
Abstract. This paper serves for the better understanding
of the branching phenomenon of reaction paths of
potential energy hypersurfaces in more than two dimen-
sions. We apply the recently proposed reduced gradient
following (RGF) method for the analysis of potential
energy hypersurfaces having valley-ridge in¯ection (VRI)
points. VRI points indicate the region of possible
reaction path bifurcation. The relation between RGF
and the so-called global Newton search for stationary
points (Branin method) is shown. Using a 3D polynomial
test surface, a whole 1D manifold of VRI points is
obtained. Its relation to RGF curves, steepest descent
and gradient extremals is discussed as well as the relation
of the VRI manifold to bifurcation points of these curves.
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1 Introduction

The concept of the minimum energy path (MEP) or
reaction path (RP) of a potential energy surface (PES) is
the usual approach to the theoretical kinetics of larger
chemical systems [1]. Reaction theories are based either
implicitly (transition state theory [1]) or explicitly
(variational transition state theory [2]) on the knowledge
of the RP. The RP is de®ned as that line in the
con®guration space which connects the reactant and the
product minimum by passing the saddle point (SP) of an
adiabatic PES. The SP (the transition structure) and the
minima form stationary points of the PES.

Frequently, RP branching occurs. The corresponding
points are the so-called bifurcation or branching points
(BPs). The mathematical description of RP branching is
of high theoretical interest, and it is one of those ques-

tions which now requires closer consideration in quan-
tum chemistry. Many procedures ± although mostly
developed in mathematics ± are not yet adapted for use
in quantum chemistry, though there are a number
of recent studies dealing with aspects of the de®nition of
RPs and their bifurcation [3±16].

The choice of a path for a chemical reaction is a
complex issue. It is important to state that a BP is
a component of the particular RP de®nition and,
therefore, a bifurcation of the RP generally will be found
by the BP of those particular curves selected to calculate
the MEP. Bifurcations of the path may be caused by
symmetry breaking [17]. Then, two or more equivalent
pathways may lead over equivalent transition structures
to two or more equivalent (or chiral) products. It is
helpful to consider that RP branching (symmetric or
unsymmetric) is more often than not connected with the
emergence of a special class of points of the PES, the
valley-ridge in¯ection (VRI) points [3, 4]. The traditional
de®nition is that a VRI point is that point in the con-
®guration space where, orthogonally to the gradient, at
least one main curvature of the PES becomes zero. Thus,
VRI points can be de®ned independently of a RP de®-
nition. They are, in general, not identical with BPs of
di�erent RP de®nitions, although both are often adja-
cent points. Usually, VRI points represent non-station-
ary points of the PES. ``Adjacent'' means that no other
point of mathematical interest lies in between.

Before we present an algorithm to locate VRI points,
we analyse the potential of the usual RP following to
locate bifurcations. The mathematically most simple RP
de®nition is the steepest descent from an SP, resulting in
the well-known intrinsic reaction coordinate (IRC) of
Fukui [18±20]. This pathway is de®ned by an autono-
mous system of di�erential equations for a tangent
vector along the curve searched for. Its solution is un-
ique. Therefore, if starting at any initial point outside an
SP, no bifurcation can occur before reaching the next
stationary point. Hence, no branching of PES valleys
will be truly described by following the IRC; see the
discussion in [11, 12]. However, following an IRC we
may test the curvatures orthogonal to the path, thus
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orthogonal to the gradient of the potential ± and so
detect a VRI region [21].

Gradient extremals (GEs) form a second approach for
RP following [7±9, 22±27]. They are more complicated
than the IRC, but better ®tted to solve the valley
branching problem. However, other problems arise ow-
ing to the occurrence of pairs of turning points instead of
the BP. Such turning points may interrupt the pathway
between the minimum and the SP. The GE curves often
show some kind of avoided crossing [8, 9, 23]. The BP
indicated by a valley GE is that point where the valley
usually branches into three valleys [7] ± and, usually, it
does not branch into two valleys with a ridge in between,
as is assumed at a VRI point. Because there are cases of
missing the BP owing to turning points, GE bifurcation
is a su�cient but not a necessary condition for the oc-
currence of branching along a RP. Nevertheless, the
whole turning point region of two related GE curves has
to be considered as a branching region of a valley (or of a
ridge). The BP condition for GEs contains third deriva-
tives of the PES, and it does not require a singular
Hessian [24]. This indicates that in the general case the
BP of GEs are not the VRI points of the surface, and GE
bifurcation can occur without a nearby VRI point.

A third approach to the problem of ®nding the re-
action path branching is quite di�erent. It deals with the
direct location of the VRI points [10, 16, 21] which, up to
now, are always understood to be single points in the
con®guration space. Here, the geometrical imagination
is clear: the valley-ridge in¯ection is that place where an
eigenvalue of the Hessian orthogonal to the gradient
direction changes from ``+'' to ``ÿ'' through zero, or
vice versa. A valley in¯ects into a ridge. The zero
eigenvalue of the Hessian, orthogonal to the valley di-
rection, is relatively easy to detect, at least in symmetric
PES regions. There are some proposals dealing with this
task [21]. An explanation is already given for the emer-
gence of VRI in formaldehyde-like molecules by the
second-order Jahn-Teller e�ect [16].

In order to determine the VRI ± and in this way also
the BP of RP ± we recently proposed the reduced gra-
dient following (RGF) procedure on the PES [28]. RGF
consequently continues the old method of a distin-
guished coordinate (or coordinate driving) and replaces
the energy optimization of the residual coordinates by
the solution of a reduced gradient system with a New-
ton-Raphson step. It is much simpler to realize in
comparison with the GE following [24, 27]. RGF needs
gradient and (updates of) the Hessian of the PES. It
gives a network of curves which contain in most cases all
stationary points of the PES; the method is used to
e�ectively ®nd stationary points [28]. Interestingly en-
ough, the BPs of these curves are fortunately the VRI
points of the PES. So, by tracing suitable RGF curves,
VRI points of the PES may be located! We incorporated
the method for the n-dimensional case into our version
of the GAMESS-UK program [29].

In this paper we present a model PES with three co-
ordinates �x; y; z�, thus having four dimensions. We only
use linear, quadratic, quartic and mixed terms for the
three degrees of freedom. We refer to the fact that the
PES of triatomic molecules is three-dimensional (3D) in

internal coordinates. However, we use a test surface
rather than a real molecule's PES to demonstrate the
fundamental properties of bifurcation points by the an-
alytical formulas of the surface. In this manner we avoid
the use of ``unsafe'' numerical results of quantum
chemical calculations. In addition, a symmetric surface
is chosen leading to symmetric BPs. The objective of the
paper is (1) to show the VRI/BP determination by RGF
for the 2D case, (2) to demonstrate the changes when
going from two coordinates to a third dimension, and (3)
to show the possibilities of a combined use of RGF and
GE in order to characterize branching regions.

