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The reaction path is an important concept of theoretical chemistry. We use a projection operator for
the following of the Newton trajectorysNTd along the reaction valley of the potential energy
surface. We describe the numerical scheme for the string method, adapting the proposal of a
growing stringsGSd by fPeterset al.,J. Chem. Phys.120, 7877 s2004dg. The combination of the
Newton projector and the growing string idea is an improvement of both methods, and a great
saving of the number of iterations needed to find the pathway over the saddle point. This
combination GS-NT is at the best of our knowledge new. We employ two different corrector
methods: first, the use of projected gradient steps, and second a conjugated gradient method, the
CG1 method of Liu, Nocedal, and Waltz, generalized by projectors. The executed examples are
Lennard-Jones clusters, LJ7 and LJ22, and an N-methyl-alanyl-acetamidesalanine dipeptided
rearrangement between the minima C7ax and C5. For the latter, the growing stŕing calculation is
interfaced with theGASSIAN03 quantum chemical software package. ©2005 American Institute of
Physics. fDOI: 10.1063/1.1885467g

I. INTRODUCTION

The design of a robust method for the determination of a
reaction pathwaysRPd on a complex energy landscape is a
very important problem. This work uses Newton trajectories
sNTsd in double-ended methods of a recent paper of the
author,1 combined with a proposal of a growing stringsGSd
method recently given by Peterset al.2 A RP of an adiabatic
potential-energy surfacesPESd is the usual approach to the
theoretical kinetics of large chemical systems. The RP is any
line connecting two minima by passing the saddle pointsSPd
in n-dimensional coordinate space. The energy of the SP is
assumed to be the highest value tracing along the RP. It is the
minimal energy a reaction needs to take place. We do not
find it difficult to recognise RPs, we find it difficult indeed to
offer a definition that is conceptually watertight and immune
to counterexample.3 Here we use the distinguished or driven-
coordinate method4 in the modern form of the reduced gra-
dient following sRGFd,5,6 also called NT. We insist that the
search of an appropriate RP is not necessarily equivalent to
the finding of the steepest descent from SP.7 Most RPs can be
defined with the help of projection operators.1 The tool is
employed in string methods:8,9 the string is divided into a
collection of nodes which are moved by projectors. The
nodesx1,… ,xm represent the RP by a chain of lengthm,
where the endpoints may be the minimax0 andxm+1.

Our GS-NT method is divided into predictor and correc-
tor steps. We describe both, and especially the termination
criterion and performance of the corrector, and at the very
end, the implementation of two different methods for the
corrector step.

II. NEWTON TRAJECTORIES

We define the projection operator. We choose an
n-dimensional column vectorr for the projection. It has to be
a unit vector. We additionally use the transposed vectorr T

being a row vector. The dyadic productDr =r ·r T is an sn
3nd matrix. Dr projects withr :

Drr = sr · r Td · r = r sr T · r d = r . s1d

The projector which projects down ther is with the unit
matrix I

Pr = I − Dr . s2d

The concept of RGF5,6,10 is that a selected gradient direction
is fixed along the curvexssd, with curve parameters for
gradientg of the PES

gsxssdd/igsxssddi = r . s3d

Which directionr to select is a certain arbitrariness.1 We will
discuss it below using some examples. The original driven-
coordinate method4 employs the eigenvector direction of a
reaction valley. However, in theshigher-dimensionald ex-
amples below, we will not execute the calculation of the
Hessian at all.

The propertys3d is realizable by a projection of the gra-
dient employingPr of s2d. We pose the Newton projector6

Prgsxssdd = 0. s4d

Pr is an n3n matrix of rank n−1. The solutionxssd is
named Newton trajectory. If starting at a minimum, Eq.s4d is
trivially fulfilled for every directionr . Thus, we may choose
any direction because there is a solution which starts at the
minimum. If starting at any point, we have to choose forr
the normalized gradient of the point. In the general good-
natured case, each NT passes each stationary point. A fulladFAX: s49d 341-9732199. Electronic mail: quapp@rz.uni-leipzig.de
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family of NTs connects the extrema if we vary the search
direction r ,11 thus, NTs better connect saddle-dominated re-
gions with minima-dominated regions than the steepest
descent/ascent can do. A monotonely increasing energy pro-
file over an NT, or a monotonely decreasing, as well, indi-
cates a true, convex reaction valley.12 Projectors4d can be
used in a string method at every actual chain point, without
any further derivative.1 If it does not result in zero, choose
the downhill direction of a node moving along

p = − sI − r · r Tdg. s5d

The application of the projector does not need the tangent of
the curve, any reparameterization of the string, nor any
spring forces of the chain, and every chain point can be
moved independently.1 It predestinates the Newton projector
for the growing string method2 in an exceptional kind. The
main problem under an application of operators5d is nothing
but finding an appropriate steplength or a dampening factor
h for p.

III. GROWING STRING METHOD

The growing string method adaptively evolves the string
from its endpointssd. Because the nodes grow along the RP,
the string can avoid excessive rugged regions of a PES
where electronic structure calculations may fail. We search a
RP which should connect the initial minimumxini with the
end xfin by a chain ofm nodesxk. We calculate successive
nodes beginning at the initial minimum.

sid xk is an approximated node on the RP. We choose a
next guess point,yk+1, of the string between the actual
node and the final minimum by

yk+1 = lxk + s1 − ldxfin, l =
m− k

m+ 1 −k
, s6d

k=0… ,m−1, see Fig. 1, wherem is the desired num-
ber of nodes andx0=xini, xm+1=xfin.

sii d Doing corrector steps with the gradient at the guess
point yk+1 using the Newton projectors5d up to con-
vergence, thus up to a thresholde for the right side of
s4d, see Fig. 1, the steps go orthogonally to the search
direction. In this paper we use two different corrector
methods: first, the pure Newton projector with an ap-
propriate dampening factorh and second, a conjugate
gradient method modified by the Newton projector.

siii d The point at convergence is the next node,xk+1, and
the process is repeated up to the final minimum.

sivd If more than one SP is found on the chain, one may
adapt the search directionr “on the fly.”

