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Abstract

The reaction path is an important concept of theoretical chemistry. We employ the definitions of the Newton trajectory (NT) and

of the gradient extremal (GE). An NT follows a curve where the gradient is always a pointer to a fixed direction. A GE is a curve

where the gradient of the potential energy surfaces (PES) is eigenvector of the Hessian. Examples are given with the Müller–Brown

potential and further model PESs. An induced tangent opens the possibility to follow the curve by a predictor–corrector method. We

show that the two kinds of curves can be treated as curves with induced tangent, however, the gradient descent, or intrinsic reaction

coordinate not.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

The concept of the minimum energy path (MEP) or

reaction path (RP) of an adiabatic potential energy sur-

face (PES) is the usual approach to the theoretical kinet-

ics of larger chemical systems [1,2]. It is a line in

coordinate space, which connects two minima by pass-

ing the saddle point (SP), the transition structure of a

PES. The energy of the SP is assumed to be the highest

value tracing along the RP.
Reaction theories are based either implicitly (transi-

tion state theory), or explicitly (variational transition

state theory) on the knowledge of the RP [2]. These the-

ories require local information about the PES along the

RP only. They circumvent the dimensionality dilemma

for medium-sized or large molecules: it is impossible to

fully calculate their PES. The starting point is a geomet-

rically defined pathway which may serve as an RP. Geo-
metrically defined means that only properties of the PES
0009-2614/$ - see front matter � 2004 Elsevier B.V. All rights reserved.
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are taken into account, and that no dynamic behavior of

the molecule is taken into consideration. Usually, in
one�s imagination the MEP is situated in a valley of

the PES. But how the RP ascends to the SP is an uncer-

tainty of the general RP definition. We use here the dis-

tinguished coordinate method [3] in the modern form of

RGF [4,5], also called Newton trajectory (NT), and the

gradient extremal [6].

To be able to numerically follow a curve point by

point using a predictor–corrector method, it is impor-
tant that the curve can be defind by an induced tan-

gent [7,8]. In this Letter we prove in Section 3 that

NTs and gradient extremals (GEs) fulfill that impor-

tant property [8].
2. Potential energy surface

The adiabatic PES of the molecular system of obser-

vation is the basis of our treatment. Using the Born-

Oppenheimer approximation, the PES is the sum of

the Coulomb-repulsion of the atom kernels and the

Schrödinger equation of the electrons HW ¼ EW.
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Fig. 1. Schematical reaction coordinate unfolded on x axis.
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Another way of computation is the molecular mechan-

ics. The explicit calculation of the energy E is not of

interest, here. We assume the PES is given by a scalar

function of the coordinates of the molecule at every

point of interest:

Definition 1. Let K be an open subset of Rn. K is the

configuration space of the PES. Let x ¼ ðx1; . . . ; xnÞ 2 K.

The function EðxÞ : K ! R is an n�dimensional poten-

tial energy surface (PES). The derivative G : K ! Rn

with

GðxÞ ¼ oE
ox1

ðxÞ; . . . ; oE
oxn

ðxÞ
� �T

is the gradient and the Hessian matrix HðxÞ 2 Rn�n is

HðxÞ ¼ o2E
oxioxj

ðxÞ
� �n

i;j¼1

:

The configuration space of a molecule is restricted. We

assume at least a twofold differentiability of the PES

for practical reasons – for the use of the diverse applica-

tions. The Hessian is symmetric and has the partition

into eigenvalues and eigenvectors:

H ¼ UKUT; ð1Þ

with U = (u1,. . .,un) and K = Diag(k1,. . .,kn), with

H ui = kiui, i = 1. . .n .

Definition 2. A point x 2 K is nondegenerate if

detH(x)6¼0. The index of a nondegenerate point x 2 K
is the number of negative eigenvalues of H(x). We write

ind(x). A point x0 2 K with G(x0) = 0 is named

stationary point (StP). A nondegenerate stationary
point, x0, is minimum if ind(x0) = 0, or maximum if

ind(x0) = n, or saddle point of index i if ind(x0) = i,

0 < i < n.

