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Abstract: We discuss the rate of an elementary chemical reaction. We use the reaction

path and especially its saddle point on the potential energy surface. The reaction path

connects reactant and product of a reaction over the transition state (TS). Usually, the TS

is assumed near or at the single saddle point of the reaction path. By means of comparison

of the statistics of states at the reactant and at the TS, one can estimate the reaction rate by

the Eyring theory. We propose to use the Tsallis statistics at the TS, a statistics of seldom

accidents. Thus, we propose to generalize the well known Boltzmann-Gibbs statistics which

is the limiting case of the Tsallis statistics. We use features of this non-extensive thermo-

statistics. The basic properties of the statistics are employed to derive (approximated)

partition functions, and they are applied on reaction rates. The approximation includes

a factorization of the partition functions. The theory is applied to HCN isomerization to

HNC, and to the reaction H2+CN → H+HCN. It allows an accordance with experimental

estimations of the reaction rates.
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Introduction

Reactive events are the heart of any chemistry. The need for the computation of the

reactive propensities of chemical species is ubiquitous in physical chemistry. The detailed,

quantitative understanding of gas-phase chemistry is not yet fully within our grasp. Such

understanding should be based on first principles calculations of the potential energy, or the

free energy, along a ”reaction coordinate”. Transition state theory (TST) is a cornerstone of

reaction rate theory and it is taught in elementary texts in chemistry and biochemistry. The

literature on TST is vast, and cannot be listed here. The concept dates back to the 1930s1,2

and its modern version with many improvements, including treatments of variational effects,

has been reviewed in several articles.3,4,5

The original version of the theory applies to so-called activated reactions. For such reac-

tions one treats an energy barrier on a potential energy surface (PES) which separates the

reactants and products, and the top of the barrier is usually termed the transition state

(TS). It is assumed to be near or at the saddle point of index one.6 It should hold that the

motion of the nuclei occurs on the Born-Oppenheimer PES under electronic adiabaticity of

the reaction. The reaction rate, k, is written in the Arrhenius form7

k = Ae−∆E/kBT .

∆E is the barrier height. Eyring1 proposed to determine the prefactor A by the partition

functions of reactant and TS. This allowed a quantum mechanical formulation. Thus, cur-

rent TST obtains the value of the rate constant and its temperature dependence on the

statistical properties of reactant and TS. It is this power and simplicity of the theory that

are responsible for its widespread use. The use of statistics avoids emphasis on the details

of the molecular dynamics and the use of the TS requires only a minimal knowledge of the

PES. The theories require local information about the PES. They circumvent the dimen-

sionality dilemma for medium-sized or large molecules: it is impossible to fully calculate

their PES. Additionally, it is most important that the parameters of the theory can be

related to experimental observables - thermodynamic data in particular. However, the kind

of statistics used may be carefully determined.
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Closely related to TST, and often an extension of it, is the concept of the Intrinsic Reaction

Coordinate (IRC)8,9 or its equivalent formulation: reaction path (RP).10,11 The IRC con-

cerns elementary reactions. The IRC is the steepest descent from TS to reactant. (It always

exists if the TS is exactly the SP of the PES.) However, there are also other concepts for the

definition of the reaction path, like the Newton trajectory,12,13 or the gradient extremal,14,15

see ref.16 for a review. The RP identifies a TS with reactant (or with product) and the

potential energy along the pathway results in important dynamical extensions of TST, in-

cluding various treatments of tunneling inclusion of ”curvature effects”, ”corner-cutting”,

etc. These extensions of TST have been incorporated in very general and rigorous form

in the Reaction Path Hamiltonian.17 Thus, the concept of the RP of a PES is the usual

approach to the theoretical kinetics of chemical systems.18

The simplicity of TST mentioned above is clear if one considers the alternative approach,

which is scattering theory. In this approach much if not all of the PES is needed and this

alone is far more information and thus requires much more computational effort to obtain

than the information which is needed to apply TST. This already applies throughout to

elementary reactions. Indeed, usually a reduced dimensionality approach is used.19 There

are numerous examples in the literature of deviations and failures of TST20 and space does

not permit an exhaustive review of these. Instead we give a sampling of notable examples:

Deviations from TST have been discovered as a result of the application of scattering theory

to the study of reaction dynamics since the 1960s. An early example of non-TS dynamics

was reported for the triatomic reaction H + ICl where the product HCl was formed with

a bimodal distribution of internal ro-vibrational energies.21 A recent and detailed study of

the analogous H + FCl reaction was reported by Sayos et al.22 The failure of TST is not too

surprising since at energies well above the TS there is less justification for the assumption

that the dynamics will be governed by the (static) RP. Such deviations have been seen

numerous times now in dynamical calculations. Besides direct ”failure of TST”,23 there is

usually given only a coarse agreement of TST with the experiment: ∼30% mean reasonable

agreement, already for the variational TST.24 (Overall, ... ”the validity of the TST has not

yet been really proved and its success seems to be mysterious.” It is cited after an older

reference.25)
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For any physical variable that is function F(ω) with ω ∈ Ω, the phase space, we can find

the mean value with respect to the distribution P

<F>P =
∫

Ω
F (ω) dP (ω) .

The main physical postulate of statistical physics, which connects theoretical constructions

with experimental observations is that for a large system and certain classes of physical

variables F, the values of F measured experimentally almost coincide with their mean val-

ues <F>P with respect to a suitable probability distribution P on Ω.26 The question is:

”What is a suitable distribution?” In the general case, the so-called nonequilibrium case,

when the system as a whole changes in time, the description of such a distribution is a very

complicated problem.

Certainly the existence of a vast literature to TST raises the question ”why should there be

still another paper on the theoretical foundations of TST, what new can it possibly add?”

The idea of this article is to use a distribution at the TS which describes non-equilibrium

states, the Tsallis distribution.27,28,29 One can (approximately) calculate partition functions

for the Tsallis distribution, which deviate from the partition functions for the Boltzmann

distribution. The deviation goes with the Tsallis parameter q: for q < 1 we obtain smaller,

for q > 1 we obtain larger values of the partition functions. Thus, with a change to a Tsallis

description of the TS, we have the possibility to better adapt the reaction rates of Eyrings

TST to measured rates.