To execute the instruction, we need the desirablesand fixedd
number of nodesm and the search directionr . The former
results in the steplength for the guess point, the latter in the
direction of the corrector to the NTsmodelling the RPd. The
problems with the choice ofr for finding a special saddle on
the NT are discussed below, Sec. V, examples V B and V E.
To check the convergence ofp, thus that the projected and
inverse gradientg in Eq. s5d is zero, we also need a conver-
gence criterione.1 sNote that xini and xfin need not be

minima; they can be any points in two different pockets of
the PES which we want to connect by a NT over a SP:
choose the gradient inxini to be the search direction.xfin may
not be on the NT, however, the SP may be.d

In this paper, we do not reparametrize the string. The NT
with respect tor should also be followed if the nodes in-
crease their distance and are not distributed evenly. If the
molecule is described in Cartesian coordinates with three
overall rotations, we sometimes meet the problem of a mild
“bunching up” of nodes. It is discussed in Sec. IV B below,
and in example V E. Generally, we hope for an automatically
evenly distributed growing string, which then is an indicator
for a well-chosen search direction and a good execution of
the corrector.

IV. IMPROVEMENT OF THE PROJECTED GRADIENT
SEARCH BY THE CG1 METHOD

The corrector step by Eq.s5d uses a projected gradient,
which works well in low dimensions, and which works finely
if the PES section of the main direction is not too flat, in
relation to further orthogonal directions. However, the
steplength of the gradient methods is always a problem. Us-
ing a dampening factorh one can, with some experience,
successfully apply the stepsp of Eq. s5d. One condition is
that the tolerance for the corrector is not too sharp! But this
is recommendable because we search a coarse approximation
of the RP, which should lead over a maximum value of the
energy in any neighborhood of the SP. The SP itself can then
be improved by another method.

In the general, higher-dimensional case, however, we
need improved methods. A minimizer with high merits is the
CG1 algorithm of Liu et al.13

CG1 is a conjugate gradient
code used for solving nonlinear, unconstrained optimization

FIG. 1. GS method on Müller–Brown potential from minimumM3 to mini-
mum M1. The predictor step atx13 is shown, and the corrector back to the
searched RPsarrowsd. The desired number of nodes isL=23. The Newton
trajectory to the initial direction is included for comparison. The growing
string follows the NT very well.
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problems. We concentrate on the positive Polak–Ribiere pa-
rametersbªmaxhb ,0jd. TheCG1 routine is especially effec-
tive on problems involving a large number of variables. It
needs the subroutine which, given an input vectorx, returns
the function and gradient for the function one wants to mini-
mize. The Hessian is never computed. The steplength along a
search direction is additionally determined by a line search
routine, which is a slight modification of a routine written by
Moré and Thuente.14 The purpose is to find a step which
satisfies a sufficient decrease condition and a curvature con-
dition. If applying the projected and inverse gradientp of Eq.
s5d in the steepest descent search, we go trivially orthogo-
nally to the search directionr in every step. However, if
applying CG1 as a minimization, using the projected and
inverse gradients5d for the input, this does not guarantee that
the method moves in the constrained plane orthogonally to
the search direction of the Newton trajectory search. We
choose a more indirect way to save the orthogonal search to
the directionr .

A. Lagrangian condition

We formally pose an additional degree of freedom to the
energy functionEsxd by

Lsx,ld = Esxd − lr T · sx − yd s7d

and search a minimum for thesx, ld variables, wherey may
be the initial point of a corrector loopssee Fig. 1d. l is the
Lagrangian multiplier, and the linear equation of a hyper-
plane

Csxd = 0 = r T · sx − yd s8d

should be fulfilled at the end of the corrector loop, as well as
the value of thesn+1std variable

l = ± igsxdi . s9d

The gradient forL is for the firstn dimensionsgsxd−lr , and
the last entry is −Csxd. An application ofPr on the firstn
dimensions of the gradient ofL again results in Eq.s4d, and
Eq. s3d is fulfilled with ansatzs9d. We will find a minimum
solution of the constrained problems7d by employing the
known conditions ofL directly in a modified, but “uncon-
strained”CG1 run:

sid We modify the procedure, putting for every iteration
step the “true”l value s9d for the input.

sii d We use the gradient ofLsx ,ld for the CG1 program,
however, the calculated stepsDj, j =1,… of that pro-
cedure are projected byPr in every loopsand byPRX,
PRY, andPRZ, see belowd. Thus, we only use steps in
the hyperplaneCsxd=0.

siii d We suppress some strong tests of theCG1 program,
for example, we allow that in some steps the search
direction is not always a strong descent direction: we
leap over the testDj

T·g.0. We generally restrict the
steplength along a search directionDj, such as in
Ref. 9.

There is some hope that this modifiedCG1 searches better in
the projected subspace orthogonal tor than the pure pro-

jected gradientp. An example below needs a very sharp
threshold of the corrector: here the modifiedCG1 works
well.