The paper is organized as follows. First, we illustrate
the fundamentals and algorithms of the RGF method
[28], and the so-called global Newton method [30] which
is mathematically strongly related to RGF. RGF curves,
as well as global Newton solutions, are extensively ex-
plained using the example of this paper. The VRI points
found are then discussed in relation to BPs found by
GEs. A set of illustrations is given to introduce the
reader to the representations of the 3D coordinate space
plus one dimension of the surface.

2 The reduced gradient idea

The chemically most important features of the PES are
the reactant and the product minimum and the SP in
between. These stationary points of the PES are
characterized by the condition

rE�x� � 0; �1�
when E�x� is the function of the PES, and rE�x� is its
gradient vector in the con®guration space, Rn, de®ned by
the coordinates x of the molecule where n � 3N (N =
number of atoms) if Cartesian coordinates are used, or
n � 3N ÿ 6 for internal coordinates. Thus, we use n to
indicate the dimensionality of the problem, in this paper
3; x and rE�x� � g are vectors of the dimension n.
Recently, the old distinguished coordinate method [31,
32] was transformed into a new mathematical form [28].
Equation (1) is valid at extrema of the PES, but single
components of the gradient can also vanish in the
neighbourhood of an extremum, as well as in other
regions of the PES. Using this property, a curve of
points x is followed which ful®ll the nÿ 1 equations

@E�x�
@xi � 0; i � 1; . . . ; jk; . . . ; n �2�

omitting the kth equation [28, 32]. This gives the �nÿ 1�-
dimensional zero vector of the reduced gradient; the
method is subsequently called reduced gradient follow-
ing (RGF). Equation (2) means that the gradient points
in the direction of the pure xk coordinate. The concept
may be generalized by the challenge that any selected
gradient direction is ®xed

rE�x�=krE�x�k � r; �3�
where r is the selected unit vector of the search direction,
as shown below.

The idea of the method may be explained using the
surface [4, 14, 15] shown in Fig. 1
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E�x; y� � 2y � y2 � �y � 0:4x2�x2; �4�
where now x and y are used as the coordinates. It has
three stationary points: two minima, MIN
(� ����������

10=3
p

;ÿ8=3), and the SP (0, ÿ1). A MEP (may be
an isomerization) connects two equivalent minima
crossing the SP. A further MEP (possibly being a
dissociative pathway) can be thought of starting at the
SP and running along the positive y axis; cf. also [15] for
a ``chemical interpretation'' of such a PES and further
references. The RGF equations become

Ex�x; y� � 2xy � 1:6x3 � 0; Eq. �2� for k � 2 or

Ey�x; y� � 2� 2y � x2 � 0; Eq. �2� for k � 1;
�5�

with the three solution curves x � 0 and y � ÿ0:8x2 for
Ex � 0, or y � ÿ0:5x2 ÿ 1 for Ey � 0. They are illustrat-
ed in the lower panel B of Fig. 1 using the program
Mathematica [33]. The reduced gradient curve
Ex�x; y� � 0 intersects the equipotential lines in those

points where their tangents are parallel to the x axis.
Thus, the gradient at these points in the y direction is:
rE � �0;Ey�. RGF is a simple but e�ective procedure in
order to determine all types of stationary points [28].
Unlike the usual steepest descent path from a saddle, the
reduced gradient search for a ®xed k locally has an
explicit analytical de®nition. By the choice of k between
1 and n in Eq. (2) we obtain n di�erent RGF curves
where, in the general good-natured case, each of them
passes each stationary point. We must recall that these
curves usually are not minimum energy paths. They are
de®ned by the shape of the PES in the given coordinate
system, and by the character of the gradient vector
between the extrema. Nevertheless, these curves may
follow a reaction valley in favourable cases, at least
qualitatively. For example, the RGF curve Ey � 0 in
Fig. 1B (dashed) approximates the RP between SP and
MIN. On the other hand, the point (0, 0) on the RGF
curve Ex � 0 is a VRI point of the surface heading in the
dissociative direction of the y axis. Here, a MEP coming
from positive y values bifurcates to the left or to the right
minimum. The part of the y axis between the points (0,
0) and (0,ÿ1) is a crest of a blu� (with the notation of
[24]). The VRI point satis®es the necessary condition of
orthogonality of the two vectors included in its de®ni-
tion (cf. [21])

gT e0 � 0 �6�
for an eigenvector e0 of H with zero eigenvalue and for
the gradient g (the upper index ``T '' means the matrix
transposition). The VRI point (0, 0) is simultaneously
the bifurcation point of the two branches of the RGF
curve existing for Ex � 0. The bifurcation of the RGF
curve, Ex � 0, shows the typical pattern of a so-called
pitchfork bifurcation.

The RGF approach shows an important analogy to
the mathematical theory of Branin [34], the global
Newton method [30]. It utilizes the adjoint matrix A
of the Hessian H. This is de®ned as ��ÿ1�i�jmij�T where
mij is the minor of H obtained by deletion of the ith row
and the jth column from H, and taking the determinant.
The adjoint matrix A is used to de®ne an autonomous
system of di�erential equations for the curve x�t�, where
t is a curve length parameter:

dx
dt
� �A�x� g�x�: �7�

Thus, the tangent of the curve of interest does not point
in the direction of the gradient, as is the case using the
IRC. The tangent is the gradient g of the PES
transformed by the adjoint matrix A. The ``+'' option
is used for searching stationary points with odd index
(SPs with an odd number of negative eigenvalues of the
Hessian), where the ``ÿ'' option searches for stationary
points with even index (minima, or SPs with an even
number of negative eigenvalues of the Hessian). Sta-
tionary points of the PES are limit points of the solution,
because there g = 0. However, there are further possible
limit points, or ®x-points, also in regions with g 6� 0.
These are points where

A�x� g�x� � 0: �8�

Fig. 1A, B. 2D model potential surface E�x; y� � 2y � y2 � �y �0:4
x2�x2 with the RGF curves Ex � 0 (bold faced) or Ey � 0 (dashed).
The curves connect minima, MIN, with the saddle point, SP. Their
intersection locates the three stationary points as well as the VRI
point which is a BP of the Ex � 0 curves

287



Because of the possible zero vector (8) in (7), the
bifurcation of solution curves can take place some-
where at the slope of the surface, where g 6� 0. In
Appendix A, the proof is given that the BP of a Branin
curve is a VRI point also ful®lling de®nition (6). [In
Appendix B we additionally report that the de®nitions
(8) and (6) are also ful®lled by a manifold of cusp
points of equipotential lines.] Points which satisfy Eq.
(8) are named extraneous singularities [30] of Eq. (7)
because they are possible numerical perturbations of
the search for stationary points. Because of the
property of the adjoint

HA � Det�H�I; �9�
where I is the n-dimensional unit matrix, we obtain for
the non-singular case, if Hÿ1 exists, the system

dx
dt
� �Hÿ1�x� g�x� Det�H� �10�

instead of Eq. (7). This represents a Newton step with a
damping factor Det(H). Curves satisfying this expression
are called Newton ¯ows. Solution curves of Eq. (7) have
a special character. Considering the behaviour of the
gradient g(x(t)) along a solution, x(t), we obtain with (7)
and (9)

dg
dt
� H

dx
dt
� �HAg � �Det�H�g: �11�

Thus, the gradient g changes proportionally to g itself.
This means that the direction of g does not change. It is
invariant along the solution. On the other hand, also
�nÿ 1� orthogonal directions ei to g can be chosen
constant along a solution. Directional derivatives along
these directions of the surface vanish because the surface
is always orthogonal to its gradient:

@E
@ei
� 0; i � 1; . . . ; nÿ 1: �12�

This system of equations leads to the RGF, Eq. (2), if we
use g and ei as basis vectors in Eq. (2) (cf. also Sect. 3 for
a more general search direction of a RGF equation).

