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A growing string method for the reaction pathway defined
by a Newton trajectory
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The reaction path is an important concept of theoretical chemistry. We use a projection operator for
the following of the Newton trajectoryNT) along the reaction valley of the potential energy
surface. We describe the numerical scheme for the string method, adapting the proposal of a
growing string(G9) by [Peterset al,J. Chem. Phys120 7877(2004]. The combination of the
Newton projector and the growing string idea is an improvement of both methods, and a great
saving of the number of iterations needed to find the pathway over the saddle point. This
combination GS-NT is at the best of our knowledge new. We employ two different corrector
methods: first, the use of projected gradient steps, and second a conjugated gradient method, the
cG+ method of Liu, Nocedal, and Waltz, generalized by projectors. The executed examples are
Lennard-Jones clusters, Land L}, and an N-methyl-alanyl-acetamid@lanine dipeptide
rearrangement between the minima,cand C5. For the latter, the growingrisig calculation is
interfaced with thesAssiAN03 quantum chemical software package.2@05 American Institute of
Physics [DOI: 10.1063/1.1885447

I. INTRODUCTION II. NEWTON TRAJECTORIES

The design of a robust method for the determination ofa e define the projection operator. We choose an
reaction pathwayRP) on a complex energy landscape is an-d|n_1enS|0naI column_v_ectorfor the projection. It has to be
very important problem. This work uses Newton trajectoriesa unit vector. We additionally use the transpoTSt_ad vector

. being a row vector. The dyadic prodult=r-r' is an(n
(NTs) in double-ended methods of a recent paper of the>< n) matrix. D, projects withr:
author' combined with a proposal of a growing strifGS +Pr ProJ '
method recently given by Petees al? A RP of an adiabatic Dir=(r-r)-r=r(r’-r)=r. (1)
potentlgl-en('ergy' surfacePES is the usual approach to .the The projector which projects down theis with the unit
theoretical kinetics of large chemical systems. The RP is any, atrix |
line connecting two minima by passing the saddle pt&R _
in n-dimensional coordinate space. The energy of the SP is P =1-D;. (2)
assumed to be the highest value tracing along the RP. Itis thehe concept of RGE>'is that a selected gradient direction
minimal energy a reaction needs to take place. We do nak fixed along the curvex(s), with curve parametes for
find it difficult to recognise RPs, we find it difficult indeed to gradientg of the PES
offer a definition that is conceptually watertight and immune

x(s)/|lgx(9)||=r. 3

to counterexampléHere we use the distinguished or driven- 9x(9) x| ®
coordinate methddin the modern form of the reduced gra- Which directionr to select is a certain arbitrarineSgve will
dient following (RGP),*® also called NT. We insist that the discuss it below using some examples. The original driven-
search of an appropriate RP is not necessarily equivalent tePordinate methodemploys the eigenvector direction of a
the finding of the steepest descent from’$Rost RPs can be  féaction valley. However, in th¢higher-dimensional ex-
defined with the help of projection operat&rihe tool is @mples below, we will not execute the calculation of the

employed in string methods® the string is divided into a Hessir(]am at all. . lizable b - fth
collection of nodes which are moved by projectors. The The property(3) is realizable by a projection of the gra-

nodesx, ... X represent the RP by a chain of length dient employingP, of (2). We pose the Newton prolec?or
where the endpoints may be the minimgand X, 1. P.g(x(s)) =0. (4)
Our GS-NT method is divided into [ -5 . : .

_ pr¢d|ctor and COMEC b is an nxn matrix of rankn—1. The solutionx(s) is

tor steps. We describe both, and especially the terminatiof, med Newton trajectory. If starting at a minimum, E4).is

criterion and performance of the corrector, and at the Vveryyia|y fulfilled for every directionr. Thus, we may choose
end, the implementation of two different methods for theany girection because there is a solution which starts at the

corrector step. minimum. If starting at any point, we have to choose rfor
the normalized gradient of the point. In the general good-

IEAX: (49) 341-9732199. Electronic mail: quapp@rz.uni-leipzig.de natured case, each NT passes each stationary point. A full
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family of NTs connects the extrema if we vary the search
directionr ™ thus, NTs better connect saddle-dominated re-
gions with minima-dominated regions than the steepest
descent/ascent can do. A monotonely increasing energy pro-
file over an NT, or a monotonely decreasing, as well, indi-
cates a true, convex reaction vali@yProjector(4) can be
used in a string method at every actual chain point, without
any further derivativé. If it does not result in zero, choose
the downhill direction of a node moving along

p=-(-r-rHg. ©)

The application of the projector does not need the tangent of
the curve, any reparameterization of the string, nor any
spring forces of the chain, and every chain point can be
moved independentfyIt predestinates the Newton projector
for the growing string methddin an exceptional kind. The
main problem under an application of operaf®ris nothing

but finding an appropriate steplength or a dampening factor =

n for p.

-

0.5 F

X

IIl. GROWING STRING METHOD FIG. 1. GS method on Miller—Brown potential from minimuvty to mini-

. . . . _mum M;. The predictor step at;5 is shown, and the corrector back to the
The growing string method adapt|vely evolves the Smngsearched RPFarrows. The desired number of nodeslis23. The Newton

from its endpoints). Because the nodes grow along the RPrajectory to the initial direction is included for comparison. The growing
the string can avoid excessive rugged regions of a PESking follows the NT very well.

where electronic structure calculations may fail. We search a

RP which should connect the initial minimury,; with the  minima; they can be any points in two different pockets of
end g, by a chain ofm nodesx,. We calculate successive the PES which we want to connect by a NT over a SP:
nodes beginning at the initial minimum. choose the gradient iy, to be the search directiorg, may
Jot be on the NT, however, the SP may)be.