Distribution and Partition Functions:

Boltzmann-Gibbs Distribution

We repeat some fundamentals. The Boltzmann distribution is the probability of the domi-

nant macro state. The probability to find the system in state i (to energy value Ei) is

pi = e−βEi/Z =
e−βEi

∑
j e−βEj

. (1)
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Z is the factor of normalization

Z =
∑

j

pj =
∑

j

e−βEj . (2)

(The capital letter Z is used because the German name is ”Zustandssumme”.) The sum

over states is the sum over all micro states j which the system can take over. It depends on

the temperature by the inverse relation β = 1/kBT , where kB is the Boltzmann constant

1.38065 · 10−23 J K−1. For N particles, or N degrees of freedom of a molecule, the density

of states is a function which counts the micro states in a special range of the energy.

Consequently, the probability that the system is in a macro state with energy Ei is the

product of N Boltzmann distributions.

ZN =
∑

j

e−β(E
(1)
j +...+E

(N)
j ) ∝ ∑

j

e−βE
(1)
j · · ·∑

j

e−βE
(N)
j =


∑

j

e−βEj




N

, (3)

thus it is exactly ZN = ZN if the N degrees of freedom are independent. We may assume

the Boltzmann weighted mean value of a state function F (j) for the expectation value

weighted even by the Boltzmann distribution - like it is the usual way in stochastic

<F>B =
∑

j

F (j) pj =
1

Z

∑

j

F (j) e−βEj .

Tsallis Statistics

We give a concise summary of a Tsallis statistics.30,31,32 The starting point of the Tsallis

theory is a modified distribution of the probability (of the Boltzmann distribution pi) which

now depends on a parameter q. In the limit q → 1 this distribution is the Boltzmann-Gibbs

distribution. It means we search for a function fq(x) = ex
q with f1(x) = ex. We define

the generalized Exponential function and the generalized Logarithm function (for q near 1)

being mutually inverse functions

expq(x) =





(1 + (1− q)x)
1

1−q for 1 + (1− q)x > 0

0 for 1 + (1− q)x ≤ 0,
(4)

and

lnq(x) =
1

1− q
(xq−1 − 1) . (5)

For the definitions we have limq→1 expq(x) = exp(x) and limq→1 lnq(x) = ln(x), as expected.

The generalizations go back to Euler, and there are many other possibilities.33 The Tsallis
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theory is based on a generalization of the definition of entropy.

Sq = k
1−∑W

j=1 pq
j

q − 1
, W ≥ 1 ,

W∑

j=1

pj = 1 ,

k is a positive constant (with k = kB at q = 1), W is the number of states of the system at

an energy for the probability set {pj}, j = 1, ..., W . A property of the generalized q-entropy

is its nonextensivity.

Now we generalize the distribution of the energy. A discrete probability distribution is

pq(i) =
1

Zq

e−βEi
q =

1

Zq

[1− (1− q)βEi]

1

1− q (6)

with

Zq =
W∑

j

e−βEj
q =

W∑

j

[1− (1− q)βEj]

1

1− q . (7)

The definition (6) is the second choice of a possible Tsallis distribution. It has still some

unfamiliar consequences.34 However, it is not as complicate as the third choice.34 In Fig.1

we compare the Boltzmann-Gibbs statistics (case q=1), and the Tsallis statistics (6) with

q = 0.875, for values βEj = 0.7 j, with j = 0, 1, · · · , 10. The gray bars are the usual

Boltzmann-Gibbs probabilities, where the red bars (in color), or dark bars (in black and

white), are Tsallis probabilities. States are calculated from j = 0 to j = 10 only, as well as

the sum over states.
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FIGURE 1. Comparison of probability distributions, gray: Boltzmann, red: a Tsallis distribution.
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The partition functions for molecules

One assumes in the classical case that the energy of a molecule can be approximately

separated into translational, rotational, vibrational and electronic exitations, because for

the single parts of the energy in the partition functions, we get a product in the exponential

function. With

Ej = Etrans + Erot + Evib + Eelectr

we obtain

Zj = Ztrans Zrot Zvib Zelectr .

The different energies can be taken from Quantum mechanics, from solutions of the Schrö-

dinger equation of the corresponding problem. Thus we can calculate the different sums of

states. How does the case for the q-distribution change? If q 6= 1 we cannot further assume

that single parts of translation, rotation and vibration factorize, because we do not have

a simple exponential function like in the classical case (because of the non-extensivity).

However, we will further approximate the full partition function by a product of the single

sums over states, and we will just newly calculate the single sums over states of translation,

or rotation, or vibration, by the Tsallis statistics.

Sum over states for translation: classical calculation

We separate the 3-dimensional movement of translation of the center of mass into three

Cartesian components. We take the approximation of the energy states of a one-dimensional

particle in a box (with length L) for every direction. Our notation is fair standard. The

energy is Ej = j2h2

8mL2 , j = 1, 2, · · · are the state numbers, h is the Planck constant, and m is

the particle mass. We approximate the discrete sum by a continuous integral and get

Ztrans
(1) =

∞∑

j=0

e−βEj ≈
∫ ∞

0
e−βE(j)dj =

∫ ∞

0
Exp

(
−βj2h2

8mL2

)
dj =

L

h

√
2πm

β
=

L

Λ

with the thermal de Broglie-wavelength

Λ = h

√
β

2πm
.

We can suppress the quantization of energy in the approximation, because the energy dif-

ferences Ei and Ei+1 are very small for a large box length, L, already at room ambient
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temperature, in comparison to β = 1/kBT .

The partition function for three dimensions factorizes into the product of one-dimensional

cases. For the Cartesian space we may have three for a molecule. Every energy state

Ei is the sum of the three parts deriving from the three degrees of freedom Etrans
i(3) =

Ei(1) + Ei(2) + Ei(3) = 3Ei , and the sum of translation states is the 3-times product of

one-dimensional sum over translational states.

Ztrans
(3) =

∞∑

i=0

e−3βEi ≈
(∫ ∞

0
e−βE(i)di

)3

=
V

Λ3
(8)

with the volume V of the container to which the molecule is confined.