B. Zero eigenvalues

The projected gradient, Eq.s5d, containssusually small
parts ofd the three directions of the so-called zero eigenval-
ues of a rotation of the molecule in space, if we work in
Cartesian coordinates, and if we are away from stationary
points.15,16 If the condition for the tolerance of the corrector
is not too sharp, then the three components of the gradient,
which do not contribute to a descent of the energy, are not of
interest. However, in the alanine dipeptide example below,
we look for a pathway in a subspace of a very low curvature,
in contrast to other degrees of freedom of the molecule. The
PES section of the main directions is very, very flat. The
norm of the gradient is small, and the steplength of the gra-
dient method has to be very small to avoid zigzagging, thus
avoiding the trapping of the iteration near a narrow curved
valley. Here, the threshold of a corrector step has to be
sharper than the “zero” part of a whole rotation.

Executing the process of minimization steps along
dampened vectorsp of Eq. s5d, there emerges a strange pro-
cess of a kind of redistribution of steps into the directions of
the molecule’s rotation. This even happens if the linear hy-
perplane equationCsxd=0, Eq.s8d, is fulfilled throughout in
all corrector loopssfor example, with ±1.0E−10 deviationd.
The redistribution leads to a gliding down of the optimized
point. It moves down in the reaction valley nearer to the
local minimum, being the start or end point of our reaction
path. Thus, we loose the advantage of the NT method, not to

FIG. 2. Reaction path on the Müller–Brown potential from minimumM3 to
minimumM1. An 11-nodechain is obtained using the Newton projector. The
convergence of the growing string method needs the calculation of 19 gra-
dients. The search direction for the GS method is readjusted on the course.
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need spring forces of a chain of points.1 In mathematical test
problems without “nonlinear zero directions” one does not
find such a redistribution.

Modern quantum codes should be sufficiently reliable
such that the computed gradient is at least rotationally invari-
ant, so if one were to explicitly project rotations out of the
gradient vector, it would be unchanged. However, this is not
the case. The rotations of the whole molecule play a role
here, under the use of many small-gradient steps. In the first
order, one can even project out the linear components of the
rotational parts of the gradient,17 however, it is only a shift of
the problem to lower figures. Nevertheless, we use this pro-
jection for the directionsDJ, which are given by theCG1

method. WithJ=3sI −1d for I =1,… ,n/3, we define the three
rotational zero directions

RXsJ + 1d = 0, RXsJ + 2d = − XsJ + 3d,

RXsJ + 3d = XsJ + 2d,

RYsJ + 1d = XsJ + 3d, RYsJ + 2d = 0,

s10d
RYsJ + 3d = − XsJ + 1d,

RZsJ + 1d = − XsJ + 2d, RZsJ + 2d = XsJ + 1d,

RZsJ + 3d = 0,

and use, after a normalization, the three vectorsRX, RY, and
RZ in a projection operatorPRX ·PRY ·PRZ in analogy to the
Pr projections2d.

V. EXAMPLES

A. Müller–Brown PES

We use the Müller–BrownsMBd PES,18 see Fig. 1, for a
test of the pure Newton projector with the growing string
method. We start atM3 with a straight line between the two
outer minima,M3 andM1. It is the initial search directionr .
We use the dampening factor ofh=0.13, and the same con-
vergence criterion ofe=0.08 for the coarse convergence of
the loop of the actual guess point. A chain ofm=11 nodes is
used in Fig. 2 to illustrate the result.sThe slight corner cut-
ting is due to the coarse tolerance value.d In Ref. 1 we
neededk=9 loops for the whole test chain, thus, the number
of gradients needed waskm. However, here, we move every
new guess point in its own loop. Note that the guess point is
already near the RP: usually, the convergence of the correc-
tor needs one or two steps. The dampening factorh can vary;
downwards it can be as small as one wants, however, going
to higher values, it is restricted by the zigzagging of the
algorithm. Of course, if it is smaller, we have to execute
more steps.

Because the saddle point SP1 is far away from the start-
ing chain, we may additionally use a moderate turn of the
search direction along the string. If the actual node numberk
surpasses half of the chain lengthL /2, we take forr the
direction of nodesk−L /2d to the final minimumM1. Figure
3 shows the effort for different chain lengths. The effort in-
creases quite linearly in the number of nodes from nine gra-

dient calculations, which we need for three nodes, to 36 gra-
dients for 23 nodes. The improvement against the moving of
a full initial chain1 is dramatic, as well as the saving against
the growing string method for the steepest descent pathway,2

where the effort is between 100 and 40 gradient calculations.
sBut in that method the computational effort scales much
better with the number of nodes.d In Ref. 9 there are around
500–1000 gradient calculations used for a 17-node nudged
elastic band on the MB surfacesFigs. 4 and 5 of Ref. 9d.

B. Four-well potential

Figure 4 shows further a two-dimensionals2Dd model. It
is the slightly changed function for a four-well potential19

Esx,yd = x4 + y4 − 2x2 − 4y2 + xy+ 0.3x + 0.1y. s11d

Again, we look for a RP fromM3 to M1. The RP calculated
has to connect an intermediate minimum. The search has to
lead from an initial minimum to the intermediate over the
first SP2, and then over the second SP1 to the final minimum.
A taut chain of points may lead fromM3 over the highest SP1
to M1, surrounding only the summit nears0,0d.

Figure 4sad demonstrates a possible drawback of the NT
method: the search directionr shere the direction fromM3 to
M1d may not be defined cleverly. If there are more than two
minima we, a priori, cannot know which search direction
leads to a close, desired connection between the stationary
points. Beginning atM3, the NT tor leads correctly to SP2,
further toM2, and further to SP1. However, from SP1, the NT
leads to the summit of the surface, but not directly to the
final minimum. The approximation by a growing string
method with projectors5d leads very quickly, and correctly,
up to SP1, but then it skips downhill to a next section of the
NT.