In this paper, we do not reparametrize the string. The NT
with respect tor should also be followed if the nodes in-
} crease their distance and are not distributed evenly. If the

m- molecule is described in Cartesian coordinates with three
Vier =W+ (1= Mg, 1= m+1-k’ ® overall rotations, we sometimes meet the problem of a mild
“bunching up” of nodes. It is discussed in Sec. IV B below,
and in example V E. Generally, we hope for an automatically
evenly distributed growing string, which then is an indicator
Yor a well-chosen search direction and a good execution of
the corrector.

(i) X, IS an approximated node on the RP. We choose
next guess point,,,, of the string between the actual
node and the final minimum by

k=0...,m-1, see Fig. 1, wherm is the desired num-
ber of nodes andy=Xini, Ximr1=Xsin-

(i)  Doing corrector steps with the gradient at the gues
point y,,, using the Newton projectdi5) up to con-
vergence, thus up to a threshaldor the right side of
(4), see Fig. 1, the steps go orthogonally to the searchy, \MPROVEMENT OF THE PROJECTED GRADIENT
direction. In this paper we use two different corrector geARcH BY THE ce+ METHOD
methods: first, the pure Newton projector with an ap- . .
propriate dampening factey and second, a conjugate _The corrector step by Ecﬁ5)_ uses a prOchted grad_|ent,
gradient method modified by the Newton projector. which works well in low dimensions, and which works finely

the process is repeated up to the final minimum. ~ relation to further orthogonal directions. However, the
(iv) If more than one SP is found on the chain, one maysteplength of the gradient methods is always a problem. Us-

adapt the search directian“on the fly.” ing a dampening factoy; one can, with some experience,
successfully apply the stegsof Eq. (5). One condition is

To execute the instruction, we need the desirabatal fixed that the tolerance for the corrector is not too sharp! But this
number of nodesn and the search direction The former is recommendable because we search a coarse approximation
results in the steplength for the guess point, the latter in thef the RP, which should lead over a maximum value of the
direction of the corrector to the N{fnodelling the RP. The  energy in any neighborhood of the SP. The SP itself can then
problems with the choice of for finding a special saddle on be improved by another method.

the NT are discussed below, Sec. V, examples VB and VE. In the general, higher-dimensional case, however, we
To check the convergence pf thus that the projected and need improved methods. A minimizer with high merits is the
inverse gradieng in Eq. (5) is zero, we also need a conver- cG+ algorithm of Liu et al®co+ is a conjugate gradient
gence criterione.' (Note that Xini and X5, need not be code used for solving nonlinear, unconstrained optimization
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problems. We concentrate on the positive Polak—Ribiere pa-
rameter(B:=max 3, 0}). Thec+ routine is especially effec-
tive on problems involving a large number of variables. It 15+
needs the subroutine which, given an input vestoreturns

the function and gradient for the function one wants to mini-
mize. The Hessian is never computed. The steplength along ¢
search direction is additionally determined by a line search 1t
routine, which is a slight modification of a routine written by
Moré and Thuenté? The purpose is to find a step which
satisfies a sufficient decrease condition and a curvature con:
dition. If applying the projected and inverse gradipraf Eq. 05|
(5) in the steepest descent search, we go trivially orthogo-
nally to the search direction in every step. However, if
applying cG+ as a minimization, using the projected and
inverse gradient5) for the input, this does not guarantee that 0
the method moves in the constrained plane orthogonally to

the search direction of the Newton trajectory search. We
choose a more indirect way to save the orthogonal search tc

the directionr.

X

A. Lagrangian condition FIG. 2. Reaction path on the Miiller-Brown potential from minimifgto
minimum M. An 11-nodechain is obtained using the Newton projector. The
We formally pose an additional degree of freedom to theconvergence of the growing string method needs the calculation of 19 gra-
energy functionE(x) by dients. The search direction for the GS method is readjusted on the course.

L(X,N) =E(X) = ArT-(x—y) @)
jected gradientp. An example below needs a very sharp

and search a minimum for thg, 1) variables, wherg may threshold of the corrector: here the modified+ works

be the initial point of a corrector loofsee Fig. L \ is the

Lagrangian multiplier, and the linear equation of a hyper-We”'

plane
Cx)=0=rT-(x-y) (8)

should be fulfilled at the end of the corrector loop, as well as3- Zero eigenvalues

the value of then+1sp variable The projected gradient, E¢5), contains(usually small
A= £lgx)ll. (9)  parts of the three directions of the so-called zero eigenval-

] . . . ] ues of a rotation of the molecule in space, if we work in
The gradient folL is for the firstn dimensiongy(x)-Ar, and  cartesian coordinates, and if we are away from stationary
the last entry is €(x). An application ofP; on the firstn  points59|f the condition for the tolerance of the corrector
dimensions of the gradient &f again results in Eq4), and s not too sharp, then the three components of the gradient,
Eq. (3) is fulfilled with ansatz(9). We will find a minimum \yhich do not contribute to a descent of the energy, are not of
solution of thg constra|.ned prpble(ﬂ) b.y. employing the  jnterest. However, in the alanine dipeptide example below,
known conditions ofL directly in a modified, but “uncon- \ye |00k for a pathway in a subspace of a very low curvature,

strained”"cG+ run: in contrast to other degrees of freedom of the molecule. The
step the “true”\ value (9) for the input. norm of the gradient is small, and the steplength of the gra-

(i) We use the gradient df(x,\) for the cc+ program, dient method has to be very small to avoid zigzagging, thus
however, the calculated steps, j=1,... of that pro- avoiding the trapping of the iteration near a narrow curved
cedure are projected 153 in every loop(and byPgy, valley. Here, the threshold of a corrector step has to be
Pry, andPg,, see below Thus, we only use steps in Sharper than the “zero” part of a whole rotation.
the hyperplanec(x)=0. Executing the process of minimization steps along