Sum over states for translation: q-generalized case

Now we can calculate the partition functions using the Tsallis distribution, pq. First we

treat the q-translation sum in one dimension. We can go on like in the classical case. We

use the distribution of the energy in the case q > 1 . We find

Ztrans
1<q =

∫ ∞

0
(1− (1− q)βEj)

1

1− q dj =
∫ ∞

0

(
1− (1− q)β

j2h2

8mL2

) 1

1− q
dj .

Transforming j to y leads to

=

√
8mL2

βh2

∫ ∞

0
(1− (1− q)y2)

1

1− q dy =
2L

Λ
√

π

∫ ∞

0
(1− (1− q)y2)

1

1− q dy
︸ ︷︷ ︸

q−integral from appendix with y=r and n=1

.

With Γ(1
2
) =

√
π we get

Ztrans
1<q<3 =

L

Λ(q − 1)1/2

Γ(
1

q − 1
− 1

2
)

Γ(
1

q − 1
)

. (9)

The restriction q < 3 derives from the range of existence of the Γ-integral. The case q ≥ 3

produces a divergent integral. The case 0 < q < 1 analogously develops with a somewhat

modified substitution, see appendix, and we get

Ztrans
q<1 ≈ 2L

Λ
√

π

∫√1/(1−q)

0 (1− (1− q)y2)
1

1−q dy

=
L

Λ (1− q)1/2

Γ( 1
1−q

+ 1)

Γ( 1
1−q

+ 3
2
)

.

(10)
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q-translation partition function of a molecule

In the general case we have N nuclei in 3-space, thus 3N degrees of freedom. Only three

degrees of freedom for a translation concern the center of mass of the molecule. The PES

of the molecule, V (x), is translationally invariant. Thus, it cancels out. The remaining

q-integral goes over three dimensions. In a box with lengths Li, i = 1, 2, 3, correspondingly,

we have with coordinates xi and conjugate momenta pi

Ztrans
q(3) =

1

h3

∫ L1

0
· · ·

∫ L3

0

∫ ∞

−∞
· · ·

∫ ∞

−∞

(
1− (1− q)β

2m

3∑

i=1

p2
i

) 1

1− q
dp1 . . . dx3

=
L1 L2 L3

h3

(√
2m

β

)3 ∫ ∞

−∞
. . .

∫ ∞

−∞

(
1− (1− q)[y2

1 + y2
2 + y2

3]
) 1

1− q dy1dy2dy3

︸ ︷︷ ︸
q−integral from appendix with n=3

=
V

Λ3
·





(
1

q − 1

) 3
2 Γ(

1

q − 1
− 3

2
)

Γ(
1

q − 1
)

for 1 < q < 1 + 2
3

(
1

1− q

) 3
2 Γ(

1

1− q
+ 1)

Γ(
1

1− q
+

5

2
)

for 0 < q < 1 .

︸ ︷︷ ︸
Atrans(3, q)

(11)

If we use the symbol Atrans(3, q) for the q-factor, we may write the q-translational sum over

states as a product of the classical translational partition function, and the q-factor

Ztrans
q = Ztrans · Atrans(3, q) . (12)

In the classical case q = 1 we get Atrans(3, q) = 1, because for q → 1 we can use the

approximation of the Gamma-function for large arguments
Γ(x + a)

Γ(x + b)
≈ x(a−b), and we get

the classical translational sum.

Classical sum over rotational states: linear molecule

The classical sum over rotational states of a linear molecule approximately uses the rota-

tional levels of a rigid rotator, Ej =
h̄2

2I
j(j + 1) = hcBj(j + 1) with j = 0, 1, 2, . . ., and

I is the moment of inertia, which is to be calculated by bond lengths and atomic masses
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of the molecule. B is the rotational constant: it is B =
h

8π2cI
. The rotations of a linear

molecule are (2j + 1)-times degenerate. For each value of j, there are 2j + 1 possible states

of the same energy. Then we have the classical the partition function

Zrot lin
(2) =

∞∑

j=0

(2j + 1)e−βEj . (13)

In an approximation, we can again replace the summation by an integral. The error is

small, if the temperature is high enough. It happens if hcB(j2 + j)/kBT ¿ 1. Then the

energy levels are so dense that we can assume that they are continuously smeared. The

critical temperature may be T ≥ 10hcB
kB

(it is 20K for the molecule HCN).

Zrot lin
(2) ≈

∫ ∞

0
(2j + 1)e−βE(j)dj =

∫ ∞

0
(2j + 1)e−hcβB(j2+j)dj =

1

hcβB
. (14)

Note, for homonuclear molecules we still have to reduce the doubly counted states by a

symmetry number σ = 2.35 If one strives for an exact approximation of the sum over

rotational states, one can use the Euler-Maclaurin formula for the sum36

∞∑

i=a

f(i) =
∫ ∞

a
f(i)di +

f(a)

2
− f ′(a)

12
+

f (3)(a)

720
− f (5)(a)

30240
+

f (7)(a)

1209600
− · · · . (15)

It leads to the partition function under any temperature

Zrot lin
(2) =

1

hcβB
+

1

3
+

hcβB

15
+

4(hcβB)2

315
− 1641(hcβB)3

1209600
+ · · · . (16)

Classical sum over rotational states: non-lineare molecule

In the general case, the molecule has three different moments of inertia, I1, I2 and I3. They

can be calculated by the geometry of the molecule and the tensor of inertia. The rotational

levels cannot be given in a simple form. However, a classical approximation holds with a

good exactness:

Zrot
(3) =

√
π

(
1

hcβB1

)1/2 (
1

hcβB2

)1/2 (
1

hcβB3

)1/2

. (17)

Sum over rotational states: q-generalized sum for linear and nonlinear molecules

We calculate the q-rotational partition function37 of a lineare molecule using the q-distribution.

