
How does a reaction path branching take place?
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Abstract

Valley–ridge-inflection points (VRI) of a potential energy surface (PES) may have a strong relation to bifurcations of chemical reaction

pathways. We explain how a reaction path has to be defined to describe the bifurcation of a ‘valley’ of the PES. We propose a classification of

different VRI events: valley bifurcation, ridge bifurcation, and the mixed case in between. Chemical implications of the different cases are

discussed.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The vibrations of any molecule around its equilibrium

structure may be determined by the harmonic oscillator

approximation to generate the normal modes [1]. The PES

of the electronic ground state for this model is an n-

dimensional paraboloid where n is the number of internal

degrees of freedom [2]. Border-line cases studied are the

large amplitude motion of light atoms, like an H atom in

HCN bending [3,4], or the case of quasilinear molecules,

like HCNO [5–7]. At higher vibrational excitations,

however, every molecule leaves the nearly harmonic basin

of the PES. Stationary vibrational states change to moving

wavepackets [8]. The landscape becomes a terra incognita.

A useful picture of how a chemical reaction proceeds that is

familiar to most chemists is one where a wavepacket

transforms the reactant into the product by generally taking

the ‘lowest energy’ pathway available passing through a

transition state—the highest energy point on the pathway.

Although obviously an oversimplification—given enough

excitation wavepackets can wander all over the PES—the

‘reaction path’ (RP) concept is very appealing. Usually, this

concept uses the RP in any curvilinear shape giving up the

normal mode directions of the basins. The change of normal

modes along the RP is more often than not continuous if

going along the curvilinear valley up to the saddle point

(SP) of the PES [9]. However, there are other, disarranging

possibilities in molecules: (i) the valley can end at the slope,

thus, the transition state is not at the top of the reactant

valley [10,11], or (ii) there is a branching of the reaction

channel usually caused by a symmetry break [12,13]. The

latter point (ii) shall be treated in this article. It is then

assumed that a bifurcation of a PES valley (or of a ridge) is

connected with valley–ridge-inflection (VRI) points.

2. Valley–ridge-inflection points

It is helpful to consider that RP branching is in many

cases connected with the emergence of a special class of

points of the PES, the VRI points [14–19]; we first give a

definition of these points.

A VRI point is that point in the configuration space

where, orthogonally to the gradient, at least one main

curvature of the PES becomes zero. This has two conditions

(i) one eigenvalue of the Hessian must be zero, and

(ii) the gradient is orthogonal to the corresponding zero-

eigenvector.

VRI points in the narrow sense of this definition are

given independently of any curve definition. By contrast,
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VRI points are generally not identical with bifurcation

points (BP) of any curve. Only the RGF curves (to be

defined below) bifurcate at VRI points! Usually, VRI points

represent non-stationary points of the PES [16].

3. Which reaction path can bifurcate at a VRI point?

3.1. Probing the steepest descent

Goodness is to human nature like flowing downward to

water. Meng-tse (c.300 BCE) (for Brenda and Manfred)

Looking for the potential of the usual RP following to

locate bifurcations we have to treat firstly the IRC [20], see

also Refs. [21–23]. It is a simple RP concept by the union of

the steepest descents from SP down to reactant and product

basins, respectively. With arc length s for the curve

parameter, a steepest descent curve xðsÞ is defined by

dxðsÞ

ds
¼ 2

gðxðsÞÞ

kgðxðsÞÞk
: ð1Þ

However, because of its simplicity of using the gradient g

only, the IRC does not detect how the level lines change

from convex to concave behavior: by means of example,

Fig. 1. The path through SP1 is a hanging valley. The IRC

from SP1 leads straight downhill to SP2. It goes orthogonally

to the levels, and this is the upshot of the state-of-the-art!

The definition does not use the curvature of the levels, and it

does not test any valley floor character of its pathway. But

after a change of levels from convex to concave behavior

the IRC ceases to be a useful RP model. In the convex

region it can serve as an RP model, however, actually not in

the ridge region.