In Fig. 4sbd we again change the search direction on the
fly. The search directionr becomes the actual direction be-
tween the last node and the final minimum. Clearly, such a
definition is better adapted to complicated PESs.

C. Lennard-Jones cluster LJ 7

Next, we take the Lennard-Jones cluster20 for seven ar-
gon atoms, LJ7,

1,9,21 for a 21-dimensionals21Dd application
of the growing string method with the Newton projector.
There are two minima, a pentagonal bipyramid at216.51

FIG. 3. Effort of the growing ends string method for the MB potential.
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energy units and a capped octahedron at215.94 energy
units. The search directionr is the direction between the
minima. The straight line guess between the minima are the
three-dimensionals3Dd coordinatessx,y,zd of atoms 1–7 of
the two minima in the linear interpolations6d.1 We use the
small dampening factor of 0.03, corresponding to the higher
dimension of the example.1 A tolerance ofe=0.06 works for
the convergence of the projected gradient norm of every
loop. A chain of 12 points is used, and the string method with
projectors5d results in the RP over the known SP of215.44
energy units with 12 gradient calculations. In Ref. 1 we
neededk=10 loops. It is a saving of gradient calculations of
an order of magnitude over Ref. 1. A test is reported with a

7-node chain,9 where the result begins at about 50 gradients
sFig. 6 of Ref. 9d. We need, for seven nodes, only seven
gradient calculations with the same parameters 0.03/0.06 as
above.

The PES of the LJ cluster is used in the full Cartesian
coordinates, including the possibility of overall translation
and rotation of the cluster. Here it does not mean any diffi-
culties for the method, because the downhill steps of the
projected and inverse gradientp mainly use the very large
nonzero parts of the gradient of the true internal coordinates,
in comparison to the nonzero parts of the rotational direc-
tions.

Note that the search directions between permutational
rearrangements such as in Ref. 9 are usually misleading be-
cause there ther depicts a pathway into the high-energy
regions, or the calculation diverges. The GS-NT method may
have trouble with such minima, may be no direct neighbors
on the PES. However, usually, if the evolving end of the
string is far away from the starting chain, the search direction
may be additionally adapted to the direction between the
actual node and the end minimum.

D. Lennard-Jones cluster LJ 22 and the CG1 method

For an exercise in front of the alanine dipeptide example
below, we treat the toy problem of the LJ22 cluster of an
analogous dimension, and apply theCG1 method including
the projection ofPr and of the rotational directionss10d. The
result of the test is given in Fig. 5, where we use the global
minimum of that cluster from the Wales tables,22 at the right
hand side, and a neighboring second-lowest-energy mini-
mum being only slightly higher in its energy. A chain of 23
nodes is used. The starting chain is again the simple linear
combination of the two minima in Cartesian coordinates.
Four successful runs are done with one different parameter,
the thresholde=1.0, 0.5, 0.1, and 0.05, now for every gradi-
ent component. TheCG1 method needs 56, 100, 212, or 328
gradient calculations, respectively. However, fore=0.01 the
optimization degenerates due to the overall rotation of the
molecule sSec. IV Bd, although we apply the projections

FIG. 4. Newton trajectorysdashesd and the growing ends string method
sconnected bulletsd for a four-well potential including an initial chain, for
comparison.sad The fixed search direction between both minima is not well
chosen; for the second part of the RP, see text.sbd The search direction for
the GS method is readjusted on the course.

FIG. 5. Growing ends string method with 23 nodes for the LJ22 potential
sassuming argond. Shown is the energy profile. The left arrows indicate the
two outmost right atoms which are mainly involved in the rearrangement.
From top to bottom, the resulting curves for the corrector thresholdse
=1.0, 0.5, and 0.1 are shown. The SP at node 11 is well approximated.
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PRX ·PRY ·PRZ. The threshold is too “sharp” for an explora-
tion of the PES in Cartesian coordinates.

The steplength of theCG1 method is optimized in the
algorithm. We need not give this parameter—and it is gener-
ally higher than the value being maximally possible under
the pure projected gradient method. Here we generally re-
strict the steplength by 0.12 units because the LJ potential is
very rugged, cf. Fig. 5 of Ref. 23. In Fig. 5 the last two runs
cannot be distinguished, they coincide in the graphics. The
highest point of this lowest profile is exactly the SP of a
rearrangement of the cluster. Also the first test with the
coarsee=1.0 results in a good estimate of the SP. The 56
gradients, which one needs in this most optimistic run, are
less than the dimension of the problem. It means 2–3 gradi-
ents per node. The calculation of the LJ22 energies and gra-
dients in such a number only takes up a few seconds using a
personal computersPCd.

E. Alanine dipeptide

The determination of RPs in polypeptidessprotein fold-
ingd has become a terrifically vibrant field of inquiry. But for
large peptide systems, we are still limited to the determina-
tion of one or a few RPs from a given minimum to another
one. Which one is the global minimum energy pathsMEPd?
We do not know! If a search direction is chosen, and if the
search is successful, we will obtain a “local” MEP. If the SP
of the path is sufficiently low, then the path may be the
global MEP between the minima.24

A common benchmark molecule for testing protein mod-
eling algorithms is alanine dipeptide, which is formed by
condensing the amino acid alanine H2N–CHs–CH3d
–COOH with a CH3–COOH at its amine end and a H2N–
CH3 at its carboxyl end, in order to mimic the two-peptide-
linkage environment in which alanine is found in proteins.
We use the example of the 66-dimensional alanine dipeptide
for a rearrangement between the minimum C5 and the C7ax

minimum or vice versa.2,25 It is mainly a rotation along the
sF ,Cd angles froms−170,170d=s190,−190d to s75,260d
set of values of the backbone dihedral anglesF sC–N–
Ca–Cd and C sN–Ca–C–Nd. Ca is the central C atom in
Scheme 1. Both structures are “sheets” because it isuF
+Cu,30°. The rearrangement goes through a SP region with
F+C,−50°, representing a “right-handed helix.” The C7ax

minimum seems to be in a single bowl of the PES, where the
C5 belongs to a wider deep pocket containing further minima
such as C7eq andaR, compare Fig. 1 of Ref. 26 or Fig. 2 of
Ref. 27. However, between both is a 2D hill in asF ,Cd map.