Again, we replace the sum by an integration. (In the general case we may use the Euler-

Maclaurin formula for the sum.)
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Zrot lin
q(2) =

∑∞
j=0(2j + 1)e

−βEj
q ≈ ∫∞

0 (2j + 1)e−βE(j)
q dj

=
∫∞
0 (2j + 1)[1− (1− q)hcβBj(j + 1)]

1
1−q dj

=
−1

hcβB(2− q)

[
[1− (1− q)hcβBj(j + 1)]

2−q
1−q

]∞

0

=
1

hcβB(2− q)
= Zrot lin

(2) · 1

2− q
.

(18)

In the case 1 < q < 2 the integral is solvable because limj→∞[1−(1−q)a j(j+1)](2−q)/(1−q) =

0, because it is (2− q)/(1− q) < 0. In the case 0 < q < 1 we have again to cut the range

of the integration. We only integrate to an upper border, such that [1− (1−q)hcB j(j +1)]

becomes zero. The same expression like in eq.(18) results. In both cases, we get the q-factor:

Arot(q, 2) =
1

2− q
for 0 < q < 2 . (19)

For q = 1 we again get the classical formula. For an exact calculation by the Euler-

Maclaurin formula, we get

Zrot
q(2) =

1

hcβB(2− q)
+

1

3
+

hcβB

15
+

4(hcβB)2

315
+ · · · (20)

where the correction term with the q-part only emerges in the first summand. (It is also

possible to include centrifugal distortion constants.37) If we generalize the factor to the

formula for nonlinear molecules, we get

Zrot
q(3) =

√
π

(
1

hcβB1(2− q)

)1/2 (
1

hcβB2(2− q)

)1/2 (
1

hcβB3(2− q)

)1/2

(21)

= Zrot
(3)

(
1

2− q

) 3
2

(22)

and thus, the rotation-q-factor becomes

Arot(n, q) =

(
1

2− q

)n
2

for 0 < q < 2 and n = 2, 3. (23)

Classical sum over vibrational states

The vibrations of a molecule can be approximated by harmonic oszillators. A normal mode

has the energy levels Ei = (i + 1/2)hcν with i = 0, 1, · · ·. It gives the partition function

Zvib
(1) =

∞∑

i=0

e−(i+1/2)hcβν =
e−hcβν/2

1− e−hcβν
(24)
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where ν is the frequency of the vibration. The energy levels are equidistant, and the sum is

analytical. For a molecule, every degree of freedom adds this part to the sum over states.

Zvib
(n) = Zvib

(1) (ν1) Zvib
(1) (ν2) . . . Zvib

(1) (νn) =
n∏

j=1

e−hcβνj/2

1− e−hcβνj
=

e−hcβν0

∏n
j=1(1− ehcβνj)

. (25)

The last equation uses the frequency of the zero point vibration ν0 =
∑

j νj/2.

The approximation of the sum by an integration holds only under high temperatures if,

say, T > 10hcν
kB

. In this case, we get the vibrational sum by

Z
vib(ap)
(1) ≈ 1

hcβν
.

The result also holds if one approximates the exponential function in eq.(24) by e−x ≈ 1−x.

For n degrees of freedom we get

Z
vib(ap)
(n) =

n∏

j=1

Z
vib(ap)
(1) (j) ≈

n∏

j=1

1

hcβνj

=
1

(hcβ)n

n∏

j=1

1

νj

(26)

where n = 3N − 6 for a nonlinear, and n = 3N − 5 for a linear molecule.

Approximation of a q-sum over vibrational states

The formula for the generalized q-partition function for vibrations of a system with n

vibrational degrees of freedom is obtained in the approximation by n harmonic oszillators,

and in integral approximation (for high temperatures).32 We use the Hamilton function

H(x,p) =
∑n

j=1[
1

2mj
p2

j+
1
2
mjv

2
j x

2
j ], where it is vj = 2cπνj, and mj are the reduced masses. At

the beginning, the range of integration is xj ∈ (−∞,∞) and pj ∈ (−∞,∞) for j = 1 . . . , n.

It is

Z
vib(ap)
q(n) =

1

hn

∫ ∞

−∞
. . .

∫ ∞

−∞
e−βH(x1,...,pn)
q dx1 . . . dpn . (27)

We get a 2n-dimensional q-integral

=
1

hn

∫ ∞

−∞
. . .

∫ ∞

−∞


1− (1− q)


 β

2mj

n∑

j

p2
j +

mjβc2π2

2

n∑

j

ν2
j x

2
j







1
1−q

dx1 . . . dpn . (28)

The summands of the Hamiltonian are substituted by yj =
√

mjβ

2
cπνjxj and yn+j =

√
β

2mj
pj,

with j = 1, · · · , n.

=
1∏n

j=1 νj

(
2

hcπβ

)n ∫ ∞

0
. . .

∫ ∞

0

(
1− (1− q)[y2

1 + . . . + y2
2n]

) 1

1− q dy1 . . . dy2n

︸ ︷︷ ︸
q−integral in appendix with 2n

. (29)
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Thus

Z
vib(ap)
q(n) = 1

(hcβ)n
∏n

j=1
νj
·





1
(q−1)n

Γ(
1

q − 1
− n)

Γ(
1

q − 1
)

for 1 < q < 1 + 1
n

1
(1−q)n

Γ(
1

1− q
+ 1)

Γ(
1

1− q
+ n + 1)

for 0 < q < 1 .

(30)

Because the n-arguments of the Gamma functions are integers, the corresponding factors

are to be reduced by the relation Γ(y) = (y− 1)Γ(y− 1). It results (cf. ref. 38 for 0 < q < 1,

and ref. 32 for 1 < q)

Z
vib(ap)
q(n) =

1

(hcβ)n

n∏

j=1

1

νj

1

j + 1− jq
=

1

(hcβ)n

n∏

j=1

1

νj

· Avib(n, q) , (31)

and the q-factor for the vibrations in both cases 0 < q < 1 or 1 < q is

Avib(n, q) =
n∏

j=1

1

j + 1− jq
. (32)

The factor remains greater than zero for 0 < q < 1+ 1
n
. Again, here the limq→1 Zq coincides

with the classical partition function for n harmonic oszillators in this approximation for

high temperatures. To get an exact description of the sum of vibrational states by the

Tsallis statistics, one has to go back to the sum

Zvib
q(1) =

∑

i=0

(1− (1− q)(i + 1/2)hcβν)
1

1−q . (33)

It is not analytically calculable, however, numerically it is. Again, the sum is to cut if the

term (1− (1− q)(i + 1/2)hcβν) becomes less than zero, in the case q < 1.