From another point of view, the RGF equation gives
an alternative de®nition of the Newton ¯ows in com-
parison with Eq. (7). The two strategies, RGF and
global Newton method, are slightly di�erent with respect
to their initial conditions. The RGF method, Eq. (2) or
Eq. (16) below, is started at stationary points with a
well-de®ned initial direction of the gradient search,
whereas the Branin di�erential equation, Eq. (7), may
start anywhere on the PES but outside a stationary point
using the gradient direction of that point. So, the Branin
algorithm may easily stop anywhere, and continue using
the gradient of that point.

3 The algorithm for RGF

3.1 Predictor step

We assume a curve of points, x�t�, ful®lling the nÿ 1
equations

@E�x�t��
@xi � 0; i; . . . ; jk; . . . ; n; �13�

however

@E�x�t��
@xk 6� 0 outside stationary points:

The parameter t varies in a certain interval. If Eq. (13)
can be solved analytically, it gives the RGF curves. If we
need a numerical solution, the starting point may be any
stationary point, for example, a minimum. To predict
the next point, we calculate the tangent to the curve [35].
It is given by

d
dt
@E�x�t��
@xi � 0 �

Xn

l�1

@2E�x�
@xi@xl

dxl�t�
dt

i � 1; . . . ; jk; . . . ; n

orbHx0 � 0: �14�
It is a homogeneous system of nÿ 1 linear equations for
the direction cosine of the n components dxl=dt of the
tangent, x0. The coe�cients are entries of the Hessian
matrix bH � @2E�x�=@xi@xl where the i � kth row is
omitted. The algorithm [28, 35] uses QR decomposition
of the matrix of system (14) to obtain the solution. (Q is
an orthogonal matrix, R is an upper triangular matrix.)
The calculation of the Hessian may be replaced by the
DFP update procedure [9, 28]. If internal coordinates are
used, then the corresponding formulas of the metric
tensor have to be included [9, 19, 36].

There is an alternative and more general way to
de®ne a RGF curve. To follow a gradient in any ®xed
direction r we construct the projector Pr with the
property

PT
r r � 0; �15�

where the columns of Pr and r=krk form an orthonormal
base. The equation

PT
rrE�x�t�� � 0 �16�

describes a curve with gradients of the constant direction
r in each of its points. The tangents to these curves are
given by

d
dt
PT

rrE�x�t�� � PT
r H�x�t��x0�t� � 0 �17�

This again is a homogeneous system of nÿ 1 linear
equations for n components of x0.

The predictor step is

xm�1 � xm � StL

kx0mk
x0m �18�

where xm�1 is the next point, x0m is the solution of Eq.
(14) or Eq. (17), correspondingly, and the steplength,
StL, is used as a parameter, For example, the distin-
guished coordinate takes StL � 0.1 units (AÊ , rad) in the
case of the four-atomic H2CO, and 0.2±0.6 units for
tetrazole with seven atoms [28].

It is quite normal for any RGF that turning points
may occur [32]. Using the tangent search, Eq. (14) or
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(17), the algorithm overcomes turning points without
problems. If, at any point arrived at by RGF, Eq. (13) or
(16) is ful®lled to a given tolerance, the next predictor
step is executed, otherwise the algorithm skips to the
corrector.

3.2 Corrector step

A Newton-Raphson-like method is used to solve the
reduced system of Eq. (13) or (16). The steplength of this
method is intrinsically given, and it is used until
convergence. However, in addition we impose an upper
limit of the steplength, because if a BP is touched, the
pure Newton corrector produces too large steps. The
tolerance is taken to be 0:1 � (predictor StL).

3.3 Stopping criterion

At every point along RGF, we determine the hypothet-
ical steplength of the Newton step towards the ``next''
stationary point. If this value falls below a given
tolerance, say �0:5� �� � (predictor StL), the algorithm
still carries out this step and then stops.

4 The algorithm for the Branin method

4.1 Step search

We choose a StL parameter and discretize the system (7)
to

xm�1 � xm � StLAmgm �19�
where m is the step number, as before. For example, in
the case of the four-atomic H2CO, we use StL = 100
units of the corresponding coordinate (AÊ , rad) for a
satisfactory exploration along the Newton ¯ow. Because
of the self-correcting de®nition, we do not need the
corrector. If a special symmetry shall be conserved along
a Newton ¯ow, we enforce a symmetrization of the next
step.

4.2 Stopping criterion

If the hypothetical steplength of the Newton step
towards the ``next'' stationary point falls below a given
tolerance, the algorithm stops. Note: the gradient in
algorithm (19) becomes small near stationary points.
This would cause ine�cient small steps near stationary
points. The e�ect is avoided by an automatic increase of
the steplength.

4.3 Search of VRI points

The Branin method can also be used to search for VRI
points. One important condition is the strict symmetry
constraint. When starting anywhere in the coordinate
space, a Branin curve may almost reach the VRI point;

however, usually it turns o� by passing this point. This is
shown in Fig. 2 for four Branin solutions of the surface
Eq. (4); see also below. The example demonstrates the
general behaviour of Branin solutions: they connect
stationary points of di�erent index, or they end in a VRI
point. The point where a Branin solution turns o� is a
turning point (TP). The occurrence of a TP may suggest
the nearby existence of a VRI point.

5 Gradient extremals

A point showing the gentlest ascent of a valley is de®ned
by the condition that the norm of the gradient forms a
minimum taken along an equipotential surface,
E�x� � const., i.e. in all directions perpendicular to the
gradient [14, 22, 23]. It results in the basic eigenvector
relation

H�x� � g�x� � k�x� g�x� �20�
The proportional factor k�x� is an eigenvalue of the
Hessian, and the gradient is its eigenvector. Note the
di�erence of Eq. (20) in comparison to the VRI
orthogonality requirement of Eq. (6). In the GE
de®nition (20) the gradient has to be an eigenvector,
while in Eq. (6) it only has to be orthogonal to a special
other eigenvector. Thus, the gradient is not required to
be an eigenvector at a VRI point! Curves de®ned by (20)
consisting of such points on consecutive equipotential
hypersurfaces are termed gradient extremals [23]. How-
ever, following a curvilinear GE implies that one
actually does not move in the direction of the gentlest
ascent [14, 23]. The measure for the ascent of the
n-dimensional PES functional E�x� is the norm of the
gradient vector g � �g1; . . . ; gn�, or expedient for calcu-
lation, the functional

Fig. 2. Numeric solutions of the Branin di�erential equation. The
curves begin somewhere beside the symmetry axis x � 0. They
bypass the VRI point, (0,0), like gradient curves pass a saddle point
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r�x� � 1

2
kg�x�k2 �21�

The GE Eq. (20) selects all points of the con®guration
space having an extreme value of r�x� with respect to
variations on equipotential surfaces. So, if r�x� has
a minimum the PES may show a valley-¯oor GE;
however, it may also be a crest of a ridge. The extremes
of r�x� can also be maxima or degenerate stationary
points [9, 14, 24]. Hence the GE following su�ers from
the ambiguity of the GE character.