Included in Fig. 1 is the border between ridge and valley

regions [13]. That border is defined by

gTAg ¼ 0; ð2Þ

where A is the adjoint matrix [17] to the Hessian matrix H:

A is defined as ðð21ÞiþjmijÞ
T where mij is the minor of H

obtained by deletion of the ith row and the jth column from

H; and taking the determinant. The superscript T denotes the

transposition.

Any small perturbation of the IRC calculation also does

not push immediately the steepest descent into a side valley,

but it goes further through the ridge region in most cases. In

Fig. 1 two example pathways are included. The VRI point is

at (0.52, 20.85). The steepest descents which start there

close to the symmetric IRC will diverge from the IRC very

slowly [24,25]. The distorted pathways run past the lower

SP2 only, to directly find a minimum. Pay attention to the

often assumed opinion that the IRC splits at the VRI point.

For example, this is explicitly said in Ref. [26], or drawn in

papers of Sordo et al. [27]; but it is not true.

From a mathematical point of view, the IRC pathway Eq.

(1) is defined by an autonomous system of differential

equations for a tangent vector along the curve searched for.

Its solution is unique. Therefore, no bifurcation can occur

before reaching the next stationary point [28]. Hence, no

branching of PES valleys will be truly described by

following the IRC. A further lack of the IRC concept is

that the IRC usually miss asymmetric VRIs at all [13];

however, see an exceptional result in Ref. [14].

3.2. Probing the distinguished coordinate (or RGF)

Some 20 years ago an alternate concept to the IRC was

proposed: choose a driving coordinate along the ‘reaction

valley’ of the minimum, go a step in this direction, and

perform an energy optimization of the residual coordinates

[29,30]. A combination of the distinguished coordinate

method starting at the SP and steepest descent was also used

[31]. In Fig. 1 one can study the effect of the method: we

depict some minima found by small circles. Starting at the

SP1, one indeed obtains the valley downhill, and after the

VRI point the method is able to find the parting of the ways

of the valley bifurcation. The IRC continues to go further

downhill the ridge, but a minimization orthogonal to the y-

direction splits into two subdimensional minima at every y

level after VRI. It finds the two valley branches to the left

and to the right. Thus, we have found a model of the RP

bifurcation: fortunately, the VRI point is the BP of the

searched curve. Note that the two branches do not leave the

former IRC under an acute [12] or asymptotic small [32]

angle (as many theoreticians still assume!). The branches

Fig. 1. Equipotential lines of a model potential energy surface. Thin dashes

depict the border between valley and ridge. The valley–ridge-inflection

point (VRI) is at ðp=6; 2 0:85Þ: RGFs are bold dashes and steepest descent

lines starting near the VRI are the connected fat points. A search for minima

orthogonal to the gradient direction of the IRC (the y-axis at SP1) gives the

points of the ‘o’ symbols.

W. Quapp / Journal of Molecular Structure 695–696 (2004) 95–10196



usually split in an orthogonal kind. At the beginning, the

outgoing tines are collinear.

Warning: the two branches found by the distinguished

coordinate method after VRI are a fine RP bifurcation

model. However, we do not know exactly the ‘direction’ of

the bifurcating valleys. Because, we use the orthogonal

direction to the y-axis for the search being orthogonal to the

former IRC direction. The distinguished coordinate paths

only follow the outgoing valleys qualitatively. The path-

ways are usually not valley floors (whatever this may be).

They follow a convex valley–like situation of the level lines

down to the minima. Thus, they do what we want.

The methodology of the distinguished coordinate

method was truly criticized by some workers, see for

example by Müller and Brown [33], Williams and

Maggiora [34], and Cioslowski et al. [35]. They found

samples, where the distinguished coordinate method fails:

it cannot follow the path over a turning point (TP) where

the ascent of the curve changes to descent, or vice versa.

More recently, the method was transformed into a new

mathematical form [36]. The former limitations do not

stem from failures of the approximation of the defined

curve but are manifestations of the concept of minimiz-

ation, orthogonal to the distinguished direction. If also the

‘switch’ to a maximization is allowed, then the TP problem

disappears. It was realized by the method to follow the

reduced gradient (RGF) [17,36–38]. RGF finds a curve

where the selected gradient direction comes out equally at

every curve point, xðtÞ

gðxðtÞÞ=kgðxðtÞÞk ¼ r; ð3Þ

where r is the unit vector of a search direction, and g is the

gradient of the PES. RGF is a favorable approach for RP

branching, because the VRI points of the PES are the BPs

of special RGF curves. In Figs. 1–3 we use RGFs to mark

the VRI points with valley– or ridge bifurcations.