Electronic part

Electronic energies of molecules are very large, in comparison to temperature. Thus, e−βEj

becomes very small for small j yet. If we put the zero point of the energy scale to the

electronic energy of the ground state, then only the degree of degeneration of the ground

state enforces an additional value, g1.

Zel =
∞∑

i=1

gie
−βEj ≈ g1 (34)

where g1 is one, in most cases. Thus, the electronic part does not play any role here.
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q-generalized partition functions

We summarize all results in the q-generalized sum over states

Zmol
q = Ztrans

q(ntrans) Zrot
q(nrot) Zvib

q(nvib)
Zel . (35)

In this expression couplings between the electronic, vibrational, and rotational degrees of

freedom are neglected. The translational degrees of freedom are ntrans = 3. If the molecule

has N atoms, and if it is linear, then nrot = 2, and nvib = 3N − 5. If it is nonlinear, then

it is nrot = 3, and nvib = 3N − 6. At all it holds ntrans + nrot + nvib = 3N . We get

Zmol
q = Zmol · A(3N, q) (36)

and the q-factor is composed by Atrans(3, q) with eq.(11), by Arot(nrot, q) with eq.(23), and

Avib(nvib, q) with eq.(32):

A(3N, q) =

(
1

2− q

)nrot/2 nvib∏

j=1

1

1 + j − qj
·





1

(q − 1)
3
2

Γ(
1

q − 1
− 3

2
)

Γ(
1

q − 1
)

for 1 < q

1

(1− q)
3
2

Γ(
1

1− q
+ 1)

Γ(
1

1− q
+

5

2
)

for 0 < q < 1 .

(37)

In the upper case, the q-value is restricted by the vibrational dimension to q < 1 + 1
nvib

(as

well as in the translational part to q < 1 + 2
3
, and in the rotational part to q < 2). Larger

values of q do not form any useful physical model of a distribution.

Arrhenius equation and Transition State Theory

The Arrhenius equation7 is for the reaction velocity k

k(T ) = Ae−∆E/RT . (38)

The prefactor A and the activation energy ∆E are to be determined by experiment. In

logarithmic form, ln k = ln A − ∆E/RT , the equation is often used for a linear graphical

representation of ln k against 1/T . The factor e−∆E/RT is interpreted to be the probabil-

ity, that a particle under a collision by temperature T has the energy ∆E (Boltzmann

distribution). It works well for ∆E À RT .
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The Eyring equation of the Transition State Theory

The idea of the TS is the extra part of the degree of vibration which goes along the pass-

valley

Zvib(ν) =
1

(1− e
−hν
kBT )

≈ kBT

hν
. (39)

This part is to be separated from the remainder of the partition function. The well known

Eyring equation then becomes1,2,3

kTST =
kBT

h

ZTS

(NA V )∆γZR

e
− ∆E

kBT , (40)

where kB is the Boltzmann constant, T is the temperature, h is the Planck constant, NA is

the number of particles, V is the volume, ∆γ is the change of the stoechiometric relation

of the reaction, ZTS is the partition function of the TS, and ZR is the partition function of

the reactant. The energy difference between R and TS is ∆E.

If we try to generalize the Eyring equation for an assumed Tsallis statistics at the TS,

and if we accept all the approximations made in the last sections, then we obtain a simple

factorization of kTST
q . Without bias, such a relation is by no means trivial. We still have to

reduce the q-factor for (nvib−1) vibrational states across the TS valley. As aforementioned,

we propose the ansatz

kTST
q = A(3N − 1, q) · kTST (41)

where

A(3N − 1, q) = Atrans(3, q) Arot(nrot, q) Avib(nvib − 1, q) . (42)

Example: HCN

The first example is the isomerization of the molecule hydrogen cyanide

H− C ≡ N → C ≡ N− H .

The system has 3 atoms: it is really small by molecular standards. The reaction is the

prototype of an isomerization with a metastable state. The linear HCN molecule has three

vibrational states, one bending mode ν2, with ν2 = 1 being ≈1000 K above the ground

state, and two stretching vibrations: ν1, corresponding to the CN stretch, where ν1 = 1 is

≈3000 K above the ground state, and ν3, the CH stretch, with ν3 = 1 being ≈4700 K above
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the ground state.39 Thus, the bond energies are greatly in excess of β−1 = kBT , and we may

use the rigid rotator - harmonic oscillator ansatz for HCN. The bending mode ν2 is doubly

degenerate; for ν2 6=0 this degeneracy is lifted and the levels are split by rotation-vibration

interaction. A new quantum number l (where l = ν, ν− 2, ...,−ν) is needed to describe the

system. Overtones and combination bands exist as well. The geometry of reactant HCN,

and of the TS is given in Table I and Table II.40

The Eyring equation (40) for the reaction is

kHCN
TST (T ) =

kBT

h
(NAV )0 ZTS

ZHCN

e
− ∆E

kBT =
kBT

h

Ztrans
TS

Ztrans
HCN︸ ︷︷ ︸
1

Zrot
TS

Zrot
HCN

Zvib
TS

Zvib
HCN

Zel
TS

Zel
HCN︸ ︷︷ ︸
1

e
− ∆E

kBT . (43)

0.6 0.8 1.2
q

1

2

3

4

AH8,qL

FIGURE 2. Tsallis factor Auni(8, q) with eq.(44) for a triatomic molecule.

