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Abstract:
Any surface can be foliated into equipotential hypersurfaces of the level sets. A cur-
rent result is that the contours are the progressing wave fronts of a certain hyperbolic
partial differential equation, a wave equation. It is connected with the gradient lines,
as well as with a corresponding eikonal equation. The level of a surface point, seen as
an additional coordinate, plays the central role in this treatment. A wave solution can
be a sharp front. Here the validity of the Huygens’ principle (HP) is of interest: there
is no wake of the wave solutions in every dimension, if a special Cauchy initial value
problem is posed. Additionally, there is no distinction into odd or even dimensions.
To compare this with Hadamard’s ’minor premise’ for a strong HP, we calculate differ-
ential geometric objects like Christoffel symbols, curvature tensors and geodesic lines,
to test the validity of the strong HP. However, for the differential equation for level
sets, the main criteria are not fulfilled for the strong HP in the sense of Hadamard’s
’minor premise’.

Keywords: Contours; steepest ascent; wave equation; progressing waves;
Huygens’ principle.

AMS Subject Classification: 35A18, 35C07, 35L05

1. Introduction

In this paper we treat a hypersurface in an IRN+1. It will be described by a unique
function ν = V (q) where q = (q1, ..., qN)T ∈ IRN are space coordinates and ν is the
(N+first) coordinate. Usually in applications [1, 2, 3], the region of interest of q is
not the full IRN but is only a certain, local region. The surface should be a continuous
function with respect to the coordinates. It should also have continuous derivatives
up to a certain order not specified here, but required by the operations which are to
be carried out.

The steepest descent lines are orthogonal trajectories to the contour hypersurfaces,
V (q) = ν = constant, if the corresponding metric relations are used [4, 5]. In this
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paper we will assume N orthogonal and equidistant coordinates, q = (q1, ..., qN)T .
Then the metric matrix in IRN reduces to the unity matrix and we have a Euclidean
behaviour.

From a theoretical point of view (however not from a numerical one) the steep-
est descent lines and the inverse ones, the steepest ascent lines are equivalent. The
steepest ascent/steepest descent lines emerging from a minimum or a saddle point
of the surface V can be seen as travelling in an orthogonal manner through the con-
tour hypersurfaces of this surface V. It should be noted that the construction of the
contour hypersurface, V (q) = ν = constant, is such that all points satisfying this
equation possess the same equipotential difference with respect to another contour
hypersurface. It is similar to the construction of Fermat-Huygens of the propagation
of wave fronts and rays. Note that this construction and the Hamilton-Jacobi theory
are connected [6]. Using the analogy, we have proposed a wave equation for contour
hypersurfaces of the surface V [7], which we report in Section 2. Some preliminar
work to the idea was reported in Ref. [8]. The theory of wave equations in an (N +1)-
dimensional space is complicated. One has to pose the Cauchy initial value problem
(IVP), and the general theory [9, 10, 11, 12] leads to (local) integral formulas over
regions of the so-called characteristic conoid.

“It is a familiar fact from daily life that propagation of waves is very different
in 2 and 3 dimensions. When a pebble falls in water at a point P the initial ripple
on a circle around P will be followed by subsequent ripples. Thus a given point Q
will be hit by residual waves. In three dimensions the situation is quite different. A
flash of light at a point has an effect on the surface of a sphere around the point
after a certain time interval but then no more. There are no residual waves as those
present on the water surface. The same is the case with sound waves, one has a
pure propagation without residual waves; thus music can exist in IR3.” [13] Waves
fulfill a strong Huygens’ Principle (HP) in our daily IR3, however in IR2 they do not.
May be that such a “global” classification of waves in IR3, against IR2, is something
misleading. I this paper we meet the case that one solution of a given wave equation
is a wake-free wave which individually fulfills a “strong HP”, however, other solutions
not. It emerges the essential to define the use of the criterium “HP”, either for a
special solution, or for the solutions of all IVPs of a given wave equation. Despite
the widespread use of the term “Huygens’ principle” in the physical community in
the last centuries, its precise mathematical formulation was seldom clarified. In 1923,
J.Hadamard formulated in mathematical terms three different meanings of the HP
he found in the literature of his time [12]. The general case is that the solution of
the Cauchy IVP depends on the initial values in the full region inside the conoid of
dependence; however, a very special case emerges if the initial values are only used
on the conoids surface area. This is the case with the strong validity of HP in the
formulation of Hadamard’s ’minor premise’ [12], p.53 f.
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Hadamard’s syllogism