Formula (20) forms a system of n equations of rank
nÿ 1 with n unknown variables x1; . . . ; xn. For curve
tracing, we need therefore nÿ 1 independent equations.
From the extremum de®nition of GE, it follows that the
nÿ 1 directional derivatives have to vanish:

GEi�x� :� @r
@ei
� 0; i � 1; . . . ; nÿ 1 �22�

In Eq. (22), the same i directional derivatives orthogonal
to the gradient of E�x� are used, as well as in Eq. (12).
Despite the computational problems, GEs are often used
to describe valley ground pathways and their braching.
However, BPs of a GE are in general not identical with
the VRI points of the PES; see [14].

6 Test surface in R3

6.1 Presentation of a 3D test PES

Example (4) is now extended to three dimensions by
adding a quadratic and a mixed term for the z-direction:

E�x; y; z� � 2y � y2 � �y � 0:4x2 � z2�x2 � 0:01z2 �23�
It has, for z � 0, the same stationary points as surface
(4), and further stationary points do not emerge. The
surface is a simpli®ed version of a higher-dimensional
molecular PES, related to malonaldehyde-like systems
[4, 37, 38]. In the case of proton transfer in malonalde-
hyde, x is the displacement of the H atom, ÿy is the
symmetric O±O stretch, and z may be the out-of-plane
wagging motion of the molecule (the z2 term has for the
molecular PES a larger factor). We are not able to draw
the full 4D problem. Hence, usually, 2D sections of the
full PES are interpreted. For z � 0, Eq. (23) reduces to
Eq. (4) depicted in Fig. 1. In Fig. 3 we display a series of
sections for the planes z � 0:5, z � 1 and z � 1:5. There
is a qualitative change of the surface features. The two
symmetric minima in panel A ¯ow together to one 2D
``banana'' minimum at x � 0, y � ÿ1, z � 1 in panel B.
The 2D minimum is ``degenerate'' at this point, because
the surface is in the x direction pure quartic. In panel C,
the region around the minimum at z � 1:5 has the
convex shape of a bowl. At all points z 6� 0 there is a
positive slope of the gradient (24) in the z component.
Thus, all stationary points in the 2D sections are
somewhere at a slope of the 3D surface.

The 2D RGF curve, Ey � 0 (dashed in Fig. 3), is
similar for all cuts with z � constant [owing to the sim-
ple form of the surface (23)]. The example is chosen for
the nice behaviour of the bifurcating 2D RGF solution,

Ex � 0. Its BP runs down along the y axis with increasing
z. For z � 0 it is at zero y, for 0 < z < 1 it is at
ÿ1 < y < 0, for z � 1 it collapses exactly with the de-
generate minimum and for z > 1 it turns to the other side
of the minimum with y < ÿ1.

In Fig. 4, the PES is additionally characterized by
some equipotential surfaces of function (23) in 3D which
corresponds to equipotential lines in 2D sections. Cho-
sen are the values E�x; y; z� � ÿ1 in panel A, E � ÿ0:99

Fig. 3. 2D sections of �x; y� planes of the 3D polynomial surface
E�x; y; z� � 2y � y2 � �y � 0:4x2 � z2�x2 � 0:01z2 at A: z � 0:5; B:
z � 1:0; and C: z � 1:5. (The case z � 0 is already given in Fig. 1.)
Note: z � 1 in panel B marks a qualitative change of the surface in
full R3
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in B and E � 0 in C. A set of ``body-shapes'' for in-
creasing energies like those in Fig. 4 is well suited to give
insights into the forms of 3D coordinate in¯uenced
modes of the molecule. The surface of case A touches the
SP of the full 3D surface (23) at point (0,ÿ1,0). Panel B
contains the two global BPs (0,ÿ1,�1) (see below); the
surface of case C passes through point (0,0,0), being also
a global BP with VRI character. The three equipotential
surfaces are nested like onion skins: A in B, and B in C.
The two global MIN of the 3D PES are lying symmet-
rically inside the lobes of the 2D equipotential surface A.

If we assume a molecule vibrating with a given
energy, then the geometry change of the molecule under
the vibration would remain within the equipotential
surface of the given energy. If we further assume a
molecule vibrating for example slowly with z, we get for
every ®xed z, thus using a z section, a ``breathing'' PES
in the other two dimensions, maybe quickly vibrating
modes in a corresponding x, y plane; cf. Fig. 3. How-
ever, the breathing is quite complicated because x and z
are coupled by the symmetric term x2z2.

After the presentation of the 3D test PES (23) by
sections and equipotential surfaces, we now analyse the
full 3D problem by following di�erent curves which may
be used for models of the MEP. The aim is to charac-
terize their BPs and show their relation to VRI points
of the surface.

6.2 3D minimum energy path

Taking the 2D sections for planes z � constant, an
intuitive minimum energy path can be derived by
following the 2D minima of those sections. These
minima are the crossings of the corresponding RGF
curves. In Fig. 5, we show a condensed picture of a
relief path over this MEP (black bullets) above an (x, z)
plane. We projected out the y degree of freedom by
choosing at every x value the corresponding y value
from the same RGF curve Ey � 0. Thus, we take
y � ÿ1ÿ 0:5x2. The edge of the PES in front of the
picture shows the energy pro®le over the RGF curve,
Ey � 0 for z � 0, from SP to MIN. The BP (0,ÿ1,1)
is also the VRI point. With decreasing z we have a ¯at
ground. A MEP goes down to the global MIN of the
PES for z � 0. This pathway is a 3D RGF curve (2)
for k � 3, ful®lling Ex � Ey � 0. However, other MEP
de®nitions like GE or steepest descent curves result in
other pathways; see below for a deeper explanation.
The projected curve at the lower �x; z� coordinate plane
of Fig. 5 shows the steepest descent path which starts
near the BP; cf. [11, 12]. It is evident that this pathway
is di�erent to the intuitive MEP. It rather follows a GE
path which also does not resemble this intuitive MEP;
cf. the Sect. 6.5 below, and an analogous example
in [14].