(i) We suppress some strong tests of ¢@- program, dampened vectors of Eq. (5), there emerges a strange pro-
for example, we allow that in some steps the searctf€Ss of a kind of redistribution of steps into the directions of
direction is not always a strong descent direction: wethe molecule’s rotation. This even happens if the linear hy-
leap over the tesb!-g>0. We generally restrict the Perplane equatiof(x)=0, Eq.(8), is fulfilled throughout in
steplength along a search directi@), such as in all corrector Iopps{for example, with +1.6-10 deV|at|(_)t)._

Ref. 9. The redistribution leads to a gliding down of the optimized
point. It moves down in the reaction valley nearer to the

There is some hope that this modified+ searches better in local minimum, being the start or end point of our reaction

the projected subspace orthogonalrtdhan the pure pro- path. Thus, we loose the advantage of the NT method, not to

Downloaded 06 May 2005 to 139.18.10.9. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



174106-4 W. Quapp J. Chem. Phys. 122, 174106 (2005)

need spring forces of a chain of poiritsy mathematical test Gradients
problems without “nonlinear zero directions” one does not 35
find such a redistribution.

Modern quantum codes should be sufficiently reliable 30
such that the computed gradient is at least rotationally invari-
ant, so if one were to explicitly project rotations out of the 25

gradient vector, it would be unchanged. However, this is not

the case. The rotations of the whole molecule play a role 20
here, under the use of many small-gradient steps. In the firs
order, one can even project out the linear components of the 15
rotational parts of the gradiehthowever, it is only a shift of

the problem to lower figures. Nevertheless, we use this pro- i 5 12 5 20 Nodes
jection for the directiond;, which are given by thec+

method. WithJ=3(1-1) for I=1,...,n/3, we define the three  FG. 3. Effort of the growing ends string method for the MB potential.
rotational zero directions

RJ+1)=0, R(J+2)=-XJ+3), dient calculations, which we need for three nodes, to 36 gra-
dients for 23 nodes. The improvement against the moving of
Ry(J+3)=XJ+2), a full initial chair' is dramatic, as well as the saving against
the growing string method for the steepest descent pathway,
R(J+1)=XJ+3), R/(J+2)=0, where the effort is between 100 and 40 gradient calculations.
(10) (But in that method the computational effort scales much
R/(J+3)=-XJ+1), better with the number of nodgdn Ref. 9 there are around
500-1000 gradient calculations used for a 17-node nudged
RJ+1)=-XJ+2), R I+2)=XJ+1), elastic band on the MB surfac€igs. 4 and 5 of Ref. 9
R,(J+3)=0, B. Four-well potential
and use, after a norma“zation, the three VeCR))(SRy, and - Figu-re 4 shows further a-tWO'dimenSiomaD) model. It
R, in a projection operatoPgy -Pry -Pr, in analogy to the is the slightly changed function for a four-well potenttal
P projection(2). E(xy) =x*+y*— 22 - 4y? + xy+ 0.3+ 0.1y. (11)

Again, we look for a RP fronM; to M. The RP calculated
has to connect an intermediate minimum. The search has to
A. Muller-Brown PES lead from an initial minimum to the intermediate over the

We use the Miiller—BrowiMB) PESL® see Fig. 1, for a first SR, a_nd then_ over the second SB the final minimum.
. ; ; . Ataut chain of points may lead froivi; over the highest SP
test of the pure Newton projector with the growing string

method. We start d1; with a straight line between the two 0 Ml.’ surrounding only the summlt_neéo,O).
- . ha S Figure 4a) demonstrates a possible drawback of the NT
outer minima,M3; andMj. It is the initial search direction.

. method: the search direction(here the direction fronM; to
We use the dampening factor =0.13, and the same con- )
o = M,) may not be defined cleverly. If there are more than two
vergence criterion o&=0.08 for the coarse convergence of

. . .~ minima we, a priori, cannot know which search direction
the loop of the actual guess point. A chainmef 11 nodes is ; . .
T . . leads to a close, desired connection between the stationary
used in Fig. 2 to illustrate the resu{The slight corner cut-

ting is due to the coarse tolerance vajulm Ref. 1 we points. Beginning aMs, the NT tor leads correctly to S

_ . further toM,, and further to SR However, from SP, the NT
needeck=9 oops for the whole test chain, thus, the numberIeads to the summit of the surface, but not directly to the

of gradients needed wa&sn However, here, we move every _ - S . :
S -2 .final minimum. The approximation by a growing string
new guess point in its own loop. Note that the guess point is . . ;
: method with projectok5) leads very quickly, and correctly,
already near the RP: usually, the convergence of the correc- P . X
. ~upto SR, but then it skips downhill to a next section of the
tor needs one or two steps. The dampening fagtocan vary;
downwards it can be as small as one wants, however, going
to higher values, it is restricted by the zigzagging of the
algorithm. Of course, if it is smaller, we have to execute
more steps.

Because the saddle point SB far away from the start-
ing chain, we may additionally use a moderate turn of th
search direction along the string. If the actual node nurkber
surpasses half of the chain lengtli2, we take forr the Next, we take the Lennard-Jones cluétdor seven ar-
direction of node(k-L/2) to the final minimumM;. Figure  gon atoms, La"%?!for a 21-dimensional21D) application
3 shows the effort for different chain lengths. The effort in- of the growing string method with the Newton projector.
creases quite linearly in the number of nodes from nine graThere are two minima, a pentagonal bipyramid-at6.51

V. EXAMPLES

In Fig. 4(b) we again change the search direction on the
fly. The search direction becomes the actual direction be-
tween the last node and the final minimum. Clearly, such a
definition is better adapted to complicated PESs.

e
C. Lennard-Jones cluster LJ -
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Energy

- 856
- 85.8
- 86.0
- 86.2
- 86.4 O
8667

- 86.8

Nodes
1T 3 5 7 9 11 13 15 17 19 21 23

FIG. 5. Growing ends string method with 23 nodes for thg, lpbtential
(assuming argon Shown is the energy profile. The left arrows indicate the
two outmost right atoms which are mainly involved in the rearrangement.
From top to bottom, the resulting curves for the corrector threshelds
=1.0, 0.5, and 0.1 are shown. The SP at node 11 is well approximated.

