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Introduction

T he pivot equation of the paper of J. M. Anglada
et al.1 seems to be “the equation for a path”

dq(s)
ds
= g(q(s))
|g(q(s))| = t, (1)

where q(s) are the coordinates of the path with ar-
clength s, g(q) is the gradient of the potential energy
surface (PES), and t is the tangent to the path. g, q,
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and t are N-dimensional vectors. The authors main-
tain in the second paragraph of the introduction
that the integration of eq. (1) is the task of the re-
action path following. Starting in the headline and
throughout the article, the authors use the concep-
tion “reaction path” for their solution. The reader is
undoubtedly led to the assumption that

reaction path = minimum energy path(MEP)
= steepest ascent of eq. (1)
= solution of the article.1

This is not true, and cannot be accepted without
comment.
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Steepest Ascent

Any direct practical use of eq. (1) in the uphill
form given above is nonsense, if we deal with a re-
action path in more than one dimension. The reason
is the funnel character of steepest descent lines, see
Figure 2 of ref. 2. Only the descent to the minimum
works numerically (usually badly3), but never the
ascent.

Reaction Paths and Other Pathways

Figures 1 to 9 of ref. 1 show in all cases that the
energy at some points of the calculated pathways
does not increase monotonously along the path. The
pathways show some points higher in energy than
the saddle point, and the path finds the final SP af-
ter a decrease in energy! Thus, the solutions of ref. 1
cannot be the solutions of eq. (1), which would mean
steepest ascent throughout. Note, the saddle point
(the transition state) is defined as that point at the
reaction path from reactant to product where the
energy is maximal. A reaction path, on the other
hand, is a path that has to go through the saddle
point. But indeed: the authors speak about the “min-
imum energy reaction path” in example IV,C. All
solutions, which are shown in Figures 1 to 9, are in
contradiction to the reaction path assumption. The
underlying deep problem seems to be a more prin-
cipal one; it concerns many workers in the field:
they assume (mostly implicitly) that there is only
one MEP, and they further assume that all of the
different methods are methods to calculate this one
MEP. This is not true. We have to discriminate be-
tween different pathways: (a) steepest descent from
saddle point:3 eq. (1) with minus sign, and (b) gra-
dient extremals2, 7 – 10 are direct approaches to the
MEP. (c) The distinguished coordinate,4 or in re-
newed form following a reduced gradient (RGF),5, 6

may be considered as a model for the reaction path
only in selected cases, namely, if not a turning point
occurs. The curves show different drawbacks and
advantages. To search for saddle points, (c) seems
to be an appropriate method.

The method of ref. 1 belongs to group (c) of
the procedures. It is a bad combination of eq. (1)
and (c), as will be discussed in the following. The
result of (c) is usually not a reaction path. This be-
comes clear in analyzing Figure 9 of ref. 1, which
shows an analogous solution as it is given in Fig-
ure 3 of ref. 5. But the solution of Figure 9 is not
a solution of eq. (1), neither uphill nor downhill.

If we go into the formulae, we can compare the
eq. (1) for steepest ascent with eq. (6) for the de-
finition of the reduced PES, with eq. (10) for the
relation of qp to the qr coordinates using (6), and
with eq. (23) for the tangent of the solution. The defi-
nition of the distinguished coordinate requirements
in eq. (6) is (gp)i = 0 for i = 1, . . . , m coordinates.
If we directly include these (gp)i into eq. (1), we
would obtain dpi/ds = 0, thus, every movement is
forbidden in every pi direction. This is in contradic-
tion to eq. (23b), where the tp are not zero. Because
eq. (23) is the key idea of the article1 [together with
eqs. (6) and (10)], the contradiction to eq. (1) in full
dimensionality can only be solved if we conclude
that eqs. (6), (10), and (23) form a different ansatz
in comparison to eq. (1). However, the authors ex-
plicitly claim (at the beginning of section II.B), that
they “study the general mathematical form of the
differential eq. (1) . . . .” By way of intimation, the
authors say [after formula (25)], “. . . that the differ-
ential equation (23) is the equivalent analogous to
equation (1) . . . .” I claim: no, eq. (1) does not play
the main role here! Figure 9 suggests that the article
by J. M. Anglada et al.1 indeed gives a version of
the RGF method (c),5, 6 and that there is no solution
of eq. (1). As already remarked,5 RGF may follow a
valley, but usually it does not follow the MEP. It is
clear from the solution shown in Figure 9 that this
curve is also not a typical reaction path.

RGF Lines

It makes sense to think a little closer about the dif-
ference of eq. (1) and eq. (23) of ref. 1. The solutions
of eq. (1) are well known; there are, for example,
extensive illustrations.9, 11 Steepest ascent lines only
flow into each other at a summit of the potential be-
ing a saddle point of index N, where N is the full
dimension of the problem. (As well as steepest de-
scent lines only flow into each other at a minimum
being a “saddle point of index zero.”) Saddle points
of an index lower than N dissipate steepest ascent
lines. Saddle points of lower index, especially sad-
dle points of an index one, which are of chemical
interest, are only met by accident with one lonely
steepest ascent line. Numerically, it is almost impos-
sible to follow uphill this lonely line; but there are
proposals to do this.10, 12

We find a very different situation for the general-
ized distinguished coordinate method, the RGF.5, 6