Fig. 4A±C. Equipotential sur-
faces of the 3D surface of Fig. 3
at A: E � ÿ1 through the SP;
B: E � ÿ0:99; and C: E � 0:0
through the BP above the SP

291



In Fig. 6 we show the RGF solution curves of Eq. (2)
in the whole 3D coordinate space. These curves are
solutions omitting either the gradient part k � 1 to ful®ll
Ey � Ez � 0, or k � 2 for Ex � Ez � 0, or k � 3 for
Ex � Ey � 0, correspondingly. For the ®rst two cases, in
the plane z � 0, the curves are those given in Sect. 2 and
in Fig. 1B. [This is caused by the particular simplicity of
the choice of surface (23) as a function in z.] In the third
case the curve is y�x� � ÿ1ÿ 0:5x2; z�x� � �

�������������������
1ÿ 0:3x2
p

.
It is exactly the MEP of Fig. 5. Note: each of the curves
(b) and (c) are composed of two branches. One of these
branches connects the two global minima MIN without
crossing the 3D SP. This means that they have to cross
their BP where they cross the other branch of the same
RGF curve. The corresponding BP is a VRI point of the
surface.

6.3 Branin solutions

Numerical Branin solutions of the global Newton
method (7) can be used for calculation of pathways
between extrema, but in special cases also for the
calculation of VRI points. In Fig. 2 we have shown a
pattern of four numerical Branin solutions in the plane
z � 0. The starting points are chosen near the y axis with
x0 � �0:001 and y0 � ÿ0:92 or = 0.492, correspond-
ingly. The four curves demonstrate the avoided crossing
of the VRI point, which is the extraneous singularity at
(0, 0). The character of this avoidance is called saddle-
point type [30] because of the analogy to steepest descent
curves passing the neighbourhood of a SP. Taking a
point on the symmetry axis as the starting point, i.e. the
singular direction x0 � 0 itself, we reach the VRI point
as the limit. On the other hand, starting near the

minimum, we may follow a Newton ¯ow uphill, by
changing the sign in the Branin Eq. (7) from ``ÿ'' to
``+''. Then we search for stationary points with odd
index. The VRI point divides the regions of attraction,
or of repulsion, of the stationary points of the two
different� Branin searches.

We now look for the full 3D surface (23). The gra-
dient vector of the surface is

g�x; y; z� � 2
x�0:8x2 � y � z2�
1� 0:5x2 � y
z�0:01� x2�

0@ 1A �24�

and the Hessian is

H�x; y; z� � 2
2:4x2 � y � z2 x 2xz

x 1 0
2xz 0 0:01� x2

0@ 1A �25�

The Branin formula (7) also fully works in the three
dimensions of �x; y; z�. We cannot expect generally to
®nd planar solutions like that for z � constant � 0.
However, two further exceptional planes exist: the
second symmetry plane x � 0 and, up to a certain
degree, also the plane y � ÿ1. In the latter plane, a
quasi-planar behaviour of Branin solutions occur near
the z axis. In Fig. 7A we show the Newton ¯ow at x � 0,
thus working in the symmetric �y; z� plane. This choice is
due to the fact that the manifold of VRI points is the
parabola y � ÿz2 in that plane within R3. The VRI
parabola is easy to understand, if we look at the Hessian
of the surface for the x � 0 plane:

H�0; y; z� � 2
y � z2 0 0
0 1 0
0 0 0:01

0@ 1A �26�

Fig. 5. 3D curvilinear surface
section of E�x; y�x�; z� over �x; z�
with y � ÿ1ÿ 0:5x2. The pro®le
over the ``minimum energy
path'' connecting the station-
ary-like points of a set of 2D
sections at z = constant (cf. Fig.
3) is shown by black bullets. The
SP (0;ÿ1; 0), as well as the BP
(0;ÿ1; 1) of that path are indi-
cated. The BP is higher in
energy by only 0.01 units. A
steepest descent path is shown
in the �x; z� plane. This path
starts at x0 � 0:01 near but
outside the BP and goes to the
global minimum MIN
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Taking a point on the parabola y � ÿz2, the Hessian
becomes singular, and the eigenvalue of the eigenvector
e0�� ezero� in the x direction becomes zero. The eigen-
vector e0 is orthogonal to the plane of interest with the
gradient

g�0; y; z� � 2
0

1� y
0:01z

0@ 1A �27�

This is the necessary condition for the occurence of VRI
point by the orthogonality, Eq. (6). With the initial
values �ÿ2; 1�, �ÿ1:5; 1:5�, �ÿ0:5; 1�, �ÿ0:2; 0:9�,
�ÿ0:9; 0:5�, �ÿ0:9; 0:25�, �ÿ0:9; 0:05�, �ÿ0:9; 0� and
�ÿ0:9;ÿ0:1� in Fig. 7A, we always obtain sets of
iteration points along straight lines. The arrows show
the direction of the calculated Newton ¯ow, which, in
every case, terminate at the parabola. The rays forming
the Newton ¯ow all focus in the point (0,ÿ1,0), the SP
of the full 3D surface (23). The parabola is the one-
dimensional manifold of VRI points of the surface (23).

General 3D Branin solutions of (23) close by the
symmetry plane x � 0 are displayed in Fig. 7B. We show
4� 4 Branin curves with small initial �x0 values. The

�y; z� pairs are a: �ÿ0:7; 0� and (0.5, 0); b: �ÿ0:6; 0:4� and
�ÿ0:3; 0:8�; c: �ÿ1; 0:5� and (1.2, 1.5); and d: �ÿ0:65; 1:1�
and �ÿ1:8; 1:63�. The Branin solutions (d) starting in the
symmetric �x; y� plane for z � 0 are analogous to those
in Fig. 2. These curves run in the plane, and also those in
the �x; z� plane for y � ÿ1 up to jxj < 0:5. However, the
other Branin curves quickly turn o�. The �x; z� plane at
y � ÿ1 has a dividing character for Branin solutions: it
is a repellent plane. For y > ÿ1, Branin curves turn o�

Fig. 6. Reduced gradient curves in the 3D coordinate space: They
connect the global minima, MIN, the SP, and the global VRI
points depicted by BP. The di�erent RGF curves are: a,
Ey � Ez � 0 (dashed); b, Ex � Ez � 0 (simple line); and c,
Ex � Ey � 0 (bullets). The curves a and b are in the plane z � 0.
The parabola of VRI points (bold) is orthogonal to that plane. The
intersections of the parabola with the given special RGF curves are
global points of special interest; see text. Below, three di�erent
projections of the box are shown

Fig. 7. A 2D section of the �y; z� plane at x � 0 with equipotential
lines (thin), and the parabola of the VRI points of the surface. The
arrows show Branin solutions converging to the extraneous
singularity, the parabola of the VRI points. The SP is the ``carrier''
of these Branin rays. B 3D picture of Branin solutions in the
coordinate space starting near the symmetric x � 0 plane of part A,
now with x0 � �0:005 up to x0 � �0:015. For further explanation,
see text
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the lime point on the parabola to run to the symmetry
�x; y� plane at z � 0, leading ®nally to the global MIN.
However, for y < ÿ1, Branin solutions are repelled to
follow the ridge of the surface uphill (in searching a
stationary point of index two). In contrast, the �x; y�
plane at z � 0 has the attractive characteristic. It is the
plane where the global MIN is located and, ®nally, all
curves starting at y > ÿ1 and x 6� 0 are going to that
MIN.