7-node chairf,where the result begins at about 50 gradients
(Fig. 6 of Ref. 9. We need, for seven nodes, only seven
gradient calculations with the same parameters 0.03/0.06 as
above.

The PES of the LJ cluster is used in the full Cartesian
coordinates, including the possibility of overall translation
and rotation of the cluster. Here it does not mean any diffi-
culties for the method, because the downhill steps of the
projected and inverse gradieptmainly use the very large
nonzero parts of the gradient of the true internal coordinates,
in comparison to the nonzero parts of the rotational direc-
tions.

Note that the search directions between permutational
rearrangements such as in Ref. 9 are usually misleading be-
cause there the depicts a pathway into the high-energy
regions, or the calculation diverges. The GS-NT method may
have trouble with such minima, may be no direct neighbors
on the PES. However, usually, if the evolving end of the
string is far away from the starting chain, the search direction
T may be additionally adapted to the direction between the
actual node and the end minimum.

FIG. 4. Newton trajectorydashes and the growing ends string method
(connected bullejsfor a four-well potential including an initial chain, for
comparison(a) The fixed search direction between both minima is not well
chosen; for the second part of the RP, see t@tThe search direction for
the GS method is readjusted on the course.

D. Lennard-Jones cluster LJ ,, and the cc+ method

For an exercise in front of the alanine dipeptide example
below, we treat the toy problem of the JJcluster of an
analogous dimension, and apply the+ method including
energy units and a capped octahedron—it5.94 energy the projection ofP, and of the rotational directiond.0). The
units. The search direction is the direction between the result of the test is given in Fig. 5, where we use the global
minima. The straight line guess between the minima are theninimum of that cluster from the Wales tabfésat the right
three-dimensiona(3D) coordinates(x,y,z) of atoms 1-7 of hand side, and a neighboring second-lowest-energy mini-
the two minima in the linear interpolatiof)." We use the mum being only slightly higher in its energy. A chain of 23
small dampening factor of 0.03, corresponding to the highenodes is used. The starting chain is again the simple linear
dimension of the exampleA tolerance ofe=0.06 works for ~combination of the two minima in Cartesian coordinates.
the convergence of the projected gradient norm of everyrour successful runs are done with one different parameter,
loop. A chain of 12 points is used, and the string method withthe thresholde=1.0, 0.5, 0.1, and 0.05, now for every gradi-
projector(5) results in the RP over the known SP-65.44  ent component. Thec+ method needs 56, 100, 212, or 328
energy units with 12 gradient calculations. In Ref. 1 wegradient calculations, respectively. However, &r0.01 the
neededk=10 loops. It is a saving of gradient calculations of optimization degenerates due to the overall rotation of the
an order of magnitude over Ref. 1. A test is reported with amolecule (Sec. IV B), although we apply the projections
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Prx -Pry -Prz. The threshold is too “sharp” for an explora-
tion of the PES in Cartesian coordinates.

The steplength of thec+ method is optimized in the
algorithm. We need not give this parameter—and it is gener-
ally higher than the value being maximally possible under
the pure projected gradient method. Here we generally re-
strict the steplength by 0.12 units because the LJ potential is
very rugged, cf. Fig. 5 of Ref. 23. In Fig. 5 the last two runs
cannot be distinguished, they coincide in the graphics. The¥
highest point of this lowest profile is exactly the SP of a
rearrangement of the cluster. Also the first test with the
coarsee=1.0 results in a good estimate of the SP. The 56
gradients, which one needs in this most optimistic run, are
less than the dimension of the problem. It means 2-3 gradi-
ents per node. The calculation of the,h&nergies and gra-
dients in such a number only takes up a few seconds using
personal computetPC).

E. Alanine dipeptide

The determination of RPs in polypeptidgmotein fold-  FIG. 6. Two Newton trajectories for a four-well potential with minima C5
ing) has become a terrifically vibrant field of inquiry. But for and C%. Thin long dashes: NT to search direction between both minitha.
large peptide systems, we are still limited to the determina; erl'logd";‘;': e%h?jighsnr:;?tﬁg"ég?nhde;ﬁm?ms:amh direction for the NT is
tion of one or a few RPs from a given minimum to another
one. Which one is the global minimum energy p&4EP)?

We do not know! If a search direction is chosen, and if thetwo parts of the molecule. For a demonstration of the
search is successful, we will obtain a “local” MEP. If the SPMethod, however, gues§) is a provoking task, a challenge.

of the path is sufficiently low, then the path may be the The growing string method avoids the very unrealistic struc-
global MEP between the mininf4. tures of the “molecule” on the linear interpolation pathway.

