mentioned recently [55]. 

Omitting a sharp separation between the choice of coordinate systems and the 
question what the static descent path on a potential surface should mean physi- 
cally, seems to be one source of misunderstanding in the literature. An example 
is given in Eq. (49) in [33]. This paper deals with mass-weighted coordinates, 
but in the equation pure Cartesians are used. The expression is similar to (24a). 
But there it is incorrectly remarked that this would be an opposite result in 
comparison to an equation of the (24b)-type. 

(vi) A look to the dynamics. Mass-weighted coordinates are used for the calcula- 
tion of vibrational frequencies [38, 54]. The crucial point is the assumption of a 
vibration across an equilibrium position. If  we assume the vibrational equations 
to be approximately harmonic for small displacements, they are 

3N 
mi.~, i + ~ Uijx j = O, i = 1 , . . . ,  3 N ,  

j = l  

o r  

3N 
m~/2~i  + ~ Ux'xJ [~,,l/2~j'~ 

j = l  ( m i m j )  I/2~''''j ~ ) = 0 ,  

hence 

3N 
(~+ ~ VQ,QJQ J = O. (26) 

j ~ l  

The weighting of the coordin~ates transfers the different kinetic action of the 
different mass points into the distorted curvature of V. From the analysis of the 
Hessian VQ,oJ the vibrational frequencies of a molecule can be deduced [38, 54]. 
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But in tracing a reaction path with large displacements from the original position 
the above mentioned approximation (26) fails. We should deal with purely 
geometric coordinates including the masses m~ in the kinetic term of the equations 
of motion 

~ '+r~rq~q r = C 'r~V l=  1 , . . . ,  n (27) 
Oq r' 

(cf. [34, 52]). Here the masses mi are given in form of linear terms in the so-called 
kinematic components of  the metric tensor Gk~ from which we derive the inverse 
G kt and the F~r expressions. Instead of (15) we have to consider here 

3N aXi c3X i 
Gk~ = E (28) ~=1 mioqk Oq r 

This kinetic intrinsic mass weighting in the Gkt originates from the well-known 
representation of velocities and kinetic energy in internal coordinates 

2 T =  ~ Gjlk(ll. 
k,l=l 

The weighting acts into the solution of  the equations of motion for q = q(t), (t: 
time). Since we have small vibrations around an equilibrium position, we can 
approximately linearize the curvilinear coordinates q k and "forget" the distinction 
between qk and its velocity c) k as it is done with great success in the FG matrix 
formulation of  Wilson. 

Schaefer et al. [22, 30, 31] proposed a method using an equation of the (24a)-type 
with respect to mass weighting. These authors obviously took the roundabout  
way over formula (28) by which they compute the contravariant G kz for a system 
of ordinary differential equations of the kind as (8) (in [22] denoted as T ~  with 
a, b = R, r, 0). But remembering the fact that the masses m~ are included in the 
used kinematic elements Gkt, the resulting descent equations are again distorted 
as explained earlier. 

(vii) Normal coordinates. On the basis of  Eqs. (8) we formally have a further 
possibility: Along a solution curve we can transform the qk-coordinates in new 
normal coordinates q,k. Putting q'" in the role of the reaction coordinate on the 
path of steepest descent, all other q'~ , . . . ,  q, ,-i  remain zero on this path and 
should be orthogonal to q'" [25, 26, 56]. The existence of such a transformation 
is settled in mathematics [35], but a practical realization is still unknown [57]. 
But at present it seems to be of theoretical interest only because we do not know 
a "simple" analytical expression for V or OV/Oq k. With the new q' we would 
lose the a priori character of the globally chosen curvilinear system q of the 
configuration space, contrarily we would have to include step by step in q' 
(numerically) the influence of the potential V. Difficulties of another kind arise 
if we restrict the q-system by constraints to n < ( 3 N - 6 )  degrees of  freedom, 
where these constraints are derived from an a priori-notion of  the potential V 
itself (cf. [55]). 
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4. The IRC of  Fukui, definition and conclusions 