The quotient of the electronic sum does not change over the reaction. In case of a unimolec-

ular reaction, the Ztrans is also the same for R and TS. If we assume a Tsallis distribution

for vibrational and rotational states at the TS, then the q-factor for the Eyring equation,

Table I. HCN Jacobi coordinates; s, r in Å, θ in ◦

reactant TS

s 1.155 1.186

r 1.685 7 1.155

θ 0.0 76.42
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Table II. HCN: Cartesian coordinates in Å
reactant TS

H C N H C N

x 1.109 3 0.0 1.155 0.321 7 0.0 0.864

y 0.0 0.0 0.0 0.0 0.0 0.0

z 0.0 0.0 0.0 1.122 8 0.0 0.0

A(3N − 1, q), is with eq.(42)

Auni(8, q) = Arot(3, q) · Avib(2, q)

=

(
1

2− q

) 5
2

· 1

3− 2q

(44)

The vibrational part is a valid model if q < 3/2. (If one would additionally include the

q-translational factor, one would get a steeper curve, near 1: the values are still smaller for

q < 1, but even larger for q > 1.) A piece of the q-factor Auni(8, q) for triatomic molecules

is shown in Fig.2. In Table III we present some of the q-factors. Even for small variations

of q important factors result.

Table III. Tsallis q-factors for triatomic molecules
q > 1 Auni(8, q) q < 1 Auni(8, q)

1.000 1 1.000 4 0.999 9 0.999 6

1.001 1.004 5 0.999 0.995 5

1.005 1.022 8 0.995 0.977 8

1.01 1.046 4 0.99 0.956 3

1.05 1.263 1 0.95 0.804 7

1.1 1.626 7 0.9 0.656 7

1.15 2.144 6 0.85 0.542 4

1.2 2.911 6 0.8 0.452 8

1.25 4.105 6 0.75 0.381 6

1.3 6.089 1 0.7 0.324 4

1.35 9.785 8 0.6 0.239 6

1.4 17.930 5 0.5 0.181 4

1.45 44.575 2 0.4 0.140 4

To calculate the rotational partition functions, we use the masses in g/mol mH = 1.008,

mC = 12.011, and mN = 14.007; the molecular mass is 27.026. The rotational constants of

HCN, and of the TS are obtained by the moments of the molecule. It is29
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BHCN = 1.466 18 cm−1 ,

BTS
1 = 13.94946 cm−1, BTS

2 = 1.618 68 cm−1, BTS
3 = 1.831 16 cm−1 .

The rotational partition functions are at any temperature (in K) with eqs.(14) and (17)

Zrot
HCN = 1

hcβBHCN = 0.474 · T ,

Zrot
TS =

√
π√

h3c3β3BTS
1 BTS

2 BTS
3

= 0.159 72 ·
√

T 3 .

For the sum over vibrational states we use the normal modes and formula (24). This appro-

ximation is useful. We use the PT2-frequencies of ref.41 in Table IV. The data coincide with

those of ref.40 and experimental data.

Table IV. HCN vibrational frequencies (in cm−1)

reactant TS

νHCN
1 2 097.26 νTS

1 2 157.66

νHCN
2 715.41

νHCN
3 3 308.67 νTS

3 3 002.08

νHCN
0 3 480.83 νTS

0 2 647.60

The frequency of the zero point vibration is only composed by two parts in the case of the

TS: the ”bending vibration” over the TS is no state of the TS. It is the direction of the

reaction. With formula (24) we get the vibrational partition functions for T (in K)

Zvib
HCN = e

−hcν0
kBT

(1−e
−hcν1

kBT )(1−e
−hcν2

kBT )2(1−e
−hcν3

kBT )

=
e−5 008.132/T

(1− e−3 017.486/T )(1− e−1 029.314/T )2(1− e−4 760.433/T )
,

Zvib
TS = e

−hcν0
kBT

(1−e
−hcν1

kBT )(1−e
−hcν3

kBT )

=
e−3 809.302/T

(1− e−3 104.388/T )(1− e−4 319.319/T )
.

TableV reports the partition functions of the HCN molecule and of the TS at various

temperatures, which coincide with some special values in refs.42 Even though the calculation

uses the harmonic oscillator approximation, the deviations for HCN vibrations are very

small against the exact calculated sum over states, which are obtained by the sum of

”all” known energy levels of the HCN.43 We use the ∆E = 0.334 601 · 10−18 J for the TS

of HCN, or transformed into wavenumbers 16 844 cm−1, or 48.12 kcal/mol, for the height
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of the energy barrier.44,45 The last column in TableVI contains the figures of the Eyring

equation of the reaction rate kTST . (Note that the rates coincide with results of variational

TST calculations for HCN,46 if the corresponding, older barrier height is used.)

Application: To our best knowledge, we could not find any experimental rate of

the HCN isomerization. The existence of the HCN to HNC isomerization reaction was

clearly seen by Maki and Sams47 in 1981, cf. also the recent experiments of Mellau et al.48

The infrared measurements of these workers used heated cells over some hours, and they

could not give hints to the exact reaction rate. There is an experimental comparison of a

theoretical reaction rate kLin.49 It is an indirect conclusion. There is a article50 with some

mild questions about the figure kLin, but these authors could not give any other appraisal.

Nevertheless, kLin is used in the JANAF table51 for the HCN reaction rate.

In this work here, we try to adapt the theoretical reaction rate to an experimental one by

a parameter, the Tsallis q-value. At T = 700 K Lin et al. work with kLin = 6.0 · 10−2s−1.

The value is used to explain the further use up of the reaction product, HNC, in a following

reaction. If we compare the value with the kTST from Table V, we could adapt that value

to the Lin-value by a Tsallis factor of Auni(8, q) = 0.1525. It corresponds to q = 0.433 (see

Table III). By the q we could reproduce the quasi-experimental result. However, we note

that the kLin is based on an obsolete, older PES (by Murell et al.52). Lin et al. remarked

that an experimental value is needed. The large difference between our kTST and the kLin

challenges to a check of the experimental data.