We assume that no StP is degenerate, i.e., that for all
x 2 K it holds the regularity condition iG(x)i +
|detH(x)| > 0. Nondegenerate StPs are isolated [9].

2.1. Valley-ridge-inflection point

A special subset of degenerate points can be conjunc-

tured to be the branching points of RPs. A valley-ridge-

inflection point (VRI) is located where the gradient is
orthogonal to a zero eigenvector of the Hessian [10].

At a VRI, the gradient does not lie in the kernel of the

Hessian, and an augmented Hessian with gradient does

not lift the defect of the rank:

fVRI pointsg ¼ fx 2 Kjrank½HðxÞ;GðxÞ� < ng: ð2Þ
The bracket means matrix augmentation:

½HðxÞ;GðxÞ� 2 Rn�ðnþ1Þ. A VRI point need not be �sym-

metric� [11]. VRI points are independent on any curve

definition.
2.2. Reaction pathways

A central definition in activated-complex theory [12] is

the reaction coordinate. It is the unfolded x axis for the

energy profile of the reaction in Fig. 1. The reaction

coordinate is the Interval (a, c) of a curve parameter
of a reaction path C : ða; cÞ ! K on the PES connecting

the reactant and the product over a transition state.

(Since a reaction results in more products then the RP

branches.) The shape of the energy profile depends on

the pathway chosen. But the height of the barrier does

not depend on the way. It is the energy of the SP. The

reaction profile takes its global maximum there. If a

chemical system has an energy at least like the SP, the
activated state, the system transforms to the product.

We treat a piece of the RP C, a curve which connects

two StPs, say minimum, x, and SP of index 1, y. In

the following, we use that C is defined over the open

interval (a,b), thus, C : ða; bÞ ! Rn;CðtÞ ¼ xðtÞ. Let C

be smooth and injective, and we assume that no StP is

contained. Let the limit of the lower interval point

CðaÞ be the minimum CðaÞ :¼ x ¼ limt!aCðtÞ, and let
the SP be the limit of the upper interval point

CðbÞ :¼ y ¼ limt!bCðtÞ. The tangent _xðtÞ of such a curve

C on (a,b) is unique and not zero _xðtÞ 6¼ 0. But the limit

limt!a _xðtÞ will be zero (as well as the limit t!b).

The assumption of the reaction coordinate to be a

curve parameter is also a possibility to use curvilinear

coordinate systems [13].
3. Induced tangent

For special curves, the tangent can be given by an

(n�1) · n-matrix. An important property of such a def-

inition is the possibility to locally decide whether a point

belongs to the curve, or not. (For example, the intrinsic
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Fig. 2. A family of Newton trajectories on a test surface [8], see

Appendix A.
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reaction coordinate (IRC) does not possess the property,

see below.)

Definition 3. Let M = M(x) be an (n�1) · n matrix of

rank n�1. We define a unique vector tðxÞ 2 Rn by three

conditions:

Mt ¼ 0; subspace;

ktk ¼ 1; length;

det
M

tT

� �
> 0; orientation:

We will call tðxÞ 2 Rn the tangent induced by M [7].

There is a singularity of the definition in points

x 2 K where rank M(x) is smaller than n�1. The curve

branches there. The map M´t is smooth for the set of

all (n�1) · n-matrices with maximal rank [7].

3.1. Projection operator

It is Sn�1 ¼ fx 2 Rn j kxk ¼ 1g the unit sphere in Rn.

We choose a column vector r 2 Sn�1 for a projection.

We define a matrix Pr 2 Rðn�1Þ�n by (n�1) row vectors

of Rn being with r an orthonormal basis of Rn. Thus

KerðPrÞ ¼ linfrg and ImðPrÞ ¼ linfrg?. Pr projects a

vector v in direction lin{r} and on lin{r}^. The construc-

tion of Pr can be done by a Gram–Schmidt method [14].