• Major Premise

The action of phenomena produced at the instant t = 0 on the state of matter at the
later time t = t0 takes place by the mediation of every intermediate instant t = t′, i.e.
(assuming 0 < t′ < t0), in order to find out what takes place for t = t0, we can deduce
from the state at t = 0 the state at t = t′ and from the latter, the required state at
t = t0.

• Minor Premise

If, at the instant t = 0 – or more exactly throughout a short interval −ǫ ≤ t ≤ 0 –
we produce a luminous disturbance localized in the intermediate neighbourhood of
O, the effect of it will be, for t = t′, localized in the immediate neighbourhood of the
surface of the sphere with centre O and radius ωt′: that is, will be localized in a very
thin spherical shell with centre O including the aforesaid sphere.

• Conclusion

In order to calculate the effect of our initial luminous phenomenon produced at O at
t = 0, we may replace it by a proper system of disturbances taking place at t = t′ and
distributed over the surface of the sphere with centre O and radius ωt′.

This paper is concerned with the second part, “Hadamard’s minor premise”. It
is known that the usual wave equation fulfills this strong HP in spaces of an odd
dimension, N = 3, 5, 7, ... only.

Definition A wave equation where for every Cauchy data the solution fulfills the
strong HP (the minor premise) is named a Huygens’ equation.

In our letter [14] we have shown that a special wave equation with a variable coef-
ficient, with a special posed IVP, has a sharp solution being the contour hypersurfaces
of a given function in IRN+1, the level set wave equation (LSWE). The wake-free form
of the contour hypersurfaces holds in every dimension N . The question emerges: are
such LS wave equations also Huygens’ equations? In this paper, we obtain that the
answer is no. Different treatments are used for the result. In Section 3 we present a
splitting formula for the wave operator which is important for the dimension problem:
our solution holds for odd as well as for even dimensions. The normal form of the
LS wave equation is given in Section 4, and in Section 5 we develop the curvature
tensor and the Ricci tensor of the LSWE which we need in Section 6 to prove some
necessary conditions for a strong HP. In Sections 7 and 8 we calculate geodesic lines
and a characteristic hypersurface of the LS wave equation, and in Sections 9 and 10
we calculate the geodesic distance and a first part of the elementary solution, only
to see that the criterium for such a first part for the validity of a strong HP is not
fulfilled either. In a last Section we discuss the results: it is not expectable that our
LS wave equation fulfills the strong Huygens’ principle.

2. The level set wave equation (LSWE)

We assume Cartesian coordinates q = (q1, ..., qN)T ∈ IRN . Let ν = V (q) be the N -
dimensional surface of interest in the space IRN+1 of points (qT , ν)T = (q1, ..., qN , ν)T .
We assume that V (q) is two times differentiable, and g(q) = ∂qV (q) be its gradient
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vector, and H(q) = ∂qg
T = (∂q ∂

T
q
V (q)) be the matrix of its second derivatives,

the Hessian. We form the scalar product of the gradient with itself. It produces the
scalar function ∂qV (q)T ∂qV (q) =: G(q). In the following, we treat regions without
stationary points of the function V (q), thus there holds G(q) > 0. Let us consider an
(N +1)-dimensional linear wave operator with respect to the coordinates q1, ..., qN , ν,
and with an additional term of the first order [7]

L := ∆−G(q)
∂2

∂ν2
+ TrH(q)

∂

∂ν
(1)

where ∆ = ∂T
q
∂q = (∂/∂q1)2+ ...+(∂/∂qN )2 is the Laplacian in IRN , and TrH is the

sum of the diagonal entries of H. The operator L is of the normal hyperbolic type by
signature ++ ...+− while G(q) > 0, thus outside of stationary points of V (q). Note
that ν is not the time variable. We search for a solution of the equation

Lψ(q, ν) = 0 . (2)

The reasoning for the introduction of such an equation will come true with its success.