Equivalent curves to RGF are also obtained by the global

Newton method (Branin curves [39], see also Ref. [17]).

Branin’s method is additionally well adapted to exactly

calculate symmetric VRI points [17]. There is a successful

application to find VRIs of H2O [18], H2S, H2Se, and

H2CO [19], and C2H5
þ[40].

4. Classification of VRI regions

4.1. Valley bifurcation

Fig. 1 shows the valley bifurcation downhill starting at

SP: the usual case of which chemists recently are interested

[41]. The two branches lead to two product minima. At the

VRI point the chemical system comes to its crossroads. The

VRI point is on a valley–pitchfork (vpVRI) bifurcation.

Analogously, the uphill case of a bifurcating valley is

often studied, see Refs. [12,19] for the case of H2CO, and

Ref. [13] for a legion of further references. In the uphill

case, the two outer tines of the pitchfork being valleys lead

to two SPs with a higher SP of index two in between [42].

For a figure of the uphill case cf. the remark at the end of

Section 4.2.

4.2. Ridge bifurcation

Ridges are interesting in theoretical chemistry by itself

because they are the prerequisites for some reaction rate

theories using the ‘dividing surface’ of the transition state

Fig. 2. 2D model PES with three different VRI regions. RGFs between

interesting stationary points are bold dashes (two tri-tined pitchforks on the

left and the right hand side) and the bold full branches in the center meeting

at VRI3. Thin dashed lines are the border between valleys and ridges of the

PES. Note that the axes are not equally scaled.

Fig. 3. 2D model PES with VRI region of a descending, bifurcating ridge.

An RGF depicting this is shown by bold dashes. Another RGF between

MIN and SP1 is the bold line, and the IRC from SP1 is the line with dots.

Thin dashed lines show above the border between valley and ridge of the

PES. Below there are Gradient Extremals (GE) included by dense bullets.
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[43]. There is a generalized concept of the transition state in

form of a special potential ridge line [44].

If we start in Fig. 2 at SP4 in y direction uphill and do not

minimize, but maximize, we obtain the ridge of the PES. At

point (1.57, 20.73), the VRI2, the uphill case of a

bifurcating ridge is observed. The two outer tines being

ridge branches lead to two SPs of index two, or hills. The

VRI point is on a ridge-pitchfork (rpVRI) bifurcation. From

SP3 down, between the two hills, there is of course a col-

valley. What happens with the valley at the VRI point,

VRI2? It is a situation neither discussed in chemistry nor in

spectroscopy up to date. The valley disappears totally. It is

quite more disturbing than the situation given by an ending

valley at the slope of a still convex region [10,11,13].

Minimization orthogonal to y direction at a point below the

VRI point cannot find a minimum anywhere in the

neighbourhood. If at all, the minimization may jump to

the valley–bifurcation at the left hand side of Fig. 2.

Consequently, a mode orthogonal to y-axis which may

vibrate orthogonally at transition state, SP3, will be

destabilized and destroyed at VRI. The definition of an RP

by the distinguished coordinate breaks down, in this case, as

well as that of the IRC.

Fig. 3 shows a test potential with a bifurcating ridge

leading downhill. The two bifurcating branches connect the

‘main’ ridge on x axis with the SPs. The minimum valley

leads uphill along the x-axis and ends at the VRI point, again

totally. It does not bifurcate? At least neither for RGF lines,

nor for the IRC. From MIN to SP there can be drawn a

family of RGFs which make the connection, but all of them

start at MIN, and all have a different acute angle to x-axis.