The straight line guess between the minima are the 3D
coordinatessx,y,zd of atoms 1–22 of the two minima in the
linear interpolations6d. Of course, the linear interpolation of
the two conformers in Cartesian coordinates, for a guess2 of
the RP of alanine dipeptide, is very coarse. So to say, it is a
maladroit choice. One ignores the curvilinear behavior of the

two parts of the molecule. For a demonstration of the
method, however, guesss6d is a provoking task, a challenge.
The growing string method avoids the very unrealistic struc-
tures of the “molecule” on the linear interpolation pathway.
There the energies would be extremely high, some hundreds
to thousand kcal/mol, where, on the possible rearrangement
path, the SP is in the range of 9.5 kcal/mol above the lower
minimum C5.

We use the 3–21G level of computation. The example
has a further drawback: the RP between the minima C5 and
C7ax is a combined RP. There an intermediate minimum ex-
ists in between, and there two SPs exist between the minima
C5 and C7ax. sCompare Fig. 1 of Ref. 26, or the model in
Fig. 6. It may be that the intermediate flattens out under a
high-level quantum mechanical calculation,28 or that the
minimum is nearly unstable,27 and a frequent transition oc-
curs from it to the more stable minimum C7ax in the neigh-
borhood.d A method for a “pure” RP search, in any definition,
has to detect the intermediate. Thus, our GS method for NTs
has to detect this problem, if the search direction is well
adapted.

To explain the problem of the search direction, as well as
a brief motivational journey, we chose a test potential. Figure
6 simplifies the alanine dipeptide rearrangement from C5 to
C7ax structure. The 2D model19 is adapted to the 2DsF ,Cd
section of the 66D configuration spacesor the 60D in inter-
nal coordinatesd. It is the function

Esx,yd = x4 + y4 − 4x2 − 2.5y2 + xy+ 0.5x. s12d

The sx, yd coordinates may be related tosF ,Cd coordinates
by

F < sx + 3d45°, as well asC < sy − 3d45°.

The minimum top left corresponds to C7ax, while the mini-
mum bottom right corresponds to C5.26,27 The intermediate

FIG. 6. Two Newton trajectories for a four-well potential with minima C5
and C7ax. Thin long dashes: NT to search direction between both minima.sIt
is not well chosen.d Short bold dashes: The search direction for the NT is
well adapted to connect the C5 and C7ax minima.
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corresponds to the structureaD in the C5/C7ax convention.
The growing string should lead from an initial minimum to
the intermediate over SP2 sit is SP13 in Ref. 27d, and then
over the second SP1 to the final minimum. Note that the
routes from C5 to C7eq to aR/aL,29 and then to C7ax,

30 are
not treated here. Also the route from C5 to the intermediate
top right in Fig. 6 is not treated.

For Fig. 6 we use two search directions. The NT with
long dashes is the curve 1.3Ex+1.5Ey=0; that with small,
thick dashes is the NTEx+1.7Ey=0. The NT with long
dashes is the one with the original direction between the two
outer minima. It is not a clever choice to search the RP from
M3 to SP2. In contrast, the NT leads to the other northern SP
of no interest here, and quite worse, after the next SP, it leads
to the 2D summit. However, the second NT follows an ac-
ceptable search direction. In the next calculations of the real
22-atomic molecule alanine dipeptide, for nodes larger than
three we use the turn of the search direction after-refined to
the direction ofsnode–3d to final minimum.

In the tests of the GS-NT method with alanine dipeptide,
we interface the GS parts withGAUSSIAN03 sRef. 31d calcu-
lations. Energies and gradients are calculated with the 3-21G
basis set.sThe simple basis is only employed for a model
PES. It is obvious that the quantum chemical level used is
not sufficient to give a PES of alanine dipeptide, which is
correct in all details. It is not the objective of this paper to
give a highest-level description of the PES of alanine dipep-
tide.d The program parts of GS communicate under a shell
script, see below Sec. VI. A first series of computational tests
are done with the corrector descent along the projected and
inverse gradients5d. The predictor step may be given bys6d,
and the initial chain is between the C5 and the C7ax structure
of alanine dipeptide.

In contrast to the LJ22 example above, the alanine dipep-
tide example is a different story. The projected gradient de-
scent comes to its borderline here. Some results are illus-
trated in Fig. 7. The general steplength for the corrector steps
has to be dampened by a value of 0.6, because for a higher
value the algorithm runs into an uncontrollable zigzagging.
With a value ofh=0.575, we have found a nice, continuous
decrease of the energy in every corrector step.

sad The optimistic test: we chosee=0.008 and 13 nodes
between C5 and C7ax. The norm of the reduced gradient will
be accepted if it is smaller thane, or if we have done a
maximum of 55 corrector steps. In sum we need 604 gradient
calculations for curvesad. Thee seems still a little too coarse,
however, starting at the point with maximum energy of the
chain obtained, one may execute the Berny optimization of
the GAUSSIAN03.31 It is done by the following commands.