Table V. Rotational and vibrational sums of HCN at different temperatures
T (in K) Zvib

HCN Zvib
TS Zrot

HCN Zrot
TS

298 5.361 · 10−8 2.808 · 10−6 141.265 821.647

400 4.282 · 10−6 7.316 · 10−5 189.618 1 277.765

500 5.884 · 10−5 4.923 · 10−4 237.022 1 785.731

700 1.337 · 10−3 4.393 · 10−3 331.831 2 958.068

1 000 1.716 · 10−2 2.352 · 10−2 474.044 5 050.811

1 500 1.734 · 10−1 9.568 · 10−2 711.066 9 278.932

2 000 7.147 · 10−1 2.135 · 10−1 948.089 14 258.851
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Table VI. Factors of the Eyring equation
T (in K) kBT

h

Zrot
T S

Zrot
HCN

· Zvib
T S

Zvib
HCN

e
− ∆E

kBT kTST [s−1]

298 6.209 · 1012 304.701 4.794 · 10−36 9.071 · 10−21

400 8.335 · 1012 115.139 4.866 · 10−27 4.670 · 10−12

500 1.042 · 1013 63.038 8.907 · 10−22 5.850 · 10−7

700 1.459 · 1013 29.295 9.206 · 10−16 3.935 · 10−1

1 000 2.083 · 1013 14.605 2.984 · 10−11 9.079 · 103

1 500 3.125 · 1013 7.200 9.621 · 10−8 2.165 · 107

2 000 4.167 · 1013 4.501 5.463 · 10−6 1.025 · 109

Example: H2+CN → H+HCN

The kinetics of cyano species (CN,HCN) are of interest in modeling combustion of fuels.

The example reaction is a diatom-diatom reaction. The pseudo-halogen character of the

CN radical causes that the reaction with H2 proceeds through a hydrogen abstraction to

form HCN, with ∆H0
298 = −69 kJmol−1.53 The TS of the reaction is linear.54 At the TS, we

have 12 degrees of freedom: 3 translational, 2 rotational, and 7 vibrational degrees. But

only 6 vibrational modes cut across the TS. Thus it is

A(11, q) = Atrans(3, q) Arot(2, q) Avib(6, q), (45)

using the formulas (11), (23), and (32). The q-factor A(11, q) for a 4-atomic, linear system,

0.7 0.75 0.8 0.85 0.9 0.95 1.05
q

1

2

3

4

5

6

7

AH11,qL

FIGURE 3. Tsallis factor A(11,q) with eq.(45) for a linear 4-atomic molecule.

like the TS of the reaction in question, is exhibited in Fig.3. Already for very small variations

of q important factors result. q is restricted by Avib(6, q) to q < 1 + 1/6 = 1.16.
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The rate coefficients for the reaction exhibit a pronounced temperature dependence. The

Arrhenius plot (Fig. 4) shows a set of three measurements: data by Sun et al.,55 Sims and

Smith,56 and Atakan et al.53 The Sun data are the highest, these of Atakan are the lower

one, and those of Sims and Smith are nearer to the Sun data, but something in between

to the Atakan data. The Fig. 4 makes the results of our investigation of a q-factor for the
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FIGURE 4. Arrhenius plot of the rate of H2+CN → H+HCN. Experimental data of Sun et al.55 (•),
of Sims and Smith56 (o), and of Atakan et al.53 (a). The full line corresponds to a variational TST

calculation.55 It is readjusted to two sets of data by Tsallis q-factors 0.99555, and 0.9777, correspondingly,

for the upper and the lower dashed curve. The crosses (x) are the values moved from the VTST curve for

comparison.

4-atomic reaction vividly imaginable. We use a variational TST result of Sun et al.55 for

comparison. Note, there is a similar result of a conventional TST calculation57 (with Wigner

tunneling), as well as a result of an improved canonical variational TST calculation.58 (The

latter is larger than the rates calculated by scattering theory. – It cannot be overstressed

that a scattering theory based expression is correct.59) If we choose q = 0.9955, we can

adapt the calculated curve to the measured values of Sun et al.55 However, if we choose

q = 0.9777 then it fits very well the calculated curve with the measured values of Atakan et
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al.53, see Fig. 4. The accordance of the slopes of two series of data with the TST calculation

– corrected by a Tsallis factor – seems fine. The difference of the two curves indicates that

one of them may have a systematic scaling problem. However, the skew slope of the Sims

and Smith data56 could indicate that they are not correct.

Discussion

Various approximations are used for the q-partition functions treated in this article. First,

the factorization of Z into Ztrans, Zrot, and Zvib. Second, like in the classical TST, we

also used some approximations of sums by integrals, and, of course, the harmonic oscillator

- rigid rotator ansatz. We assume that the diverse approximations do not disturb the

important difference of the distributions which are open for discussion: Boltzmann, or its

extension, Tsallis distribution. The last one, the distribution for non-equilibrium processes,

opens a nice way to adapt measured rates to a theoretical rate given by any TST. This

article can only be a first step on the way. The two examples used show the advantages

of the idea. It is clear that the higher nvib in eq.(42) is, the nearer to one we may choose

the q-factor to amend TST calculations to reproduce the experimental results. The factor

Avib in eq.(42) is the most important part of the formula of A(3N − 1, q), as well as the

strongest. The other parts can be called into question. In unimolecular transitions, like in

HCN isomerization, we do not use the extra part Atrans at all, because the center of mass

of a molecule behaves equally at reactant and TS. Like that, one may also restrict the use

of Arot. Because, in contrast to vibrational transitions, strong selection rules govern the

rotational transitions: only ∆j = 0,±1 is possible, other transitions are forbidden. There

are only P-, Q-, and R-branch lines in the infrared spectrum.60 See ref.61 for a nice example

in HCN. A quick redistribution of rotational states could be impossible, on the pathway

from reactant to TS. Thus, one could also assume that one and the same distribution

governs the rotational states at reactant and at TS. However, at least for vibrational states

we propose the Tsallis distribution at TS.

We note that another q-variant of the Arrhenius equation for the rate constant of a chemical
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reaction has recently been presented32,62,63

kq = A
expq(−E#/kBT )

expq(−E0/kBT )
(46)

where A is again a pre-q-exponential factor, E# is the energy of the transition state and

E0 is that of the ground state, the reactant. As q ≈ 1, kq approaches the Arrhenius form

k = A exp(−∆E/kBT ), where ∆E = E#−E0 is the activation energy. Formula (46) is used

in enhanced sampling methods. In contrast, our ansatz in this article proposes the Tsallis

distribution at the TS only: we assume the validity of the Boltzmann-Gibbs distribution

at the minimum. The Tsallis distribution is then behind the pre-q-exponential factor.