6.4 Other 2D sections

In Fig. 8, we change the point of view and consider 2D
sections of �x; z� planes, where y is constant. Previously,
in the case y > 0, the sections in �x; z� are combined by
positive quadratic and quartic terms. At y � 0, and
z � 0, the potential for x is pure quartic, and, therefore,
it becomes very ¯at. For y < 0, the situation changes.
This is shown in Fig. 8. At the x axis, two minima emerge
connected by the bifurcating RGF curve Ex � 0. The
crossing of the two di�erent RGF curves, Ex � 0 and
Ey � 0, is always at �x; z� � �0; 0�. This crossing point
moves, for di�erent y with y < 0, to a point on the ridge
in Fig. 1. It does not move in x and z. However, the
branching points of parts A, B and C of Fig. 8 move
from �x; z� � �0; 0� in the upper panel A of Fig. 8 along
the positive z axis if y decreases from zero. The minima
in Fig. 8A±C, on the RGF curve Ez � 0, are those points
which would be found by the minimization in the x
direction of Fig. 1 at a given value of y. The loci of these
minima in the �x; z� sections also form an intuitive MEP.

A further possibility of 2D sections are �y; z� planes
for x � constant. At ®rst sight they seem trivial, because
y and z are not coupled. The equipotential lines are pure
ellipses centered at z � 0, and y follows the parabola
y � ÿ1ÿ 0:5x2, being the RGF curve Ey � 0 of the 2D
PES (4). Nevertheless, there is a peculiar situation at
x � 0:995, or 0:01� x2 � 1: the two curvatures become
equal, and in 2D the whole plane would be composed by
GE points [9]! However, in the full 3D coordinate space,
this centre point gives a nondegenerate Hessian of the
surface:

H�0:995;ÿ1:495; 0� � 2
0:881 0:995 0
0995 1 0
0 0 1

0@ 1A �28�

with eigenvalues 0.056, 1.937 and 1 due to the x; y
coupling. Thus, we should not forget that 2D sections
may give misleading illustrations for higher dimensional
curvilinear surfaces.

6.5 Analysis by GEs

In order to better understand the properties of the VRI
parabola, we additionally follow some gradient ext-
remals adjacent to the VRI parabola, to the global
minima and the SP. The GEs are de®ned without use of
an arbitrary direction, in contrast to the RGF curves
which are de®ned by a constraint. GEs satisfy the

condition that the value of the gradient vector along an
equipotential hypersurface has an extremal point [23,
39]. This leads to the GE Eq. (20) which is simple to
formulate, but the realization of a path-following
procedure requires some third derivatives of the surface;
cf. [13, 23, 26].

The test surface (23) is symmetric in z; thus the z � 0
plane will contain some GE curves. They are shown in
Fig. 9A [14]. One GE connects the two MIN
(� ����������

10=3
p

;ÿ8=3) with the SP �0;ÿ1�. Note: the GE ap-
proach to the RP between MIN and SP is di�erent from

Fig. 8. 2D sections of �x; z� planes of the 3D model potential surface
(23) at A: y � 0; B: y � ÿ1:0 (SP); and C: y � ÿ2:67 (MIN). 2D
RGF curves are Ex � 0 (bold faced) and Ez � 0 (dashed)
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the RGF curve Ey � 0 in Fig. 1. Orthogonal to that GE
a second GE curve occurs starting in the minimum along
the cirque going up the steeper slope of the bowl. The
third GE runs along the y axis, which is a cirque for
y > 0 and a cli� for y < 0. The calculation of these GEs
can be done by using the 2D formula [9, 23]

Exy�E2
x ÿ E2

y � � �Eyy ÿ Exx�ExEy � 0 �29�
The GE character of the y axis may be directly proved:
the gradient direction is �0; 1; 0�T . This is an eigenvector
of the matrix H at x � 0, z � 0.

In the full 3D case, we also ®nd the linear GE in the z
direction crossing the point �x; y� � �0;ÿ1�. The gradi-
ent vector �0; 0; 0:02z�T is an eigenvector of H at a
pathway in the z direction. This z-axis-GE, and the y-

axis-GE given above, are the only GE curves in the �y; z�
plane of x � 0. In Fig. 9B we show a 2D planar section
of the �x; z� plane at y � ÿ1. The 2D GE of that section
are calculated by Eq. (29) with coordinates x; z. How-
ever, in the 3D coordinate space these curves do not
represent the 3D GEs if jxj > 0:8 or jzj > 1. The GE's
``a'' and ``b'' around zero of panel B in Fig. 9 are good
projections of 3D GE curves. Note that the curve ``a'' is
the same in A and B. The 3D BP (0.83, ÿ1:03, 0) can be
observed by its 2D ``projection'' in Fig. 9B. It is lying on
the uphill GE from the global MIN to the SP of panel A,
being also a 3D saddle (see also Fig. 10). The valley GE
``c'' in the (x; y) plane of Fig. 9A bifurcates at the BP into
the z direction. In the 3D space, the BP of the GEs is the
point where the three curves ``a'', ``b'' and ``c'' meet. The
GE ``b'' of panel B then leads uphill into the direction of
the global VRI (0;ÿ1; 1) explained in Fig. 5, but does
not arrive at this VRI point owing to the turning point
(0.11, ÿ1, 0.7). This illustrates a well-known drawback
of GE curves. The VRI point region of the MEP of Fig.
5 is not well described by the crossing of GE curves; it is
only crossed by the one straight line GE in the z direc-
tion but the other GEs in the �x; z� plane fail to cross the
VRI region. That the other GEs come near to the VRI
point may be due to the near-harmonic surface used.
The upper GEs at jzj > 1 in B exist also in 3D, but their
2D form in Fig. 9B is not a true projection of the 3D

Fig. 9. A The 2D planar �x; y� section z � 0 of the surface (23)
containing the 3D gradient extremals of the full 3D problem lying
in that plane. B 2D planar �x; z� section for y � ÿ1 with the local
2D GE of the surface section, which is a good approximation of the
projection of the existing full 3D GE into this plane, at least for
jxj < 1 and jzj < 1. The upper GEs go along a ridge, also in 3D,
where they break out o� this plane

Fig. 10. Gradient extremals (dots) of the 3D polynomial surface
E�x; y; z� � 2y � y2 � �y � 0:4x2 � z2�x2 � 0:01z2 in 3D coordinate
space, and the parabola (bold) of the VRI points of the surface.
Three global VRI points are depicted by big black bullets. Two of
them at jzj � �1 are lying in the centre of turning point regions of
GEs. The ``true'' GE-MEP from MIN to SP is not the pathway
c� a, but the roundabout way c� b. The piece a of the GE is a
cirque GE in an �x; z� plane; cf. Fig. 9B. Numbers at MIN depict
the order of the eigenvalues of the corresponding GE curves
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behaviour (compare again with Fig. 10, where the 3D
GEs are illustrated in the con®guration space, R3). Three
GEs cross the SP. This corresponds to the picture that
GEs lead along the eigenvectors at stationary points.
The valley ground GE ``1'' passes the minimum. The GE
``2'' follows a way out of the z � 0 plane. This GE is a
cirque line along the second eigenvector. GE ``3'' lies
in an (x; y) plane, as already shown in Fig. 9A.