(One member of this family is shown.) Also the two IRCs

from the two SPs meet at MIN under an asymptotic,

tangential direction to x-axis. To define a valley bifurcation

in this case, we can use the more complicated tool of

gradient extremals [13,45]. BP1 of a GE is the point where

the MIN valley splits into three valleys: the two outer

valleys to the SPs, and the central cirque [46] going further

uphill to VRI. Analogously, the BP2 of a GE is the point

where the ridge from the right hand side splits into three

ridges: the two outer ridges to the SPs, and the central cliff

[46] going further downhill to VRI. What is the true RP

model--IRC, RGF, GE, or any other definition? This may

depend upon the aim of the treatment. Note that the GE does

not bifurcate at the VRI point, in general. It is well

demonstrated on the given surface.

Chemical examples fulfilling the model PES of Fig. 3 are

the transition state region of the F þ H2 ! FH þ H

rearrangement collision [47], as well as the analogous

reaction Cl þ H2 ! ClH þ H [48], and possibly

the dissociation reaction of the methaniminium cation,

CH2NH2
þ ! CHNHþ þ H2 [49], see Fig. 2(b) there.

Remark: a multiplication of the test surface by minus one

will change it into a sample for the case of an uphill

bifurcating valley for Section 4.1.

4.3. Border-line case: ‘flat’ branches

If there are the two possibilities of a pitchfork of both,

valleys (say uphill) as well as ridges (say downhill), then

there should be the border-line case of two ‘flat’ outer tines

of the pitchfork. The case is indeed met in Lasorne et al. [50]

for a PES model of the isomerization of H3CO ! H2COH,

see Fig. 3 there. The two at tines are neither valleys nor

ridges, but simply a flat equipotential line. They form a

degenerate version of the extremal solution of minima ¼

valleys, or maxima ¼ ridges: the extremum along a ‘flat

potential’ is the full line.

A second example is the torsional and wagging vibration

of methylamine, H3C-NH2 [51], cf. also Ref. [45], Figs. 5–7

there. The wagging mode direction shows the border-line

case of a flat pitchfork. The flat tines lead to two SPs. They

are the border of an ‘isomerization channel’. The ridge in

between uphill leads to a hill.

4.4. Mixed bifurcation

We observe a further kind of bifurcation in the center of

Fig. 2. The special RGF curve shown by bold lines

connects minimum MIN2 with Hill1, an SP of index two, as

well as SP1 with SP4. The search direction used is

r ¼ ð0:238; 0:975Þ: The special RGF passes VRI3 at

(1.02, 20.78). Near the minimum it describes a cirque

pathway [46], and it changes to a ridge path after VRI

uphill. The RGF curve bifurcates at VRI3 but it is not the

usual pitchfork picture. The character is mixed. The valley

from minimum continues to the right hand side to be a

valley (up to a TP where also the valley character ends

here). So, the RP character of the minimum cirque path can

be continued as a valley after VRI. The ridge line from

maximum continues to the left hand side to be a ridge

(down to a TP where also the ridge character ends here).

We may classify the VRI point to be of a valley–ridge

touching kind (mixVRI). The characteristic of the mixed

bifurcation is that the borderline between valleys and

ridges intersects the outgoing branches transversally, not

tangentially, as it does in the pitchfork cases, cf. Fig. 2.

In a triatomic molecule, HCN, there are observed such

mixVRI points recently [13]. Usually, mixed VRIs are

asymmetric VRIs [13].

5. Conclusions

The mathematical description of RP branching is of high

theoretical interest. From the author’s viewpoint, it is one of

those questions which now requires closer consideration in

PES computational chemistry cite

‘The rate of a reaction can be estimated by transition

state theory from the energy, structure, and vibrational

frequencies of the transition state. Reaction path

W. Quapp / Journal of Molecular Structure 695–696 (2004) 95–10198



following can identify with some certainty the reactants

and products connected by the transition state, unless the

path branches. If the branching occurs before the

transition state, there will be a separate transition state

for each branch, and transition state theory can be used to

estimate the relative rates. If the branching occurs after

the transition state,…, the branching ratio cannot be

determined by transition state theory, but depends on the

nature of the potential energy surface as it descends from

the transition state toward the different products…’ [41].

The IRC or generally steepest descent are not adapted to

serve as an RP model for RP bifurcation. If there is a

continuous valley from SP to minimum (convex isopotential

hypersurfaces with respect to the minimum) the IRC may

best serve as an RP model. However, in case of the existence

of concave VRI regions along the IRC progress, one has to

look for other RP models or modifications which may

bifurcate at the VRI point.