Scheme 2SP search inGAUSSIAN03 by Berny’s method.
$RunGauss
# scf=direct 3-21G opt (ts, saddle=l,
CalcFC,noEigenTest) optcyc=99 test

which are followed by the geometry of the node. It leads to
the SP2 after 70 steps. The SP2 has an energy of
2490.103 602 a.u. and it is situated atsF ,Cd=s107.8° ,
−180.7°d. fIn the 6-31G* basis set, the SP can then be found
at sF ,Cd=s113.2° ,−146.4°d.g The neighboring points of the
chain ofsad lead to the intermediate minimum with an energy

of 2490.107 274 a.u. atsF ,Cd=s64.3° ,−171.8°d and to the
SP1, with an energy of2490.106 4 a.u. atsF ,Cd=s61.5° ,
−127.3°d in the 3-21G basis.

sbd The pessimistic test: in a contrary ansatz tosad, we
use e=0.000 5 and 23 nodes between C5 and C7ax. The
maximally allowed corrector steps are now 151. Thee is so
small that we cannot remain under it, and we cut the correc-
tor in every step at the point after 151 steps. In total we need
233151 gradient calculations for curvesbd. The negative
dent in the shape of the curve probably indicates the problem
of the zero eigendirections of the molecular rotation: in every

FIG. 7. Approximation of Newton trajectories for alanine dipeptide between
the C5 and C7ax minima, see text. Method: projected and inverse gradient
fEq. s9dg dampened byh. The search directionr for the NT is the direction
from start to finish, and after three steps the corresponding direction from
former chain points to finish. Shown is the energy profile in a.u.sad h
=0.56,e=0.008, maximal 55 steps per node.sbd h=0.575 ande is so small
that 151 steps per node are used.scd NT between the two SPs,h=0.55, and
e=0.0013 3 for the upper, as well ase=0.0005 5 for the lower curve, maxi-
mal 151 steps per node.
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step the system point moves down a very small piece into a
reaction valley to the start or final minimum. The nodes
mainly concentrate near the initial minimum; for the remain-
der of the reaction path there are not enough nodes. The
profile passes very near the SP2 energy but nearly all nodes
seem to be before the maximum value, and the profile is by
no means equidistantly distributed. Starting at the node near
the maximum value, with number 21, we get the SP2 by
Berny optimization in 77 steps. Note that the Berny optimi-
zation process needs an approximated first eigenvalue of the
Hessian of a negative signature. It is fulfilled for points in the
upper concave region of the profile. The long optimization
way is somewhat surprising if one observes the near equiva-
lence of the SP energy and the energy of the highest string
node. Looking at Fig. 10, however, offers the speculation
that node #21 is far away from SP2. So, indeed, starting at
the nearer node #17 one already obtains the SP2 in 63 Berny
steps.

scd The SPs obtained from curvessad or sbd are used to
start a further NT search for a connection curve in between.
Two results are shown in casescd in Fig. 7. The lower curve
is searched with the thresholde=0.000 5 and a maximum of
151 stepsswhich is often exhaustedd. The curve indicates the
intermediate minimum, but does not reach it. The upper test
is done withe=0.000 3 and 151 maximal stepsswhich is
three times exhaustedd. It results in a quasimonotonically de-
creasing curve.sNot shown: if usinge=0.008, then the test
does not need more than 16 steps per corrector; however, it
does not indicate the intermediate minimum. Thise is too
large, at all.d

To further understand the influence ofe, we show in Fig.
8 the norm of the reduced gradient of curvesbd of Fig. 7
along the corrector loops. Formally, at first view, one could
conclude that below the 0.02 threshold a continuation of the
corrector loops is useless. However, testsad demonstrates
that the very small threshold of 0.008 may still be too large
for a good insight into the PES for a good description of the
PES valley by the NT. The growing string construction needs
good points of the corrector near the searched NT, at every
node. Any single deviation of one node causes a deviation of
the following chain because of the use of an after-refining of
the search direction.

The way out of the dilemma is a better descent routine,
which we have found in theCG1 method.

Figures 9 and 10 show the results of theCG1 calcula-
tions. Thee is used now to prove the smallness of every
component of the gradient of the Lagrangian ansatzs7d. The
steplength for the corrector steps is restricted by a value of
2.5 units. Note that we additionally have changed the order
of the two minima: we start with minimum C7ax and search
a growing string to the C5 minimum. The reason is that we
thus meet the lower SP1 first. We use 10 nodes.

sid The pessimistic calculation of alanine dipeptide: The
lower, two hump curve in Fig. 9 is calculated with threshold

FIG. 10. Approximation of Newton trajectories for alanine dipeptide be-
tween the minima C7ax and C5, see text. Methods: projected and inverse
gradientsthin pointsd starting at C5, and modifiedCG1 optimizationsthick
bulletsd starting at C7ax. The two coordinatessF ,Cd of the 60D internal
coordinates are shown in a Ramachandran diagram, with adapted axes to the
searched reaction patway. The projected gradient paths correspond with the
profiles sad, sbd, and the lower curve ofscd of Fig. 7. The connected bold
points correspond with theCG1 results of Fig. 9. The “better” onesmore left
and belowd is for e=0.001; it is the lower curve of Fig. 9. The other chain of
points belongs toe=0.0075. The two SPss* d and the intermediate minimum
s1d are included.

FIG. 8. Convergence history for curvesbd of Fig. 7 for the norm of the
projected gradient. In the inlay, curves of nodes 2 to 23 count from top to
bottom.