3.2. Newton trajectories

An NT is a first example of a curve with induced tan-

gent. The NT concept [4,5,15–18] is that a selected gra-

dient direction is fixed along the curve x(t)

GðxðtÞÞ=kGðxðtÞÞk ¼ r; ð3Þ

where r is the unit vector of the search direction. The

property (3) is realizable by a projection of the gradient.

We pose

PrGðxðtÞÞ ¼ 0: ð4Þ

Pr is a constant (n�1) · n matrix of rank n�1. The map

R : Rn � Sn�1 ! Rn�1, with Rðx; rÞ ¼ PrGðxÞ will be
called the reduced gradient, and r 2 Sn�1 will be called

search direction. The equation

Rðx;�rÞ ¼ 0 ð5Þ
is for any fixed �r 2 Sn�1 the reduced gradient equation to

the search direction �r. Based on the explicit definition,

the predictor–corrector method of the reduced gradient
following (RGF) [5] traces a curve (4) along its tangen-

tial vector by the derivative to obtain the tangent x 0

0 ¼ d

dt
½PrGðxðtÞÞ� ¼ Pr

dGðxðtÞÞ
dt

¼ PrHðxðtÞÞx0ðtÞ: ð6Þ
Eq. (6) defines the induced tangent by the matrix

M ¼ PrHðxðtÞÞ. The RGF is a simple but effective pro-

cedure in order to determine all types of StPs [4]. In the

general good-natured case, each RGF curve passes each

StP. A whole family of RGF curves connects the extr-

ema if we vary the search direction r [19], see Fig. 2.

We will use the names Newton trajectory and RGF curve

as synonyms.

3.3. Gradient extremal

GEs are the next example for a curve with induced

tangent. At every point of a GE the gradient is eigenvec-

tor of the Hessian [6,20–22]

HðxÞGðxÞ ¼ kGðxÞ: ð7Þ
GEs are curves where the norm of the gradient has a lo-

cal extremum on equipotential surfaces, Ea. For the

norm of the gradient one uses the functional

r : Rn ! R with rðxÞ ¼ 1

2
GðxÞTGðxÞ:

The gradient extremal is given by

ðPGdrÞðxÞ ¼ PGðxÞHðxÞGðxÞ ¼ 0; ð8Þ

where it is PGdr : Rn ! Rn�1 and the projector PG acts

in direction G. lin{G(x)} is the kernel of PG at point x.

To grasp the tangent, one has to differentiate the equa-

tion to the curve parameter t [22]. It follows
dðPGdrÞjx _x ¼ 0. It has the structure of an induced tan-

gent with MðxÞ ¼ dðPGdrÞjx 2 Rðn�1Þ�n. To decide that

a point x 2 K is on the GE, it is sufficient to use the cri-

terion (8) without a further derivation.

The importance of the GE is its geometrical interpre-

tation as a valley floor line. If a point x 2 K is on the

gradient extremal then the norm of the gradient has an

extremum on the corresponding equipotential surface
EEðxÞ. It means the restriction of iGi on EEðxÞ has a crit-

ical point at x. One problem of using GEs is that ridges

are also indicated by GEs. Another problem is that not

in all cases the valley floor leads from minimum to the
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Fig. 3. Gradient extremals on a 2D test surface[8].
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next SP. It may happen that the valley ends at the slope.

Fig. 3(a) shows GEs on a 2D model surface. A valley

pathway very well connects the minimum at North-East

and the SP. But the other valley at South-West lies quasi

orthogonally. There the worst case can be observed: the

second minimum has no GE connection to the SP. There
is �no� valley floor between SP and minimum. The smal-

ler picture Fig. 3(b) shows a situation which is not to-

tally bad: the two GE lines going to North-West meet,

and they are connected by a turning point.