Theorem
Be F a function of one real variable, F : IR → IR, with first and second continuous
derivations, then

ψ(q, ν) := F (V (q)− ν) (3)

is a solution of the wave Eq. (2).

Such solutions are named progressing waves [6, 9]. V (q) − ν is the phase and
F is the wave form. In the case of the classical wave equation with N = 3 many
special progressing waves have been known since the 18th century. Plane waves with
phase q3 ± c t, c = constant = 1/G, t = ν, spherical waves with phase R ± c t,

R =
√

(q1)2 + (q2)2 + (q3)2 and an additional amplitude factor 1/R. Further solu-

tions have been found in the 20th century named the Bateman-Hillion class. It is with
phase z + ((q1)2 + (q2)2)/w with z = q3 ± c t, w = q3 ∓ c t and amplitude factor 1/w
[15]. w can still be extended to w∗ + C with a free constant C. Generalizations of
that class are further done by Borisov and Kiselev [16]. These solutions have, com-
parably, simple and special phase functions: polynomials, logarithmic, trigonometric
or rational functions. The ansatz (3) is a very general case with a free function V (q).
An early ansatz before was that of Gottlieb [17] with nonconstant coefficients, but for
a circular symmetric equation. It was generalized by Bombelli et al. [18].

Proof of the Theorem
The proof of (3) is straightforward: computing the differential expression Lψ, we get

Lψ = F ′′(..) [ (∂qV )
T (∂qV )−G ] + F ′(..) [ ∂2

q
V − TrH ] = 0 (4)

per definition of G and TrH. F can be an arbitrary function, because the coefficients
of F ′′ and F ′ are zero.

Of course, one can extend the usage of F to distributions [14].
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( i) Now, we may assume that function G is prescribed and V is to determine. Then
the vanishing of the first coefficient is the Hamilton-Jacobi equation or eikonal
equation, a non-linear partial differential equation of the first order to search for
V. It describes a relation between the level contours of a surface and its steepest
descent lines [19]

(∂qV (q))
T (∂qV (q)) = G(q) . (5)

There is a large amount of methods to solve equations of this type [20, 21, 22].
Here in Eq.(4) the eikonal is automatically fulfilled by the definition of G(q). If
one treats the limit G(q) → 0, thus q would approach a stationary point of the
surface V (q), then also the eikonal (5) degenerates. Note that the eikonal also
emerges in a variational theory of steepest descent lines [19].

(ii) We may also assume for the second coefficient that V is to determine. Then the
second coefficient is named transport equation of the operator L [9], it emerges
here in a simple version. It is also automatically zero by the use of TrH.

3. Dimension splitting

The solution (3) does not depend on the dimension of the coordinate space [14].
This is an astonishing result [6, 9, 15, 16, 17, 18], and it is a hint that the strong
Huygens’ principle in the sense of Hadamard does not hold here [12]. We underline
it with a partitioning of the coordinate space IRN into two sets of variables qT

I =
(q1, ..., qM) and qT

II = (qM+1, ..., qN) with 1 ≤ M < N . Due to the sum structure of
the coefficients G(q) and TrH(q) we can split them into

G(q) = G(qI) +G(qII) and (6)

TrH(q) = TrH(qI) + TrH(qII) . (7)

Then we can write the differential eq. (2) as

Lψ(q, ν) = LIψ(qI ,qII , ν) + LIIψ(qI ,qII , ν) = 0 , (8)

where the operator LI is

LI :=
(

∇2
qI

−G(qI)
∂2

∂ν2
+ Tr H(qI)

∂

∂ν

)

(9)

acting in the IRM+1, and the same for LII acting in the IRN−M+1. If ψ(qI ,qII , ν) is
a solution of eq. (2) then also holds LIψ(qI ,qII , ν) = −LIIψ(qI ,qII , ν). The unique
solution is LIψ(qI ,qII , ν) = LIIψ(qI ,qII , ν) = 0 which is independent of the parti-
tioning. Especially, if N was even, then a splitting into N = M + (N −M) with an
odd M produces two ’odd’ operators.