We remark that the proposed Tsallis distribution at the TS does not jeopardize the differ-

ent changes of TST by versions of a variational TST.59 It is a matter of fact that a ”stable

occupation” of vibrational or rotational levels ”across to the TS” can change the geometry

of the TS (and, of course, it rises the absolute height of the barrier). For example HCN, a

calculation64 results in a movement of the TS by 2o along the TS valley, if the rotational

levels increase from j = 0 to j = 70. Thus, the ”ground”-TS, the col of the PES where

no further states are occupied, is only the calculable point in configuration space which

we use for the classical TST. Approximations which move the TS are independent on the

treatment of the distribution of states at the TS.

This remark also applies to diverse theories of tunneling through the barrier.

There still emerges a side problem. We feel here the necessity to discuss the ”rate”, the

relation of the number of results in theory and experiment. There are dozens of theoretical

papers discussing the HCN isomerization; however, there does not exist one experimental

reaction rate. Nearly every new ansatz in theoretical chemistry has been applied to HCN,

over the last years, and compared, of course, with older reaction rates. However, by missing

any experiment, the comparison restricts to older theoretical values.

On the other hand, the molecule HCN is one of the best known molecules, from the point of

view of infrared spectroscopy. Probably there are the most states assigned, at all, see Mellau

et al.48 and references therein, and ref.65 However, experimental values of the reaction rate

for the isomerization to HNC are open. We challenge the experimental groups of the world

to deliver this value. There is a deep need to measure these reaction rates, to give severe
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values for a plethora of theories.66 Further experiments are crucial.

Conclusion

A special parameter, q, of a Tsallis distribution of the probabilities of states at the pass

of the reaction H2+CN → H+HCN could adapt a TST result to the known experimental

rate. However, this intriguing example goes on by another distribution than the long

treated Boltzmann-Gibbs distribution. A ”near-Boltzmann” approximation was discussed

only sporadically in the past,67 but without proposing the Tsallis distribution. Tsallis

weight factors, instead of Boltzmann probability weight factors, are used for the method of

stimulated annealing.32,68 Examples of enhanced sampling with Tsallis are done.69 However,

also the Tsallis weight factors are not applied to TST, up to date. We propose to use the

Tsallis factor, eq.(42), to extend the traditional TST.

Why a Tsallis distribution at TS may better explain a rate experiment, than a Boltzmann

distribution, and which q is to choose in any current case, is open for further research. Of

course, there is a need to test the parameter q in various reactions for series of molecules.

Appendix: the n-dimensional q-integral

The integral emerges in the calculation of the q-partition functions for the Tsallis distribu-

tion. It is

I =
∫ ∞

0
. . .

∫ ∞

0

(
1− (1− q)[y2

1 + . . . + y2
n]

) 1
1−q dy1 . . . dyn .

Coordinates transformation to n-dimensional hyperspherical coordinates results in

I =
∫ ∞

0
[1− (1− q) r2]

1
1−q rn−1dr

n−1∏

j=1

∫ π/2

0
cosj−1 ϕjdϕj .

The radial part goes on with some transformations: first, for the case 1 < q , the sub-

stitution [1 − (1 − q)r2] = 1
1−t

is used, it moves the integration from (0;∞) to (0; 1)

and it is dr = dt/2
√

q − 1(1− t)3/2t1/2. We use the properties of the Gamma integral
∫ 1
0 xa(1− x)bdx =

Γ(a + 1)Γ(b + 1)

Γ(a + b + 2)
(for a, b > −1), and Γ(1

2
) =

√
π. Then70
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∫∞
0 [1− (1− q) r2]

1
1−q rn−1dr =

1

2(q − 1)n/2

∫ 1

0
(1− t)( 1

q−1
−n

2
−1) t(

n
2
−1)dt

= 1
2

1

(q − 1)n/2

Γ(
1

q − 1
− 1

2
) Γ(

n

2
)

Γ(
1

q − 1
)

.

(47)

We obtain a restriction q < 1 + 2/n. It derives from the range of the existence of the

Γ-integral at t → 1.

The case 0 < q < 1 analogously develops with a somewhat modified substitution. We use

here [1−(1−q)r2] = t, r =

√
1− t

1− q
with the range of integration being again (0, 1); however,

we only count values for r where the integrand is not less than zero. The former upper

border for r, ∞, is not exhausted here; however, the integration has to run up to
√

1
1−q

.

That forms the new range (0, 1) for t. For higher r-values the term [1 − (1 − q)r2] would

be negative. There the integration is cut: the distribution presents a cut-off. For q values

near one, the possible error of the approximation is small. It is dr = −dt

2
√

(1−q)(1−t)
, and we

get
∫√1/(1−q)

0 (1− (1− q)y2)
1

1−q rn−1dy

= 1
2

1
(1−q)n/2

∫ 1
0 t

1
1−q (1− t)(n

2
−1)dt = 1

2
1

(1−q)n/2

Γ( 1
1−q

+ 1) Γ(n
2
)

Γ( 1
1−q

+ n
2

+ 1)
.

(48)

All in all, we get

I = 1
2
Γ(n

2
)
∏n−1

j=1

∫ π/2
0 cosj−1 ϕjdϕj ·





1

(q−1)
n
2

Γ( 1
q−1

−n
2
)

Γ( 1
q−1

)
for 1 < q < 1 + 2

n

1

(1−q)
n
2

Γ( 1
1−q

+1)

Γ( 1
1−q

+n
2
+1)

for 0 < q < 1 .

The part of the angles is by recursion

n−1∏

j=1

∫ π/2

0
cosj−1 ϕjdϕj =





1
(n−2)(n−4)...4 2

(π/2)n/2 if n even

1
(n−2)(n−4)...5 3

(π/2)(n−1)/2 if n odd .

We get

I =
(√

π
2

)n ·





Γ( 1
q−1

− n
2
)

(q − 1)
n
2 Γ( 1

q−1
)

for 1 < q < 1 + 2
n

Γ( 1
1−q

+ 1)

(1− q)
n
2 Γ( 1

1−q
+ n

2
+ 1)

for 0 < q < 1 .
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