3.4. Comparison of newton trajectory and gradient

extremal

Both, the following of a GE, as well as the following

of an NT, can be seen to be a method with induced tan-

gent, see Table 1. The ansatz in a predictor–corrector

method gives the criterion to jump between a predictor

step or a corrector step. The proof of the ansatz does

not need the derivation of the tangent. Both, predictor

and corrector, need the induced tangent: the predictor

step goes along the tangent, and the corrector step goes
orthogonally to the tangent. The matrix which induces

the tangent to the corresponding curve is the Jacobi ma-

trix. It is the matrix of the partial derivatives of a vector

function. The Hessian is the Jacobi matrix of the gradi-

ent. Here we have to use the maps G and R, see Table 1.

The curve has a singularity if the rank of the Jacobi ma-
Table 1

Comparison of gradient extremal and Newton trajectory

Gradient extremal Reduced gradient

Ansatz PGdr ¼ 0 PrG ¼ 0

Map G : Rn ! Rn�1 Rð:; rÞ : Rn ! Rn�1

x ! PGdrðxÞ x ! PrGðxÞ

Jacobi matrix
Gx ¼ dðPGdrÞ

¼ dPGdrþPGd
2r

Rx ¼ dPrG
¼ PrH

Singularity rank Gx < n� 1 rank Rx < n� 1
trix decreases. The singularities of the NTs are the VRIs

[5]. The Jacobi matrix of the GE needs third derivatives

of the PES [22]. The requirement is one of the practical

breakdowns of the direct GE ansatz, however, see an

alternate approximation in [11,23] by NTs.
3.5. Steepest descent, intrinsic reaction coordinate

Now we show that the IRC is not a curve with in-

duced tangent. The steepest descent (SD) from the SP

in mass-weighted Cartesian coordinates is a simple def-

inition of a reaction path, which is well-known as the

IRC [24]. Using the arc-length s for the curve parameter,

a steepest descent curve x(s) is defined by the system of
vector equations in n dimensions

dxðsÞ
ds

¼ � GðxðsÞÞ
kGðxðsÞÞk ¼ �wðsÞ; ð9Þ

where G(x) is the gradient vector of the PES and w(s) is

the gradient with unit length. Numerically, the SD of the

IRC is started by curve following at an SP of index one,

by a step in the direction of the decomposition vector. It
is the eigenvector of the Hessian matrix with negative

eigenvalue.

Because the SD follows the gradient of the PES, its

tangent is parallel to the gradient and orthogonal to

the equipotential hypersurface. Trivially, every SD ful-

fills a projector equation where the tangent w(s) of the

curve is used for the construction of the projector. If

x(s) is the SD curve, then t(s) = w(s) of Eq. (9) is the tan-
gent vector for use in a projector. Additionally to Eq.

(9), we have a second definition of the SD by a projector

equation. There is also an old second method to find the

IRC by this ansatz. Liotard and Penot [25] have chosen

a smooth curve which connects two minima. If it is out-

side the IRC then the equation

PtðsÞðGðxðsÞÞÞ ¼ 0 ð10Þ

is not fulfilled at least in some points. Because, there is

one and only one curve which goes through the SP
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Fig. 4. IRC and Gradient extremals on a modified NFK surface [8,28].