The GEs ``c'' and ``a'' in Fig. 10, leading from MIN
to SP in the �x; y� plane for z � 0 (see also Fig. 9A), now
obtain a new characterization due to the 3D pitchfork
bifurcation at ��0:835;ÿ1:03; 0� of that pathway into
the �x; z� plane for y � ÿ1 along GE ``b''. The reason for
the BP is a branching of the valley ground line which
turns from the �x; y� plane into the �x; z� plane. The
remaining part of the pathway, the central prong of the
pitchfork, piece ``a'' in Fig. 10, develops as a cirque GE
in 3D, leading to the SP. This GE is changed in 3D to
the cirque GE along a slightly steeper ascent than the
other two continuations which are valley GEs, the
symmetric curve pieces ``b'' in Fig. 10. So, the valley
path ``c'' bifurcates into the ``a'' and two symmetric ``b''
paths at the BP, but this BP of a GE indicates only a
change of the valley: ``c'' is changed to ``a'' and changes
somewhere on the path from the valley to the cirque
character, but not to a ridge. Hence, this BP of GEs is
not a VRI point of the surface! Note: the thick line RGF
curve in Fig. 8B passes near the GE ``b'' of Fig. 10, but
the RGF curve does not show a bifurcation in the x-axis
region at the BP of the GEs.

The two symmetric 3D BPs of RGF curves,
�0;ÿ1;�1�, are the points where the two minima of the
panel A of Fig. 3 ¯ow together to one in the middle. We
call them global VRI points. Additionally, they are the
points of lowest energy of the VRI parabola. They are
located along the direction of the lowest positive normal
mode of the SP (see Fig. 7A). These points may be
identi®ed with the term branching points of the surface.
Such a global VRI point is also found at �0; 0; 0�. It also
stands alone at the parabola by the crossing of the pa-
rabola with the y-axis GE. It is additionally the point of
the parabola with the local maximum of the energy (see
Fig. 7A). Other points than these three global VRI
points of the parabola are not the location of GE points.
The gradient vector of the surface at points of the pa-
rabola y � ÿz2; x � 0, is the vector 2�0; 1ÿ z2; 0:01z�T . It
is generally not an eigenvector of the (constant) Hessian

H�0;ÿz2; z� � 2
0 0 0
0 1 0
0 0 0:01

0@ 1A �30�

which is only the case at the three special points
�0;ÿ1;�1� and �0; 0; 0�. Although the gradient always
is orthogonal to the zero eigenvector of this Hessian,
namely the �1; 0; 0�T direction orthogonal to the VRI
parabola in R3, it generally is not an eigenvector itself.
This becomes true in the case of simple 2D treatments:
there is only one direction orthogonal to a given zero
eigenvector. In a higher dimensional case, the gradient
may rotate orthogonal to the zero eigenvector between
the other eigenvectors of the Hessian. Thus, the gradient

exists in a subspace orthogonal to the zero eigenvector.
Collins [40] says: ``...GE paths do have the interesting
feature that they pass through VRI points''. The 3D
example shows that this is only true sometimes, namely
for the above so-called global VRI points.

7 Discussion

A number of special points of the surface (23) are
de®ned by crossing of the curves calculated. These may
be the points of chemical or spectroscopic interest:

1. Global minima are the points �� ����������
10=3

p
;ÿ8=3; 0�,

which correspond to stable molecular geometries. The
eigenvalues of the Hessian are all positive: 10.9996,
3.3432 and 0:�6. Three GEs cross these minima,
leaving them along the directions given by the three
eigenvectors.

2. The saddle point of index one is at (0;ÿ1; 0). It is the
pass along the valley GE between the two minima in
the symmetry plane z � 0 (see Fig. 9A). It is also the
energy maximum along the valley GE between the two
BPs in the plane y � ÿ1 in Fig. 9B, because the
cirque GE ``a'' changes near the SP again into the
valley GE. The eigenvalues of the surface Hessian at
the SP are ÿ1, 1, and 0.01, where the negative
eigenvalue describes the transition vector (x direc-
tion). Three GEs are crossing each other. A RGF
curve in the full 3D, Ey � Ez � 0 (the dashed curve in
Fig. 6), connects the global MIN with the SP.

3. The point �0; 0; 0�: one eigenvalue is zero, the other
two are positive, and the orthogonality condition of
Eq. (6) is ful®lled. Thus, it lies on the 1D VRI
manifold and on the horizontal straight line GE
through x � 0; z � 0 (y axis). The point is the vertex
of the parabola of VRI points. It is not a stationary
point, but it is a BP of the 3D RGF curve Ex � Ez � 0
(of the branches ``b'' in Fig. 6).

4. The points �0;ÿ1;� 1�: as in 3, one eigenvalue is zero,
the other two are positive, and the orthogonality
condition of Eq. (6) is ful®lled. Thus, they are again
VRI points. They are crossing points with the straight
line GE through x � 0; y � ÿ1 along the z direction.
Because for z 6� 0 the gradient does not vanish, the
two points do not form stationary points. They are
the BPs of the branches of the 3D RGF curve with
Ex � Ey � 0 (the bullet curve in Fig. 6).

What meaning do these global VRI points have? In
point �0; 0; 0� a change of the character of the surface
begins (in the z � 0 plane) if one looks at the other two
degrees of freedom, �x; y�: a downward cirque coming
from positive y changes into a cli� along its pathway to
the SP. The branches of the RGF curve ``simulate'' two
valleys, cf. Figs. 1B and 3A, bypassing the SP. For z 6� 0
the BP of the RGF occurs at lower values of y. The VRI
point in Fig. 1A is the limiting VRI point in the y
direction seen over all z values. Figure 4 shows that the
surface in the neighbourhood of the point �0; 0; 0� in
panel C is the last convex equipotential surface. Before
this BP �0; 0; 0�, thus for y > 0, the corresponding
equipotential surfaces are convex, but after the BP two
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small swellings emerge in front of the panels A or B.
They cause a concavity behaviour of the equipotential
surface in the x direction. The BP �0; 0; 0� is that point
where the concavity begins.