This method searches a line that has at every point
the same gradient direction. The behavior of such
lines at stationary points of every index is quite bet-
ter for numerical usage: they flow into each other at
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FIGURE 1. A family of RGF lines on the Müller–Brown
model potential,13 see text. Level lines are gray. RGF
lines are the black lines. The two bold lines are the
corresponding RGF solutions to the coordinate
directions x (bold), and y (bold dashed). RGF lines flow
into each other at the stationary points. The drawing is
made by Mathematica.14

every stationary point, at least in a certain region of
attraction. Figures 1 and 2 show this behavior with
the help of the Müller–Brown surface.13 The two fat
lines are the original lines of distinguished coordi-
nates x or y (where the y line is dashed). The other
RGF lines are solutions where a linear combination
of the gradient components is zero [see eq. (11) of
ref. 5]

g(q1)(±r2)− g(q2)r1 = 0, (2)

FIGURE 2. Another family of RGF lines on the
Müller–Brown model potential.13 See caption of Figure 1.

where (q1, q2) = (x, y) are coordinates, and r =
(r1,±r2) are search directions that are at every curve
point parallel to the gradient, g, of the surface. The
(−) sign is used in Figure 1, but the (+) sign is
used in Figure 2. The curves drawn form a fam-
ily of curves with a parameter c, which is used in
(r1,±r2) = (1− c ∗ 0.1,±c ∗ 0.1) with c = 1, . . . , 9.

Equation (23a)1 act as steepest ascent in the r-
subspace. The combination with (23b) causes that
the method does not follow the steepest ascent in
the full N-space. The tangent to this line will diverge
from the search direction in the full N-space, be-
cause of (23b). The tangent has also a component in
the m-dimensional remainder of the N-dimensional
space. While ansatz (5) looks like a definition of an
n-dimensional submanifold for the reduced PES, the
solution of (23) “only” is a curve that we can follow
numerically. Translated into the search direction r
of ref. 6 it means that (23a) may be compared with
r = ((gr)i, (0)j), i = 1, . . . , n, j = 1, . . . , m, n + m = N,
to use after an additional normalization. So, while
ref. 5 treats a single distinguished coordinate, the
article1 attempts to handle a “distinguished coordi-
nate” in n dimensions of the full N-space, but ref. 6
deals with a general “distinguished coordinate” in
the N-dimensional space that is searched for. Be-
cause all such lines of RGF pave the configuration
space, and because they are attracted by a next
stationary point in a certain region, it is not so im-
portant to follow a selected line numerically exactly
to find the saddle point. For example, in Figure 1 all
lines of RGF between the bold faced x and y lines
flow into each other at the saddle points, as well as
at the minima. This makes the difference to eq. (1)
in the full N-space, and it opens the possibility to
easily find the saddle point. And this is the reason
for the numerical stability of RGF, which is manifest
in the examples of the article.1 As conclusion from
this section, we see that the authors of ref. 1 use the
clever strategy of following one member of a family
of curves, where all of them lead to the saddle point;
unfortunately, they compare the curves in terms of
the steepest ascent eq. (1). To follow steepest ascent
is no concept to find saddle points.

Turning Points

The methodology of the distinguished coordinate
method (c) to locate saddle points has been criti-
cized for 20 years,4, 15 for the problem of turning
points. The definition of a turning point is that the
orientation of the curve direction changes in com-
parison to the search direction, the gradient g(qr) in
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the r-subspace,1 qr. Thus, the scalar product with
the tangent, g(qr) · t, is zero at the turning point.
At turning points, the paths of the old method can
jump uncontrollably to another region of the PES.
The task to overcome the turning points by a con-
tinuous procedure has been solved by RGF.5 There,
the minimization of eq. (5) is not treated,1 however,
the system (6) is solved using a Newton step.5

The turning point is wrongly explained in the
description of Figure 9 in ref. 1, cf. Figure 3 of
ref. 5. The turning point of the x-line of the Müller–
Brown surface13 is crossed if the step in direction
x is zero (where x is the search direction). The TP
is at (0.169, 1.670). The tangent t of the solution in
Figure 9 is orthogonal to the gradient vector of the
PES, at the turning point. Thus, the solution of the
article1 cannot be a solution of (1). Namely, eq. (1)
is solved by curves where the tangent points into
the direction of the gradient. But nevertheless, in the
article,1 saddle points are found by path following,
whatever the path is defined. It is described in the
text of Figure 9 that turning points occur. It becomes
manifest by Figures 1 to 9 that the method of ref. 1
handles the crossing of a turning point along a path-
way. Note, in refs. 5 and 6 the numerical stability of
RGF at a turning point was as well as at any other
point, because there the solution of the system (6) is
used, and it is independent of the character of the
RGF line to be a valley line, or to be a ridge line.

After the turning point, the solution in Figure 9 of
ref. 1 goes downhill a ridge. This is again in contra-
diction to the authors statement [after formula (41)]
that their curve is a steep-ascent line. A further im-
portant problem is the following: the minimization
of eq. (5) in the y direction, thus, orthogonal min-
imization to x, would not find the solution. That
was the problem of the old distinguished coordinate
method.15 This problem is solved in ref. 1 by us-
ing the image quadratic function,16 which turns the
ridge into a valley. The use of the image quadratic
function is necessary for the modification of the old

distinguished coordinate method in ref. 1 to over-
come the turning point problem. Thus, ref. 1 uses
another modification of the distinguished coordi-
nate method in comparison to the RGF method.5, 6
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