Bullets, IRC. Fat curves, GEs. Light solid curves, level lines. Thin

dashes, border: between convex and concave regions [8]. A circle at the

point (1.34, �1.08) on the IRC in the ridge region gives a counter-

example against the �minimum property� of the IRC, see also the

enlargement of the circle. The circle is tangentially touched by the

lowest energy level line at a point being not the intersection of the IRC

and the circle.
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and is SD. We have a resulting vector p after the projec-

tion with the tangent of the curve, cf. [25,26]

PtðsÞð�GðxðsÞÞÞ ¼ pðsÞ: ð11Þ

The orthogonal part to t of �G (downhill) is used for a
numeric approximation of a better curve. The chain of

points is varied along the p vectors under some itera-

tions. Usually, if successful, the iteration loops find the

IRC without pre-knowledge of the SP. The Eqs. (10)

and (11) need a global chain of points which connect

the basins of two minima over the SP. The way to locally

follow the IRC from a minimum uphill, or downhill

from SP, is not possible by predictor–corrector steps
using Eq. (10)! If we search for the tangent of the curve

by derivative to the curve parameter of the projector

equation Pwg ¼ 0, we do not get an equation for the

tangent of the curve. By contrast, only a zero operator

results throughout. We prove the impossibility to use

the steepest gradient projector for the induced tangent

in a predictor step. We employ an alternate form of

the projector, Eq. (10), using the normalized gradient
w. The transposed vector wT is a row vector. The dimen-

sion of w is (n · 1) where that of wT is (1 · n). We form

the dyadic product Dw = w Æ wT which is an (n · n) ma-

trix of rank 1. Dw projects with w:

Dww ¼ ðw � wTÞ � w ¼ wðwT � wÞ ¼ w; ð12Þ

where we use the unit length of w in the scalar product.

The projector which projects orthogonally to w is with

the unit matrix I

Pw ¼ I�Dw: ð13Þ
With the normalized gradient w of Eq. (9) and the pro-

jector of Eq. (13), we start again with the trivial relation

(10) which holds for all curves of steepest descent. We

have

PwðsÞGðxðsÞÞ ¼ 0 ð14Þ

because, the tangent to the steepest descent is the gradi-

ent itself. The map by the matrix for the induced tangent

of Eq. (10), M ¼ Pw, being an (n�1) · n matrix, and the

map of Eq. (14) being an n · n matrix, is equal: both

have rank (n�1). If one formally searches for the tan-

gent to such a curve by the derivative to the curve
parameter, one gets

dPwðsÞGðxðsÞÞ
ds

¼
Xn

i¼1

oPwðsÞGðxðsÞÞ
oxi

dxi
ds

; ð15Þ

but every partial derivative of the sum is zero

oPwðsÞGðxðsÞÞ
oxi

¼ Pw

oG

oxi
� ow

oxi
wTG� w

owT

oxi
G ¼ 0 ð16Þ

using the relation [22]

PwdG ¼ kGkdw; ð17Þ
as well as
PT
w ¼ Pw and dðGTÞPw ¼ kGkdðwTÞ: ð18Þ

Thus, the derivative to the curve parameter s in Eq. (14)

becomes singular at every regular point of the configura-

tion space. The predictor step along the tangent be-

comes undefined. The corrector step orthogonal to the

tangent becomes singular. Every direction of a �tan-
gent�-predictor goes to a next point which fulfills the

Eq. (14). The IRC cannot be defined locally. An equa-

tion like (6) does not exist for it.

The result contradicts some older proposals which try

to correct locally the IRC to an MEP. For example, the

effort to minimize the energy under the constraint of a
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constant step length (for references see the review [27])

does not lead to the IRC, in every case. Fig. 4 shows

the modified NFK surface [8,28] being originally de-

voted to an alanine dipeptide rearrangement. There is

an SP, a minimum, and a valley leading from minimum

to SP, or vice versa. However, the IRC cuts the corner of
the valley which itself is well described by the GE. The

border between valley and ridge regions of the PES [8]

is also included in Fig. 4(c). Note that a mild �hanging
ridge� is situated between SP and the minimum. That

ridge is crossed by the IRC. In the ridge region, we draw

a circle around any point on the IRC. The minimal en-

ergy on that circle is given by the lowest level line which

touches the circle. This line is drawn, see also the
enlargement (b) in Fig. 4(c). Curves of the enlargement

are exactly the same curves like in Fig. 4. Bold bullets

are the IRC points; and it is clearly to be seen that the

IRC does not cross the circle at the lowest energy point.