We conclude: every ”full” level hypersurface, V (q) = ν, of a surface, V (q), over
coordinates in the IRN is an (N −1)-hypersurface and fulfills the (N +1)-dimensional
differential eq. (2) with solution (3); but every restriction to subspaces of dimension
M < N forms a section in the subspace of the level hypersurface, of course on the
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same level ν, and it fulfills a reduced differential eq. (9) in that subspace. Thus, the
operator L in eq. (1) can be totally split into single summands

L =
N
∑

i=1

( ∂2

∂q2i
−
(∂V

∂qi

)2 ∂2

∂ν2
+
∂2V

∂q2i

∂

∂ν

)

=:
N
∑

i=1

Li , (10)

and every part Li fulfills Liψ = 0 where ψ is a solution of Lψ = 0. The proof (4)
holds for every single Li. The sum (10) is different from an operator sum in Ref. [23].

4. Normal form of the LS wave equation

The part of the second order in operator (1) applied to ψ is:

∆ψ(q, ν)−G(q)
∂2

∂2ν
ψ(q, ν) (11)

where ψ(q, ν) is a field in a medium with “slowness” G(q)1/2 outside of stationary
points of V (q). Note that the factor G(q) depends only on the space variables q, not
on the variable ν. The contravariant metric matrix of the operator (11) is

(gI,J)I,J=1,...,N+1 =

(

E 0
0T −G(q)

)

. (12)

E is the N-dimensional unit matrix, and 0 is the N-dimensional zero column vector.
Because the metric matrix is only a diagonal matrix, its inverse diagonal matrix is
the covariant metric matrix

(gI,J)I,J=1,...,N+1 =

(

E 0
0T −1/G(q)

)

. (13)

Let the positive number γ be the absolute value of its determinant, here γ = 1/G(q).
The ν-part of the operator (11) can be written

−G(q)1/2
∂

∂ν

(

G(q)−1/2G(q)
∂

∂ν

)

ψ(q, ν) =
1√
γ

∂

∂ν

(

√
γgN+1,N+1 ∂

∂ν

)

ψ(q, ν) . (14)

For the space variables we have

G(q) =
N
∑

i=1

(

∂

∂qi
V (q)

)2

, thus
∂

∂qk
G(q) = 2

N
∑

i=1

Vqi(q)Vqiqk(q) =: 2 Hk(q) . (15)

Here, Hk is the Euclidean scalar product of the gradient of V with the k-th column of
the Hessian matrix. The coefficients are gi,j = δi,j for i, j = 1, ..., N , being the metric
fundamental tensor of the IRN . For the summands of the wave operator of Eq.(11)
we treat the ansatz

1√
γ

∂

∂qi

(

√
γ
∂

∂qi

)

ψ(q, ν) . (16)

If we differentiate the factor
√
γ inside the formula, we get

∂2

∂qi 2
ψ(q, ν) +G(q)1/2 (−1

2
)

1

G(q)3/2
2Hi

∂

∂qi
ψ(q, ν) (17)
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with the product rule and with (15). Consequently, we get for the operator (11)

∆ψ(q, ν)−G(q)
∂2

∂ν 2
ψ(q, ν) = (18)

1√
γ

∂

∂qI

(

√
γgI,J

∂

∂qJ

)

ψ(q, ν) +
1

G(q)

∑

i

Hi(q)
∂

∂qi
ψ(q, ν) ,

and the first part of the right hand side of Eq.(18) builds the normal form of a second
order wave equation with (N+1) variables and with variable coefficients. We will use
the convention that an index j is to be summed over 1 to N whenever it is repeated
in a single term, as well as a J is to be summed over 1 to N + 1. This has to to be
done in the parts of the right hand side of Eq.(18). Note that the first order part of
operator (1) becomes

1

G

N
∑

i

Hi
∂

∂qi
+ TrH

∂

∂ν
, (19)

but a zeroth order part is missing. The expressions Hi are defined in Eq.(15).