There the energies would be extremely high, some hundreds

H -
Q to thousand kcal/mol, where, on the possible rearrangement

HsC N _-CHs path, the SP is in the range of 9.5 kcal/mol above the lower
Y . N minimum C5.
O H %Hs J1 We use the 3-21G level of computation. The example

has a further drawback: the RP between the minima C5 and
A common benchmark molecule for testing protein mod-C7,, is a combined RP. There an intermediate minimum ex-
eling algorithms is alanine dipeptide, which is formed byists in between, and there two SPs exist between the minima
condensing the amino acid alanine ,NH-CH(-CH;)  C5 and C%, (Compare Fig. 1 of Ref. 26, or the model in
—COOH with a CH-COOH at its amine end and a,N-  Fig. 6. It may be that the intermediate flattens out under a
CH; at its carboxyl end, in order to mimic the two-peptide- high-level quantum mechanical calculatiShpor that the
linkage environment in which alanine is found in proteins.minimum is nearly unstable, and a frequent transition oc-
We use the example of the 66-dimensional alanine dipeptideurs from it to the more stable minimum G7n the neigh-
for a rearrangement between the minimum C5 and thg C7 borhood) A method for a “pure” RP search, in any definition,
minimum or vice vers&? It is mainly a rotation along the has to detect the intermediate. Thus, our GS method for NTs
(®,¥) angles from(-170,170=(190,-190 to (75,—60) has to detect this problem, if the search direction is well
set of values of the backbone dihedral angles(C—N-  adapted.
C,—C and ¥ (N-C,—C-N). C, is the central C atom in To explain the problem of the search direction, as well as
Scheme 1. Both structures are “sheets” because [tbis a brief motivational journey, we chose a test potential. Figure
+W| < 30°. The rearrangement goes through a SP region with simplifies the alanine dipeptide rearrangement from C5 to
®+W <-50°, representing a “right-handed helix.” The £7 C7,, structure. The 2D modtlis adapted to the 20D, V)
minimum seems to be in a single bowl of the PES, where thaection of the 66D configuration spat@ the 60D in inter-
C5 belongs to a wider deep pocket containing further minimanal coordinates It is the function
such as Cg, and ag, compare Fig. 1 of Ref. 26 or Fig. 2 of _ > >
Ref. 27. Ho?/vever, between both is a 2D hill iid, W) map. E(xy) =x*+y" = 4C - 2.5+ xy+ 0.5 (12)
The straight line guess between the minima are the 30'he (x, y) coordinates may be related ¢, V) coordinates
coordinateqx,y,z) of atoms 1-22 of the two minima in the by
linear interpolation6). Of course, the linear interpolation of
the two conformers in Cartesian coordinates, for a gfueiss
the RP of alanine dipeptide, is very coarse. So to say, it is @he minimum top left corresponds to &7while the mini-
maladroit choice. One ignores the curvilinear behavior of themum bottom right corresponds to é%?’ The intermediate

® =~ (x+3)45°, aswell ast = (y-3)45°.
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corresponds to the structueg, in the C5/C%, convention. Energy AlanineDipeptide C5 - C7ax
The growing string should lead from an initial minimum to . 490.090
the intermediate over SRit is SP; in Ref. 27, and then
over the second SPto the final minimum. Note that the
routes from C5 to CZ, to ar/ay,”® and then to CZ,** are - 490.100
not treated here. Also the route from C5 to the intermediate
top right in Fig. 6 is not treated.

For Fig. 6 we use two search directions. The NT with - 490110

- 490.095

- 480.105

long dashes is the curve Egr1.595,=0; that with small, . 490.115 C5 C7
thick dashes is the NTE,+1.7E,=0. The NT with long azr
dashes is the one with the original direction between the two 123 45067 809 10111213 odes
outer minima. It is not a clever choice to search the RP from (a)

M3 to SR. In contrast, the NT leads to the other northern SP
of no interest here, and quite worse, after the next SP, it leads Energy
to the 2D summit. However, the second NT follows an ac-
ceptable search direction. In the next calculations of the real
22-atomic molecule alanine dipeptide, for nodes larger than - 490.105
three we use the turn of the search direction after-refined to- 4g0.108
the direction of(node—3 to final minimum.

- 490.103

In the tests of the GS-NT method with alanine dipeptide, 490110
we interface the GS parts withaussianos (Ref. 31 calcu- - 490.113
lations. Energies and gradients are calculated with the 3-21G- 490.115 C7
basis set(The simple basis is only employed for a model _ 490.115 azr
PES. It is obvious that the quantum chemical level used is 173 5 7 9 11 13 15 17 19 21 23 hodes
not sufficient to give a PES of alanine dipeptide, which is (b)
correct in all details. It is not the objective of this paper to
give a highest-level description of the PES of alanine dipep- Energy
tide) The program parts of GS communicate under a shell
script, see below Sec. VI. Afirst series of computational tests -490.104
are done with the corrector descent along the projected and _,q4 4045
inverse gradient5). The predictor step may be given k), SP,
and the initial chain is between the C5 and the,Gfructure - 490.105
of alanine dipeptide. - 490.1055
In contrast to the Ly} example above, the alanine dipep-  _ g4 105 SP1
tide example is a different story. The projected gradient de-
scent comes to its borderline here. Some results are illus- ~4901965
trated in Fig. 7. The general steplength for the corrector steps Nodes
. 1 3 5 7 9 11
has to be dampened by a value of 0.6, because for a highel
value the algorithm runs into an uncontrollable zigzagging. (C)

With a value of»=0.575, we have found a nice, continuous o . . o
. FIG. 7. Approximation of Newton trajectories for alanine dipeptide between
decrease of th? energy in every corrector step. the C5 and CZ, minima, see text. Method: projected and inverse gradient
(a) The optimistic test: we chose=0.008 and 13 nodes [Eq.(9)] dampened by;. The search direction for the NT is the direction
between C5 and GJ The norm of the reduced gradient will from start to finish, and after three steps the corresponding direction from
be accepted if it is smaller thaa or if we have done a former chain points to finish. Shown is the energy profile in &a).»
0.56,€=0.008, maximal 55 steps per nodb) »=0.575 ande is so small
maximum of 55 corrector steps. In sum we need 604 grad"enﬁat 151 steps per node are us@j.NT between the two SP$;=0.55, and
calculations for curvéa). The e seems still a little too coarse, €=0.0013 3 for the upper, as well as0.0005 5 for the lower curve, maxi-
however, starting at the point with maximum energy of themal 151 steps per node.
chain obtained, one may execute the Berny optimization of
the caussianoz®! It is done by the following commands.  of —490.107 274 a.u. db,¥)=(64.3°,-171.8} and to the
Scheme 2SP search itsAUssIANO3 by Berny’s method.  Sp;, with an energy of—490.106 4 a.u. at®,¥)=(61.5°,