A promising model is the RGF approach using the

VRI points of the PES. If at the VRI point a valley

shows a pitchfork bifurcation, or if it is a mixed VRI

point then the corresponding RGF branches may be

suited to a well-behaved RP model. The usual (more or

less orthogonal) pitchfork branching of RGFs orthogonal

to the IRC is, admittedly, not a very illuminating

description of the theoretical chemist’s imagination of a

‘tangential’ branching. However, the nature of branching

defies that conventional description. The nature of

branching is a crossroad like structure. Fig. 4 shows

the nature of a biological branching for comparison: here

the ‘ridges’ of the cactus (the ribs) also do not bifurcate

tangentially. Back to chemistry: despite its importance, a

theory of RP bifurcations is still in its infancy. The two

branches of RGF leading away and being valley lines

may be the border of a ‘reaction channel’. Other lines of

the channel will be obtained by a slight change of the

search parameter r of Eq. (3). Members of such a family

are curves without the corner, in contrast to the RGF

through the VRI point. Note that RGF curves were

recently used to realize a calculation of an RP

Hamiltonian [52].

If a turning point emerges, the RGF ceases to be a

good RP model as well. Again, another search direction

r may grasp a better line for an RP model [45]. If one

finds a VRI with a ridge pitchfork then the discussed

geometrical models of an RP cease to be meaningful at

all. From a more general point of view, any line from a

minimum to an SP of index one can be an RP model if

two conditions are fulfilled: (i) the energy is mono-

tonously increasing along the line, and (ii) the line always

leads through valley regions. (A hypothetical straight line

from MIN1 to SP1 in Fig. 1, however, is not such an RP

model because it intersects a ridge. In Fig. 3 it is such an

RP model.)

In more than two dimensions the VRI definition is

valid as well. RGFs also bifurcate there, but there is

generally a high dimensional manifold of VRI points

[17–19,40]. However, the simple classification of valleys

and ridges in 2D falls to pieces and opens to a wide field

of intermediate cases [53].

6. Outlook

There was a speculation on the meaning of VRI for high

overtones using the example H2O [18]. However, it seems

that it is to reject by the experimental assigns of high local

modes of water. So, the discussion of the meaning of VRI

for spectroscopy is still open.

There is a recent remarkable experiment with a

stimulated intramolecular vibrational energy redistribution

(IVR) [42]. It leads to a chemical reaction path with an

obvious bifurcation at the slope of the PES, the

dissociation of diazomethane, CH2N2. In our opinion,

the result [42] may be a cornerstone for an experimental

foundation of the theory of RP bifurcations, because

usually, IVR is defined in terms of the local density of

states, but not in terms of the local PES directly, cf. [54]

and references therein.
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Appendix

The test surface used in Figs. 1 and 2 is

Eðx;yÞ¼44730:4129266786:5363 cosðyÞþ26352:6908

�cosð2yÞ23117:3613 cosð4yÞþ659:3217 cosð6yÞ

þ621:9640 sinð3xÞ sinðyÞ2138:3050 sinð3xÞ

�sinð2yÞ2111:5488 cosð8yÞþ41:8227 sinð3xÞ

�sinð4yÞ27:7979 sinð3xÞ sinð6yÞþ9:9258 cosð6xÞ

219:0681 cosð6xÞcosðyÞþ600 cosð6xÞcosð2yÞ

2500 sinð3yÞ:

It is a modified version of a 2D model surface of the

torsional and wagging vibration modes of methylamine,

H3C-NH2 [51], cf. also [45]. The two pitchforks are

solutions of the RGF Eq. (3) with r¼ð0;1Þ; thus, Ex ¼0:

The RGF line of the mixed behavior is found by Ex2

0:244Ey ¼0:

The test surface used in Fig. 3 is Eðx; yÞ ¼

x2 þ ð6 2 3x 2 y2Þy2:

The pitchfork is solution to r ¼ ð1; 0Þ; thus, Ey ¼ 0:

The special RGF line (selected from a family of lines)

leading to SP is 0:91Ex 2 0:42Ey ¼ 0:
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