5. Curvature tensor and Ricci tensor of the metric connected with the LS
wave equation

For the general formulae of the following see any text book of differential geometry.
With the metric matrix (13) the corresponding coordinate space becomes an (N+1)-
dimensional manifold. Its metric is given by gII dq

I dqI in the used coordinates. We
can calculate the components of the affine connection (Christoffel symbols of second
kind) determined by

ΓI
JK =

1

2
gIL

(

∂gLJ
∂qK

+
∂gKL

∂qJ
− ∂gJK

∂qL

)

(20)

where 1 ≤ I, J,K, L ≤ N + 1. In the following, we will use lower-case letters 1 ≤
i, j, k ≤ N , and we often separately treat the (N+1)th coordinate, ν. Because the
metric is somewhat simple, we get most of the Γ components to be zero. Nonzero are
only the three kinds of the following components:

Γ i
N+1N+1 =

1

2

(

0 + 0− ∂gN+1N+1

∂qi

)

=
1

2

(

− ∂

∂qi
−1

G

)

=
−1

G2

N
∑

k

∂V

∂qk
∂2V

∂qk∂qi
, (21)

where we use G =
∑N

k (
∂V
∂qk

)2. Thus, we have by definition (15)

Γ i
N+1N+1 =

−1

G2
Hi . (22)

Analogously, we find

ΓN+1
N+1 k =

1

2
(−G)

(

∂gN+1N+1

∂qk
+ 0− 0

)

=
1

2
(−G)

(

∂

∂qk
−1

G

)

=
−1

G

N
∑

i

∂V

∂qi
∂2V

∂qi∂qk
. (23)
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Thus,

ΓN+1
N+1 k =

−1

G
Hk and analogously ΓN+1

j N+1 =
−1

G
Hj . (24)

Using the Christoffels we can also develop the operator (18) by the formula

gI J ∇I∇J = ∇J∇J = gI J ∂I∂J − gI J ΓK
I J∂K . (25)

We define new helpful symbols [24] using the Christoffels (22) and (24)

Γ L
I J K :=

∂

∂qI
ΓL
J K −

∑

M

ΓM
I K ΓL

J M . (26)

Because the metric matrix (13) is very simple, we get only some single Γ L
I J K not

zero:

Γ N+1
i j N+1 =

∂

∂qi
ΓN+1
j N+1 − ΓN+1

i N+1 Γ
N+1
j N+1 =

∂

∂qi
(
−Hj

G
)− 1

G2
HiHj

=
1

2

∂

∂qi

(

G
∂

∂qj
1

G

)

− 1

4
G2(

∂

∂qi
1

G
)(

∂

∂qj
1

G
) (27)

where only the summand with M = N + 1 gives a contribution, and

Γ l
i N+1N+1 =

∂

∂qi
Γ l
N+1N+1 − ΓN+1

i N+1 Γ
l
N+1N+1 =

∂

∂qi
(
−Hl

G2
)− 1

G3
HiHl

=
1

2

∂2

∂qi∂ql
1

G
− 1

4
G (

∂

∂qi
1

G
)(
∂

∂ql
1

G
) , (28)

but it is
Γ l
N+1 j N+1 = 0 , (29)

which we need below. It is further

Γ l
N+1N+1 k =

−G
4

(
∂

∂qk
1

G
)(
∂

∂ql
1

G
) , (30)

Γ N+1
N+1 j k =

−G2

4
(
∂

∂qj
1

G
)(

∂

∂qk
1

G
) , (31)

Γ N+1
i N+1 k =

∂

∂qi
(
−Hk

G
) =

1

2

∂

∂qi
(G

∂

∂qk
1

G
) , (32)

and

Γ N+1
N+1N+1N+1 = −Γm

N+1N+1 Γ
N+1
N+1m = −1

4
G

N
∑

m

(
∂

∂qm
1

G
)2 =

−1

G3

∑

m

H2
m . (33)

By an antisymmetrisation in I,J of symbols (26) the Riemannian curvature tensor
emerges [25], p.106