$RunGa_uss -127.39 in the 3-21G basis.
# scf=direct 3-21G opt (ts, saddle=l, (b) The pessimistic test: in a contrary ansatzap we
CalcFC,noEigenTest) optcyc=99 test use €=0.0005 and 23 nodes between C5 and,CThe

which are followed by the geometry of the node. It leads tomaximally allowed corrector steps are now 151. Ehe so
the SB after 70 steps. The $Phas an energy of small that we cannot remain under it, and we cut the correc-
—490.103 602 a.u. and it is situated @b, ¥)=(107.8°, torin every step at the point after 151 steps. In total we need
-180.79. [In the 6-31G basis set, the SP can then be found23x 151 gradient calculations for curv@®). The negative
at(d,V)=(113.2°,-146.4f.] The neighboring points of the dent in the shape of the curve probably indicates the problem
chain of(a) lead to the intermediate minimum with an energy of the zero eigendirections of the molecular rotation: in every
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3-21G GradNorm
30 60 90 120 150 180 210 0.1
-30 -30
0.08
CT7ax
—-60 —-60 0.06
-90 -90 0.04
s -120 -120 0.02
SP1
— — Iterati
-150 -150 20 40 60 80 100 120 140 eration
Min2+ S N FIG. 8. Convergence history for cur@) of Fig. 7 for the norm of the
~180 -180 projected gradient. In the inlay, curves of nodes 2 to 23 count from top to
bottom.
-210 -210 . -
To further understand the influence @fwe show in Fig.
30 60 90 120 150 180 210

8 the norm of the reduced gradient of curi® of Fig. 7
along the corrector loops. Formally, at first view, one could
FIG. 10. Approximation of Newton trajectories for alanine dipeptide be- conclude that below the 0.02 threshold a continuation of the
tween the minima Cy, and C5, see text. Methods: projected and inverse cqrrector |00pS is useless. However téal demonstrates

gradient(thin pointg starting at C5, and modifiedc+ optimization (thick .
bullety starting at C%,. The two coordinate$d,¥) of the 60D internal that the very small threshold of 0.008 may sitill be too large

coordinates are shown in a Ramachandran diagram, with adapted axes to tff @ good insight into the PES for a good description of the
searched reaction patway. The projected gradient paths correspond with tHRRES valley by the NT. The growing string construction needs
prc_inIes (a), (b), and _the lower curve o{c)' of Fig. 7. The connected bold gOOd points of the corrector near the searched NT, at every
points correspond with thec+ results of Fig. 9. The “better” on@nore left . - L.
and below is for e=0.001; it is the lower curve of Fig. 9. The other chain of node. Any single deviation of one node causes a deviation of
points belongs t&=0.0075. The two SP&) and the intermediate minimum  the following chain because of the use of an after-refining of
(+) are included. the search direction.

The way out of the dilemma is a better descent routine,
step the system point moves down a very small piece into &hich we have found in thec+ method.
reaction valley to the start or final minimum. The nodes  Figures 9 and 10 show the results of the+ calcula-
mainly concentrate near the initial minimum; for the remain-tions. Thee is used now to prove the smallness of every
der of the reaction path there are not enough nodes. Théomponent of the gradient of the Lagrangian angatzThe
profile passes very near the Séhergy but nearly all nodes steplength for the corrector steps is restricted by a value of
seem to be before the maximum value, and the profile is bp.5 units. Note that we additionally have changed the order
no means equidistantly distributed. Starting at the node neajf the two minima: we start with minimum G7and search
the maximum value, with number 21, we get the,3%  a growing string to the C5 minimum. The reason is that we
Berny optimization in 77 steps. Note that the Berny optimi-thus meet the lower SHirst. We use 10 nodes.
zation process needs an approximated first eigenvalue of the (i) The pessimistic calculation of alanine dipeptide: The
Hessian of a negative signature. It is fulfilled for points in thelower, two hump curve in Fig. 9 is calculated with threshold
upper concave region of the profile. The long optimization
way is somewhat surprising if one observes the near equiva Energy
lence of the SP energy and the energy of the highest strin¢
node. Looking at Fig. 10, however, offers the speculation- 490.100
that node #21 is far away from $PSo, indeed, starting at
the nearer node #17 one already obtains thei®B3 Berny . 490.105
steps.

(c) The SPs obtained from curvéa) or (b) are used to
start a further NT search for a connection curve in between.
Two results are shown in ca$e) in Fig. 7. The lower curve
is searched with the threshot&0.000 5 and a maximum of - 490115
151 stepgwhich is often exhaustedThe curve indicates the
intermediate minimum, but does not reach it. The upper test
is done withe=0.0003 and 151 maximal stegwhich is FIG. 9. Approximation of Newton trajectories for alanine dipeptide between
three times exhaustgdt results in a quasimonotonically de- the minima CZ, and C5, see text. Method: modified+ optimization. The
creasing curve(Not shown: if usinge=0.008, then the test search directiom fqr thg NT is the direction_from_start to _fir_1ish, and after
does not need more than 16 steps per corrector; however, tnreg steps the 'dlrectlon from former gham points to finish. The energy

.. . . L .. profile is shown in a.u. The lower curve is fer0.001(max 134 steps per
does not indicate the intermediate minimum. Thi$s t00  pode: which were used throughpand the upper one is fa=0.007 5. The
Iarge, at all) energies of the SPs and of the intermediate minimum are included.