FIG. 9. Approximation of Newton trajectories for alanine dipeptide between
the minima C7ax and C5, see text. Method: modifiedCG1 optimization. The
search directionr for the NT is the direction from start to finish, and after
three steps the direction from former chain points to finish. The energy
profile is shown in a.u. The lower curve is fore=0.001smax 134 steps per
node: which were used throughoutd and the upper one is fore=0.007 5. The
energies of the SPs and of the intermediate minimum are included.
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e=0.001 for every component of the gradient, and a maxi-
mum of 2sn+1d steps per corrector. The maximal number of
steps is throughout exhausted. The curve shows a double-
hump shape. The profile is a very good approximation of a
RP between the three included minima, and the two SPs in
between. In sum it needs 1340 gradient calculations. One
small error is still the large slide down after the SP2, which
may be caused by the remaining nonlinear parts of the zero
directions of a molecular rotationsthee is already too smalld,
Or the pattern of Fig. 4sad plays a role here. If we start an
optimization by the Berny process ofGAUSSIAN03 sRef. 31d
at the first maximal node, #3, it needs 34 steps to converge to
the flat SP1, and using the second maximal node, #7, it needs
seven steps to converge immediately to SP2.

sii d The optimistic calculation of alanine dipeptide: The
upper curve in Fig. 9 is calculated with thresholde=0.0075
for every component of the gradient. The maximum of 2n
steps per corrector is never exhausted. The profile is not well
adapted to the complicated situation of two SPs and an in-
termediate. But the profile is still a usable approximation of a
RP between the start and final points. Note that the first SP is
indicated by a maximum value of energy, however, the sec-
ond SP is not. In sum the run needs 816 gradient calcula-
tions.

Figure 10 depicts the two coordinates of interest,sF ,Cd,
of nodes of some of the calculated RPs. The thin points
correspond to the corrector calculations by the projected gra-
dient only, where the fat points areCG1 calculations. It is
especially clear from such a 2D section that the pure pro-
jected gradient here is not the method which results in the
searched RP. It is too expensive and too unexact. Looking at
the relation between chainssad andsbd, in contrast, indicates
that the “sharper” search forsbd results in a worse approxi-
mation. The modifiedCG1 method, however, gives a good
image of a possible RP.

Figure 11 proves this: because we now know the exis-
tence of the intermediate minimum, we may use it in a last
control calculation. We approximate in one run the NT to the
direction between the C5 and the intermediate minimum, and
start there, in a second run, to approximate the NT to the
direction between the intermediate minimum and minimum
C7ax. Thus, we turn again the direction of the GS develop-
ment and start with C5. For the corrector we use the modi-
fied CG1 optimization. Ten nodes are fixed for every string
and the convergence condition of the corrector ise=0.005
for the stronger slopes on the first pathway, ande
=0.003 33 for the second pathway. Both values are between
the cases used in Fig. 9. TheCG1 needs 540+420 gradient
calculations, correspondingly. Let us mention that the two
GS-NT calculations need 9.6 h usingGAUSSIAN03 for energy
and gradient at an Itanium®2 processor-based HP worksta-
tion. Most corrector loops converge on both pathways, with
less than 50 steps.sWith exceptions: sometimes the conver-
gence is complicated by the coupling of the turning of the
flat F or C to the very flat internal rotation of a methyl
group.d We are compelled to emphasize that the approxima-
tions obtained seem to be perfect RPs. The mild edge at node
3 on the first pathway may be a shoulder of the PES.

A shortening of the calculation of a RP approximation of

alanine dipeptide is to obtain by other predictor steps.f is
the single coordinate which changes along the RP from C5 to
M2. Using Cartesian coordinates, the singular position off
is hidden by a complicate, however, unnecessary nonlinear
coupling. If one transforms the pointxk son the RPd into a
z-matrix representation includingf, and if one also trans-
forms the pointM2 using the samez-matrix, then one can use
the linear combination of Eq.s6d for thez-matrix coordinates
of xk and M2. Naturally, nearly allz-matrix coordinates co-
incide, but thef coordinate differs for the two pointsxk and
M2. Naturally, the next predictor foryk+1 under Eq.s6d then
gives a better point being nearer to the searched RP. Theyk+1

is transformed back to Cartesians, and the corrector loop can
start as in the former calculations.

Applying this strategy, we need less nodes of the chain
over the SP, and we can raise the thresholde. We needed in
four test calculations with five nodes only the following
numbers of gradient calculations, for the RP C5→M2: the
run e=0.005 needs 141 gradients,e=0.0075 needs 87 gradi-
ents,e=0.01 needs 57 gradients, and the rune=0.02 needs
21 gradients. The RP approximations obtained cross the SP
region of SP2 very well, they are comparable to the case of
Fig. 11, and the highest point also meets the SP well, for the
first three approximations, see Fig. 12.

VI. IMPLEMENTATION OF CG1 AND GAUSSIAN03 FOR
THE GS METHOD

We use a script to call the GS-NT method in modular
form, including theCG1 corrector, and to call the energy and
gradient in an independent program. First, we describe the
script for LJ22.