The gradient system (8) has for every point q with V V(q) ~ 0 exactly one solution 
going through q. Now we are looking for curves connecting two singular points 
qmln being minima in V. The highest energy point qsp on this continuous line is 
a further singular point, namely a saddle on V. Because V V = 0 in these points, 
the r.h.s, in (8) is the zero vector and a solution q(t) does not move out of this 
point. Regardless of  this problem we can include these singular points in a theory 
of descent paths by looking for possible entering or stepping out directions of a 
solution curve [13, 26]. In equilibrium positions the configuration space and the 
tangential hyperplane to the potential function V are parallel. Hence a computa- 
tion of  the eigenvalues of the Hessian matrix (Vqkql)[q=qs t yields the principal 
values of  curvature in V and their directions as well. It is known [26, 58] that we 
can reach a minimum from all points of  a suitable near neighborhood. All these 
curves are converging asymptotically to the directions of the eigenvectors, and 
most of  them to the eigenvector direction of the smallest eigenvalue. In contrast 
to that a saddle can be reached exactly only from the subspace of eigenvectors 
belonging to the positive eigenvalues, and only be abandoned in the direction 
of the negative eigenvalue of the Hessian (cf. the definition of a saddle of first 
order). It is the so-called decomposition direction of the saddle. 

Definition. A solution q(t) of the system (8) starting from a saddle point by an 
infinitesimally small displacement in the direction of the negative eigenvalue of 
the Hessian is called intrinsic reaction coordinate (IRC), see [12, 25]. 

Remarks. (i) The IRC is uniquely defined as the path connecting a saddle with 
a near minimum. On the other hand we do not know which of  the infinitely many 
solutions entering asymptotically the direction of the smallest eigenvalue of the 
minimum will be that solution which crosses the saddle upwards on an ascent 
path [59]. Moreover, we do not know whether a direction of any other eigenvalue 
leads to the saddle. This uncertainty is - contrarily to recent results of Natanson 
[33] - independent  of the clear numerical instability of an ascent following the 
gradient. 

(ii) The potential function V has in a saddle qsp in the direction of the transition 
vector the shape of a valley, This follows from the definition of a saddle. On the 
other hand it is known that the path of steepest descent enters the minimum 
along the direction of its smallest eigenvalue [26]. From this picture the idea was 
formed the IRC would describe that curve in the configuration space which 
represents the bottom of  a valley. There are a lot of chemically relevant examples 
where this notion may be a more or less good approximation to the real situation, 
but there are also further examples with a significantly different characterization 
[8-11] (see also the detailed paper by Mezey [60]). 

The point is the convexity or nonconvexity of equipotential surfaces. In Fig. 1 
we show a two-dimensional picture of an IRC reaching the potential minima xt 
or x2, respectively, not along the bottom of the valley ( - - - ) ,  but along a path 
going down "sideways". If  we assume a neighborhood of the minima as rigid 
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. t "  . ~ .  
, /  " \  

Fig. 1. The IRC on a two-dimensional model potential surface ( - - -  valley paths and displacement 
lines, see text) 

and change the potential surface by mutual displacements of the two rigid 
minima-hollows along the direction of the eigenvector of the smallest eigenvalue 
(that means we only change level lines upwards from the ( . . . . .  )-line) we will 
observe a change in the relative position of the saddle to those of  the both minima. 
Hence, it results a change of the IRC also for the fixed part of the surface. The 
knowledge of the local curvatures of the potential in a minimum position does 
not generally allow a conclusion in which direction the lowest next saddle can 
be found. 

It should be denoted that in Fig. 1 no branching of the (- - - ) -va l ley  exists. So 
we cannot follow one of the branches from the minimum to the saddle obtaining 
the IRC. Consequently, the idea of the optimal ascent path [6] fails here. 

(iii) The solutions of the gradient equations (2, 8, or 23) cross the equipotential 
surfaces rectangular in every regular point [25, 26]. In a potential hollow the 
equipotential surfaces are convex, hence the potential has a minimal value on 
the tangential plane in any point x where this plane touches the potential function 
(see Fig. 2). The touching point be x i . -  This right insight nevertheless led to 
considerable trouble, because it suggested a valley-path character ("minimum 
energy path")  of  every solution curve x(t). Of  course, rectangular to the direction 
of the descent - V  U we have an ascent to both sides. But besides the generally 

• I R C 

X 3 

X1 

X 

Fig. 2. IRC and its neighborhood (the arrows 
illustrate length and directions of -V U) 
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strong anharmonic behavior of that section, the conclusions concerning back 
driving forces connected with this picture are in general wrong. If in a dynamical 
model by the action of the moment of inertia or, in the computation of the IRC 
itself by numerical effects we leave the IRC path, say to x2 or x3, then these 
points will be new starting points for other solutions of the gradient system and 
no "forces" bring back the system to the IRC. The come-back effect (such a 
curve is called "stable" by Mezey [60]) does only exist, if the IRC corresponds 
additionally to a valley path. Furthermore, only in this case it makes a sense to 
deal with vibrational states orthogonal to the path. 
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