¢

- 490.110

C5

Nodes

1T 2 3 4 5 6 7 8 9 10
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€=0.001 for every component of the gradient, and a maxi- 3-21G
mum of An+1) steps per corrector. The maximal number of 30 60 90 120 150 180 210
steps is throughout exhausted. The curve shows a double  -30 -30
hump shape. The profile is a very good approximation of a
RP between the three included minima, and the two SPs ir g
between. In sum it needs 1340 gradient calculations. One _49%"%2)/ C5 - Min2 - CTax
small error is still the large slide down after the S®hich _angEdd :
may be caused by the remaining nonlinear parts of the zerc 90 -490.109
directions of a molecular rotatidihe € is already too sma)j -490.112
Or the pattern of Fig. @) plays a role here. If we start an = -120 S 2221:: Hodil
optimization by the Berny process ahussianos (Ref. 31 12345678910 12345678910
at the first maximal node, #3, it needs 34 steps to converge tt  _150
the flat SR, and using the second maximal node, #7, it needs
seven steps to converge immediately tg.SP

(i) The optimistic calculation of alanine dipeptide: The
upper curve in Fig. 9 is calculated with threshetd0.0075
for every component of the gradient. The maximum of 2~ —210
steps per corrector is never exhausted. The profile is not wel
adapted to the complicated situation of two SPs and an in-
termediate. But the profile is still a usable approximation of a I o

between the start and final points. Note that the first SP iFI-G-' 11. Appr_oxmatlorj of two NTs f_or alanine dipeptide betwet_an_ the C5
_RP. ¢ ) p : Rinimum and intermediate minimurijin,, and from there to the minimum
indicated by a maximum value of energy, however, the sece7,,, as well. Method: modified C& optimization. Two coordinates
ond SP is not. In sum the run needs 816 gradient calculd<, V) are shown in a Ramachandran diagram. Ten nodes are used for every
tions string, and thresholde=0.005 and 0.003 33, respectively. The inlay shows

" . . . the energy profile of both paths in the order of their calculation.

Figure 10 depicts the two coordinates of interé$t, V),

of nodes of some of the calculated RPs. The thin points

correspond to the corrector calculations by the projected gradianine dipeptide is to obtain by other predictor stepss
dient only, where the fat points a@s+ calculations. It is the single coordinate which changes along the RP from C5 to

especially clear from such a 2D section that the pure proM2- Using Cartesian coordinates, the singular positiorbof

jected gradient here is not the method which results in thé& hid_den by a complicate, howevgr, unnecessary nonlinear
searched RP. It is too expensive and too unexact. Looking &2UP!Ng. If one transforms the poimj (on the RR into a

the relation between chairfg) and(b), in contrast, indicates fz—matn)r(] representation 'QCIUd'ng" and if r(])ne also trans-
that the “sharper" search fdb) results in a worse approxi- OrMS the poinM; using the samematrix, then one can use

mation. The modifieccG+ method, however, gives a good the linear combination of Ed6) for the z-matrix coordinates
image 'Of a possible RP ’ ’ of x, and M,. Naturally, nearly allz-matrix coordinates co-
Figure 11 proves this: because we now know the eXisjncide, but thes coordinate differs for the two points, and

tence of the intermediate minimum, we may use it in a last2 Naturally, th? next predictor foji., under Eq.(6) then
gives a better point being nearer to the searched RPy,Lhe

control calculation. We approximate in one run the NT to the: ¢ ; d back to Cartesi dth or |
direction between the C5 and the intermediate minimum, an rans (_)rme ackto tar es!ans, an € corrector loop can
t as in the former calculations.

. ) tar
start there, in a second run, to approximate the NT to thé . ) .
: . bprox Applying this strategy, we need less nodes of the chain

direction between the intermediate minimum and minimum the SP. and ise the threshold ded i
C7. Thus, we turn again the direction of the GS develop—Over € SF, and we can raise the thres € needed n

ment and start with C5. For the corrector we use the modilcour test calculations with five nodes only the following

fied cG+ optimization. Ten nodes are fixed for every string numb_e(;sogggradclieni;:fllculzyon;cf)o(;otsse de@%l? thed.
and the convergence condition of the correctokig.005 run e=o. neeas gradients; . needs of gradi-

for the stronger slopes on the first pathway, aed ents,e=0.01 needs 57 gradients, and the &#0.02 needs

=0.003 33 for the second pathway. Both values are betwee%l gradients. The RP approximations obtained cross the SP

the cases used in Fig. 9. Ths+ needs 540+420 gradient region of SB very well, they are comparable to the case of

calculations, correspondingly. Let us mention that the twoF'g' 11, and the highest point also meets the SP well, for the

GS-NT calculations need 9.6 h usiogussiAN03for energy first three approximations, see Fig. 12.
and gradient at an Itanidf@ processor-based HP worksta- \; v EMENTATION OF co+ AND caussianos FOR
tion. Most corrector loops converge on both pathways, WIthTHE GS METHOD
less than 50 step$With exceptions: sometimes the conver-
gence is complicated by the coupling of the turning of the  We use a script to call the GS-NT method in modular
flat & or ¥ to the very flat internal rotation of a methyl form, including thecg+ corrector, and to call the energy and
group) We are compelled to emphasize that the approximagradient in an independent program. First, we describe the
tions obtained seem to be perfect RPs. The mild edge at nodsript for L.
3 on the first pathway may be a shoulder of the PES. Scheme 3Shell script for an Lg, cluster: Calculation of

A shortening of the calculation of a RP approximation of NTs

C7ax
-60

-90

-120

-150
-180 -180

-210
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- 490.097
- 490.100
- 490.103
- 490.106
- 490.109
-490.112
- 490.115
- 490.118

