Dr. Quapp: Statistik für Mathematiker mit SPSS

3. Übung – Regression

1. Es wird ein Zusammenhang vermutet zwischen dem Schwefelgehalt s_i der Luft (in $\mu g/m^3$) und den Absenzen z_i von weiblichen Angestellten (pro 1000 Angestellte) in 5 Städten:

Bestimmen Sie durch lineare Regression die beste Funktion z = a + bs sowie auch die beste Funktion s = A + Bz, und vergleichen Sie beide Resultate durch Darstellung in einem Koordinatensystem: Schnittpunkt, Winkel zwischen den Geraden?

2. Die folgende Tabelle enthält die Größe (H in cm) und das Gewicht (G in kg) von 30 elfjährigen Mädchen (datei hoehe30.sav in D:).

H	G	H	G	H	G	H	G	H	G
135	26	133	31	143	36	140	33	149	44
146	33	149	36	146	35	143	42	147	36
153	55	141	32	141	28	148	32	155	36
154	50	164	47	136	28	149	32	135	30
139	32	146	37	154	36	141	29	137	31
131	25	149	46	151	48	137	34	152	47

Untersuchen Sie zunächst die Merkmale G und H separat.

- a) Bestimmen Sie für G und H die Häufigkeitstabellen und Histogramme.
- b) Bestimmen Sie für beide Merkmale Modalwert, Median, arithmetisches Mittel und die Quartile der Ordnung 1/4 bzw. 3/4.
- c) Bestimmen Sie die Standardabweichungen, Schiefen, Wölbungen beider Merkmale und die mittleren absoluten Abweichungen.

Untersuchen Sie die Abhängigkeit der Merkmale G und H.

- d) Zeichnen Sie das Streuungsdiagramm.
- e) Bestimmen Sie durch lineare Regression die beste Funktion G = a + bH.
- f) Klassifizieren Sie G und H in je 3 Klassen und Stellen Sie die Kontingenztafel auf.

- 3. Erzeugen Sie je 100 normalverteilte Zufallszahlen $X_i \sim N(0,1)$ und $U_i \sim N(0,0.5)$ (verwenden Sie den Befehl RV.Normal(...) im Fenster Berechnen).
 - a) Stellen Sie die Dichten von X und U grafisch dar.

Erzeugen Sie je 100 weitere Zufallszahlen mittels

$$Y_i \sim 10 * X_i + 3 + 0.1 * U_{(i+1)},$$

$$Z_i \sim 10 * X_i + 3 + 0.5 * U_i$$
 sowie

$$W_i \sim 10*X_i + 3 + 2.0*U_{(i-1)}$$
.

(Hinweis: schräg zu den Zeilen kann man Variable mit den Befehlen Leads und Lag verwenden.)

- b) Bestimmen Sie die Korrelationen zwischen den neuen Variablen und X_i .
- c) Bestimmen Sie die beste lineare und die beste quadratische Anpassung von Y_i , Z_i und W_i zu X_i . Wie sinnvoll ist letzteres?
- 4. Gegeben sei folgende Tabelle:

-								7			
	y	1	3	3	3	6	6	6	9	9	9

- a) Bestimmen Sie den Pearsonschen und den Spearmanschen Korrelationskoeffizienten.
- b) Bestimmen Sie durch lineare Regression die beste Funktion $y=a+b\,x.$
- c) Geben Sie eine Kreuztabelle an.