Scheme 3Shell script for an LJ22 cluster: Calculation of
NTs

FIG. 11. Approximation of two NTs for alanine dipeptide between the C5
minimum and intermediate minimum,Min2, and from there to the minimum
C7ax, as well. Method: modified CG1 optimization. Two coordinates
sF ,Cd are shown in a Ramachandran diagram. Ten nodes are used for every
string, and thresholdse=0.005 and 0.003 33, respectively. The inlay shows
the energy profile of both paths in the order of their calculation.
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call startGS with initialization
call energy
call projector
call predictor
export status=0
while (test $status -ne 10) do
call projector
call energy and gradient
call corrector: new GS point, test
export status=$?
if (test $status -eq 1)
then
call predictor
export status=$?
fi
done
exit

The procedures are inFORTRAN and they are used with a
G77 compiler on a PC with aLINUX operation system. Di-
mension and thresholds are put in the programs. The variable
statuscontrols the interplay between the parts predictor or
corrector. The procedures can be downloaded.32

We use theGAUSSIAN03sRef. 31d in an analogous modu-
lar partition of GS-NT. We need theinput file for every cur-
rent geometry. The fileobencontains the Gaussian command
line for the usedinput file; the lines are:

Scheme 4Head ofGAUSSIAN03 input for corrector steps
sfile obend.
$RunGauss
# scf=direct 3-21G opt optcyc=1 test

which are followed by comment lines and the actual ge-
ometry of the molecule in Cartesian coordinates; it is given
by file AlaPointG. The GAUSSIAN03 calls input and gives
output. From the use of theGAUSSIAN03 we need the energy
and gradient of the current point, which we extract from the
file output; it is done by some commands of the script.

Scheme 5Shell script for the alanine dipeptide mol-
ecule: Calculation of NTs
call startGS: initialization
cat oben AlaPointG > input

call gaussian03
grep ’SCF Done: E’ output > energy
tr -s ’ ’ < energy > entr
cut -d’ ’ -f6 entr > energy
grep ’SCF Done: E’ output > ALAenergy
grep D13 output u grep estimate > ALAd13
grep D27 output u grep estimate > ALAd27
call projector
call predictor
# GS cycle
export status=0
while (test $status -ne 10) do
cat oben AlaPointG > input
call gaussian03
grep ’SCF Done: E’ output > energy
tr -s ’ ’ < energy > entr
cut -d’ ’ -f6 entr > energy
grep -n ’Axes restored to original’ out-
put u head -n 1 >noline
cut -d’:’ -f1 noline > num
head -n $num output utail -22 >grad
call corrector: new GS point, test
export status=$?
if (test $status -eq 1)
then
grep ’SCF Done: E’ output @ ALAenergy
grep D13 output u grep estimate @ ALAd13
grep D27 output u grep estimate @ ALAd27
call projector
call predictor
export status=$?
fi
done
# end GS cycle
exit

The program parts are startGS, projector, corrector with
modified CG1, and predictor. They communicate via data
files. The procedures are inFORTRAN and they are used with
an F90 compiler. The procedures can be downloaded.32 The
PES calculation is executed here by the Gaussian program.
The diversegrepcommands and the following lines are used
to extract the energy and the Cartesian gradient from the
Gaussianoutput, as well as thesF ,Cd pair of dihedrals, D13
and D27.

VII. DISCUSSION

The user of the string method for NTs must supply the
gradient, but knowledge about the Hessian matrix is not re-
quired. Using the final minimumsor a point in the aim
pocket of the PESd for the guiding star replaces all traditional
efforts for the tangent calculation in a predictor step. The
Newton projectors5d allows that every point of an actual
string over the PES can move locally and independently

FIG. 12. Approximation of four NTs for alanine dipeptide between the C5
minimum andMin2. Method: modifiedCG1 optimization. The linear com-
binations of coordinateF are used for predictor steps, and five nodes are
calculated for every string. The thresholds aree=0.005, 0.007 5, 0.01, and
0.02 from bottom to top.
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from the other points of the string to its final place on the
NT.1 It makes the Newton projector in a special kind very
well adapted to the growing string idea.

How to thread a string through the eye of the PES, the
SP? Per definition, a RP leads over the SP, and we automati-
cally obtain the SP if we are able to calculate the whole RP
by a chain of points. In this work we construct the RP by a
NT to provide SP candidates for further refinement. Starting
from the known minima, we use the growing string along a
NT as a model of the RP. We search with a projector defined
by search directionr , for a example, by the direction be-
tween the two minima. The projectors5d works well for the
first steps of the corrector loop. We avoid the zigzagging of
the modified gradient stepss5d if we use a coarse tolerance.
The alternate use of the conjugated gradientsCG1d method13

for the corrector is tested for the alanine dipeptide example,
where the modified gradient stepss5d alone are not effective.
The GS-NT method scales well with the size of the system
and the number of nodes of the string.

In addition to the projection of the search direction, the
linear parts of the molecular rotations are also projected out.
If one works in Cartesian coordinates, then one includes ex-
ternal rotations of the molecule. Then the choice of the con-
vergence criteriae plays a crucial role in the quality of the
result, wheree has to be a small enough threshold. However,
it must not be too small. A successful interval fore depends
on the PES and has to be found out by trial and error.

The search of the corrector is done orthogonally tor by
a Lagrangian formulation. TheCG1 is used like an uncon-
strained optimization method,13 however, insideCG1, the
calculated corrector direction,Dj, is projected in every step.
TheCG1 is coupled with an effective line-search routine.13,14

The search directionr , itself, works well if there is a
valley to the SP searched on the whole.33 If we are in such a
valley, then an after-refining of the search direction “on the
fly” is a good device. Note that near to a valley floor many
different NTs “concentrate”.34,35 Then the GS-NT method is
stable regardless of the initial guess ofr .

Like the intrinsic reaction coordinatesIRCd, the steepest
descent from SP, most of the NTs can serve as a model of a
RP.34,35 Thus, the calculation of NTs may be a serious alter-
native to the IRC using the growing string method. The
growing string procedures described can be downloaded.32

sNote that the implementation of an algorithm is more im-
portant than the algorithm itself.d
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