On the other hand, at the BPs �0;ÿ1;�1�, the two
minima in the corresponding �x; y� plane, see Fig. 3, dis-
appear and ¯ow together to one single minimum. The
planes z � �1 are the limits of the existence of the two
``isomers''. In Fig. 4A and B, we observe a sudden change
of the equipotential surface taken at the SP level in A, to
the BP �0;ÿ1;�1� level in B by closing the canyon be-
tween the two lobes still visible in panel A. For increasing
jzj > 1 a summit in the z direction of panel C emerges.
Thus, the BP region is again the region where local con-
cavity changes into convexity, along the z direction.

The character of the VRI manifold is well understood
by RGF curves, but only three points of that manifold,
�0;ÿ1;�1� and �0; 0; 0� are characterized by a crossing
of the manifold of VRI points with a GE curve. These
points on the GE-MEPs form the BPs of ``chemical or
``spectroscopic'' interest. Note that every point of the
VRI parabola is a BP of a corresponding RGF search
direction r in Eq. (16); compare Fig. 7B. This leads to
the conception of a manifold of VRI points ± in this case
of a one-dimensional curve.

Intuitive thinking would prefer the MEP of Fig. 5 to
be the static path connecting the global VRI points,
�0;ÿ1;�1�, and the global minima, MIN, of the surface.
It is constructed by connecting the locus of crossing RGF
curves in z=constant planes. TheGE procedure does not
accomodate this intuition. The valley GE ``b'' of Fig. 9B
does not cross the global VRI point owing to its turning
point. However, the turning point region of this GE also
characterizes the VRI region. The downward pathway
``b'' of the GE from TP to the right BP of the panel B goes
roughly parallel to the intuitive MEP. A steepest descent
path also goes along this course. However, the BP be-
haviour of the GE curves between the planes �x; z� and
�x; y� is not mirrored by the intuitiveMEP. So, at a deeper
view, the GEs give a better insight into the ®ner structure
of the surface valleys and cirques, or ridges and cli�s.
Bifurcation points of RGF curves represent VRI points.
Thus, if RGF fortunately follows the MEP, as along the
positive y axis in Fig. 1, then VRI forms also the MEP
branching point. The combination of symmetry adapted
RGF curves and of GE curves allows us to localize
the global structure of the surface as well as the exact
pathways and bifurcations of possible reaction valleys.

A 1D manifold of VRI points, i.e. a curve, is obtained
in R3 coordinates. This makes it evident that in higher
dimensional PES applications, as is the usual case in
theoretical chemistry, a whole manifold of VRI points
does exist. It maximally reaches the dimension nÿ 2,
where n is the dimension of the surface [30]. This
``manifold character'' may be compared with the MEP
always understood as a curve.

Appendix A: proof of the VRI character of a zero product
of adjoint and gradient

We assume g 6� 0. The statement is: if Eq. (6) is ful®lled
then the gradient g is orthogonal to a zero eigenvector e0

of the Hessian, H. If e1; e2 and e3�� e0 are the eigenvec-
tors of H with eigenvalues k1; k2 and k3�� 0�, then they
are also the eigenvectors of A but with the eigenvalues
l1 � k2k3; l2 � k1k3 and l3 � k1k2. This is due to the
equation

Hei � ki ei; �31�
Thus, by multiplication with the adjoint matrix we get

AHei � Det�H�ei � ki Aei �32�
with

Det�H� � k1 k2 k3 �33�
If H has the zero eigenvalues k3 � 0 then A has two zero
eigenvalues, l1 � 0 and l2 � 0. Expressing g by the three
eigenvectors

g � a1 e1 � a2 e2 � a3 e3 �34�
gives the relation

Ag � a3 k1 k2 e3 �35�
if k3 � 0. If now g is orthogonal to e3 then a3 has to be
zero, and if a3 is zero then Eq. (6) is satis®ed.

Note that the proof also shows that an in¯ection
point of an energy pro®le along a valley ground gener-
ally is not an extraneous singularity, in the sense of VRI,
because g is not orthogonal to e3, and so a3 6� 0. The
curvature of the energy pro®le along the MEP is not
relevant for the VRI problem!

Appendix B: a series of cusps

The orthogonality condition of Eq. (6) for an eigenvec-
tor e0 of H to the zero eigenvalue is satis®ed by points of
the VRI parabola y � ÿz2 at x � 0. However, Eq. (6)
has still a second solution. It is also ful®lled by the points
of the curve

�x�t�; y�t�; z�t�� ��t; �0:01ÿ 3:017t2 ÿ 0:5t4�=�0:01� t2�;����������������������
ÿ1� 0:3t2

p
� �36�

where x � t is used as the curve parameter. At any point
of that curve there is one eigenvalue of H equal to zero,
and the gradient of the surface is orthogonal to the zero
eigenvector. However, it is not the region where the crest
of the ridge changes into the valley ground, but it is a
special sort of ¯ank line: it is part of the border between
the regions of ridge and valley. Of course, in 3D, this
border is a 2D surface. Curve (36) picks out special
points of this surface where Eq. (6) is also ful®lled.
Curve (36) is shown in Fig. 11 in the quadrant of positive
�x; z� of the con®guration space R3. At the four points
a � � ����������

10=3
p

;ÿ14=3; 0�, b � ( 2.2, ÿ5:42; 0.67), c � (2.5,
ÿ6:13; 0.94) and d � (2.8, ÿ6:93; 1.16), a frame of three
vectors is ®xed. The large one is the scaled gradient of
the surface at the corresponding point. The small vector
with a vector head is the normalized zero eigenvector of
that point, and the stick without a vector head is the
normalized cross product of the two former directions
called below ``vector cross''. The region of that curve is
outside of the region of the stationary points as well as
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the global VRI points, which are treated in the Figs.
1±10. At point a, the curve (36) begins as its vertex. The
gradient vector as well as the zero eigenvector lie in the
�x; y� plane, and the ``vector cross'' points into the pure
z direction. In all other cases, the frame is rotated. We
treat the test surface by using 2D sections to understand
the curve (36) in Figs. 12 and 13. The 2D surface shows a
normal pattern of level lines in the plane �e0; g� shown in
Fig. 12, and also in the plane (cross, g) where the level
lines are simple convex curves. The special property of
the level lines at point (0,0) in Fig. 12, within the point of

the curve (36), is the zero curvature by calculation
corresponding to Eq. (6), but the zero eigenvalue is due
to a cubic in¯ection point. (0,0) is that point where the
ridge of the upper right-hand side of the panels ends and
the valley of the lower left-hand side begins.

Some levels show a quite strange shape shown at the
point (0,0) in Fig. 13. The corresponding panels are
planes (e0, cross) at the points a±d of Fig. 11. The 2D
surface is a valley ascending from the right- to the left-
hand side with decreasing value of the coordinate n
along the zero eigenvector. The level line through the
point (0,0) is a cusp. The shape of this curve is a subject
of catastrophe theory; cf. also [9]. Its germ is the func-
tion n3 � ag2 for n > 0 along e0, g along cross, and a is
a constant. The cusps of Fig. 13 are more complicated
functions. The surface over the given planes has the form
of a chair. At one sitting, exactly one level line shows the
grotesque cusp shape. All other levels before and after
the cusp are usually curvilinear level lines.
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