As long as the IRC leads over the ridge, it is not an

MEP in the original sense of Fukui [24]. Fukui de-

manded that:

�Since the reaction coordinate is orthogonal to the
tangential plane of the equipotential surface, the poten-

tial energy value on this tangential plane has always an

extremum at the point crossing the reaction coordinate.

For this path to have a definite physical meaning of

reaction coordinate, this extremum should be an abso-

lute minimum.�

� On a ridge, the corresponding extremum is a
maximum.

3.6. Discussion of SD curves

Usually, we are interested in the stationary points of

the PES, especially, minima and SPs of index 1. To find

a minimum is possible by steepest descent [24]

_xðtÞ ¼ �GðxðtÞÞ; xð0Þ ¼ x0: ð19Þ
The solution strongly monotonically decreasing leads to

a minimum. Also any neighbouring steepest descent

with an x(0) = x0 + � converges to the minimum. If

searching for the minimum region only, one may jump

from the steepest descent curve to a neighbouring curve
at every step of a calculation.

The StPs are fixed points, there the tangent disap-

pears. In all other points of K the tangent is unique.

No singularity or branching can appear. The steepest

descent can go over a ridge. Thus, SD alone does not

mirror the structure of valleys or ridges of the PES.

The first derivative of the energy is not sufficient to char-

acterize the curvature of the PES [29].
The IRC is frequently used as a synonym for the

MEP of the PES. But it has a serious imperfection: in

one�s imagination Eq. (19) permits to ascend from the
minimum to the SP by changing �G(t) by +G(t), how-

ever, it is not possible for practical use due to the funnel

character of SD near the minimum [30] leading to the

instability of an Eq. (19) �uphill� [19], cf. [31], too.
4. Conclusion

The reaction path is a tool of theoretical chemistry

without direct physical meaning [2]. The task of a geo-

metrical treatment of the PES is to search for pathways

with a given property: to connect minimum and SP by

an ascending curve, or to connect SP and minimum by

a descending curve. We have studied the three defini-
tions: Newton trajectories, gradient extremals, and the

intrinsic reaction coordinate. To numerically follow a

curve by predictor–corrector methods, it is important

that the curve can be defind by an induced tangent.

We can define the first two curves by the induced tan-

gent using the corresponding projector operators. The

IRC cannot be followed by this treatment. For the

IRC, Euler polygon steps or quadratic or higher approx-
imations of a discretized Eq. (19) can be done [27,32],

giving approximations of the special curve from saddle

with gradient descent. However, no local corrector to

the �true� IRC is possible.
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Appendix A. Model surfaces

In Figs. 2 and 3 the 2D model potential is used

Eðx; yÞ ¼ 0:3ðy2 � 2xþ y þ 0:3x2Þ2 � 0:3x2y

� 6d
0:5x

y

� �
;

0:1

�1:5

� �� �

� 5d
0:5x

y

� �
;

�0:85

�:75

� �� �

� Cd
0:5x

y

� �
;

�1:8

0

� �� �
:

For Fig. 2 and the left surface of Fig. 3(a) is C = 5, and

for the piece of the right surface (b) holds C = 7. The

function d makes a depression around (x0,y0):

dðx; x0Þ :¼ expð�ðx� x0ÞTðx� x0ÞÞ
with x ¼ ðx; yÞT and x0 ¼ ðx0; y0Þ

T
:
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For Fig. 4 the surface is

Eðx; yÞ ¼ Cðx2 þ y2Þ2 þ xy � 9 expð�ðx� 3Þ2 � y2Þ
� 9 expð�ðxþ 3Þ2 � y2Þ;

with C = 0.03, where in the original surface [28] the con-

stant C = 0.06 is used. The PES is a 2D model of the 66-

dimensional C7eq to C7ax transition in alanine dipeptide.
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