SP2
Min2

C5

Nodes

1 2 3 4 5
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call gaussian03

grep 'SCF Done: E’' output > energy

tr s’ ' < energy > entr

cut -d’ ’ -f6 entr > energy

grep 'SCF Done: E’ output > ALAenergy
grep D13 output | grep estimate > ALAd13
grep D27 output | grep estimate > ALAd27
call projector

call predictor

# GS cycle

export status=0

FIG. 12. Approximation of four NTs for alanine dipeptide between the C5,yhila (test $status -ne 10) do

minimum andMin,. Method: modifiedcc+ optimization. The linear com-

binations of coordinaté are used for predictor steps, and five nodes areCat oben AlaPointG > input
calculated for every string. The thresholds are0.005, 0.007 5, 0.01, and call gaussian03

0.02 from bottom to top.

call startGS with initialization
call energy

call projector

call predictor

export status=0

while (test $status -ne 10) do
call projector

call energy and gradient

grep 'SCF Done: E' output > energy
tr s’ ' < energy > entr

cut -d’ ' -f6 entr > energy

grep -n 'Axes restored to original’ out-
put | head -n 1 >noline

cut -d:’ -f1 noline > num

head -n $num output |tail -22 >grad
call corrector: new GS point, test
export status=$?

if (test $status -eq 1)

call corrector: new GS point, test
export status=3$?

if (test $status -eq 1)

then

call predictor

export status=$?

then

grep 'SCF Done:
grep D13 output
grep D27 output
call projector
call predictor

E’ output
| grep estimate
| grep estimate

> ALAenergy
> ALAd13
> ALAdJ27

fi export status=$?
done fi
exit done

The procedures are FORTRAN and they are used witha # end GS cycle
G77 compiler on a PC with aNux operation system. Di- exit

mension and thresholds are put in the programs. The variable The program parts are startGS, projector, corrector with

statuscontrols the interplay between the parts predictor ofyqdified cG+, and predictor. They communicate via data

corrector. The procedures can be downloatfed. files. The procedures are FORTRAN and they are used with
We use thesaussianos(Ref. 31 in an analogous modu- a4y F90 compiler. The procedures can be downlodddthe

lar partition of GS-NT. We need theputfile for every cur-  pgs calculation is executed here by the Gaussian program.

rent geometry. The filebencontains the Gaussian command The diversegrepcommands and the following lines are used

line for the usednputfile; the lines are: to extract the energy and the Cartesian gradient from the
Scheme 4Head ofGAussiANo3input for corrector steps Gaussiaroutput as well as théd , V) pair of dihedrals, D13

(file oben. and D27.
$RunGauss

# scf=direct 3-21G opt optcyc=1 test

which are followed by comment lines and the actual ge-
ometry of the molecule in Cartesian coordinates; it is givenvII DISCUSSION
by file AlaPointG The GAussIAN03 calls input and gives :
output From the use of theaussiaNo3we need the energy .
and gradient of the current point, which we extract from the The user of the string method for NTS must .su.pply the
file output it is done by some commands of the script. gradient, but knowledge about the Hessian matrix is not re-

Scheme 5Shell script for the alanine dipeptide mol- quired. Using the final ml'n|'mun(or a point in the am
ecule: Calculation of NTs pocket of the PESfor the guiding star replaces all traditional

o efforts for the tangent calculation in a predictor step. The
call startGS: initialization : .
. ) Newton projector(5) allows that every point of an actual
cat oben AlaPointG > input . .
string over the PES can move locally and independently
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from the other points of the string to its final place on thestitute of Biochemistry, University Leipzig, for giving him an
NT.} It makes the Newton projector in a special kind veryintroductory lesson into the model world of alanine
well adapted to the growing string idea. “dipeptide.”®

How to thread a string through the eye of the PES, the
SP? Per definition, a RP leads over the SP, and we automatiW- Quapp, J. Comput. Chen®5, 1277(2004.
cally obtain the SP if we are able to calculate the whole RP 555?525%3 Heyden, A.T. Bell, and A. Chakraborty, J. Chem. Pbg8,
by a chain of points. In this work we construct the RP by a 3\ pirsch and W. Quapp, Chem. Phys. Le895, 150 (2004).
NT to provide SP candidates for further refinement. Starting“.. H. williams and G. M. Maggiora, J. Mol. Struct.: THEOCHER, 365
from the known minima, we use the growing string along a (1982.

NT as a model of the RP. We search with a projector defineds\ll\(’)'SS‘(JfggéM' Hirsch, O. Imig, and D. Heidrich, J. Comput. Chet8,

by search directionr, for a example, by the direction be- ey Quapp, M. Hirsch, and D. Heidrich, Theor. Chem. Act00, 285
tween the two minima. The project®) works well for the (1998.
first steps of the corrector loop. We avoid the zigzagging of (Sz.occt)éAmmel, H. Yamataka, M. Aida, and M. Dupuis, Scier@0, 1555
the modified grad|ent step(§)' if we use a _Coarse tOIeransce' ®D. A. Liotard and J. P. Penot, iBtudy of Critical Phenomenadited by J.
The alternate use of the conjugated gradiext+) method DellaDora, J. Demongeot, and B. Lacoli&pringer, Berlin, 1981 p. 213.
for the corrector is tested for the alanine dipeptide example,’s. A. Trygubenko and D. J. Wales, J. Chem. Phy20, 2082(2004.
. . . 0 - .
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vergence criteria plays a crucial role in the quality of the 3. J. Mohré gmd D. J. Thuente, ACM Trans. Math. Sofﬂﬂ? 282(1994)-
A. Guichardet, Ann. Inst. Henri Poincare, Sect.48, 329 (1984).
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