R L
I J K = Γ L

I J K − Γ L
J I K with R L

I J K = −R L
J I K . (34)
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With the symbol (27) being symmetric in I, J we get R N+1
i j N+1 = 0. With Eq.(30)

we get R l
N+1N+1 k = 0, and analogously with (33) we have R N+1

N+1N+1N+1 = 0. But
it is with (28) and (29)

R l
i N+1N+1 = Γ l

i N+1N+1 6= 0 , (35)

and with (31) and (32)

R N+1
N+1 j k = Γ N+1

N+1 j k − Γ N+1
j N+1 k = −R N+1

j N+1 k

= −1

2

∂

∂qj
(G

∂

∂qk
1

G
) − G2

4
(
∂

∂qj
1

G
)(

∂

∂qk
1

G
) . (36)

The Ricci tensor is defined by

RJ K =
∑

M

R M
M J K with RJ K = RK J , (37)

and the nonzero Ricci components will be obtained by a summation over i = l = m
of the components of the kind (35) giving

RN+1N+1 =
N
∑

m

(

1

2

∂2

∂qm 2

1

G
− 1

4
G (

∂

∂qm
1

G
)2
)

, (38)

or by (36) with only one summand, giving

Rj k = −1

2

∂

∂qj
(G

∂

∂qk
1

G
)− 1

4
G2 (

∂

∂qj
1

G
) (

∂

∂qk
1

G
) . (39)

They are not zero, in general, while the surface V is not flat.
The curvature scalar is

R = gJ K RJ K =
N
∑

j k

δj kRj k −GRN+1N+1

=
∑

j

(

−3

2G2
(
∂

∂qj
G)2 +

1

G
(
∂2

∂qj 2
G)

)

=
∑

j

(−6H2
j

G2
+

2

G
(
∂

∂qj
Hj)

)

. (40)

6. Negative results concerning conditions for a strong Huygens’ Principle

The general wave equation is written in a coordinate invariant form

L Ψ = gI J ∇I ∇JΨ+ AI ∇IΨ+ C Ψ = 0 . (41)

In Eq.(1) we have the case C = 0, and coefficient AN+1 = TrH. With the covariant
form of the wave equation (19), we have additionally the contravariant coefficients
Ai = 1

G
Hi.

The proof for the validity of the strong HP property is quite difficult since the
validity conditions involve the coefficients of operator (18) in a very indirect and
complicated manner. We calculate a first condition for HP given in Ref. [26], Eq.(1.19),
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or see also Ref. [27]. It is with n=N+1 here (if n=4, then -1/6 is the correct factor for
R)

C − 1

2

N+1
∑

I

∇IA
I − 1

4

N+1
∑

I

AI A
I − N − 1

4N
R = 0 . (42)

The covariant coefficients for (42) are Ai = δi jA
j = Ai = 1

G
Hi for i = 1, ..., N , and

AN+1 = gN+1N+1A
N+1 = − 1

G
TrH. The symbol ∇I means covariant differentiation

∇KA
I = ∂KA

I +
N+1
∑

J

ΓI
K JA

J , (43)

in words: the covariant differentiation is the usual derivative along the coordinates
with correction terms which tell us how the coordinates change themselves. It is here

∇kA
i = ∂kA

i , (44)

because the corrections are Γi
k J = 0 throughout. Thus, the qk do not depend on all

other coordinates. However, it is

∇N+1A
N+1 = 0 +

N+1
∑

J

ΓN+1
N+1 JA

J =
N
∑

j

ΓN+1
N+1 jA

j . (45)

Though the coefficient AN+1 does not depend on ν, its covariant derivation to ν is
corrected by terms which include the other Aj here. A change along ν depends on all
other coordinates qi in a highly nonlinear kind. This part in Eq.(42) becomes

− 1

2

N+1
∑

I

∇IA
I = −1

2

N
∑

i

∂

∂qi
(
1

G
Hi) + 0− 1

2

N
∑

j

ΓN+1
N+1 j A

j =

=
1

G2

N
∑

i

H2
i −

1

2G

N
∑

i

(
∂

∂qi
Hi) +

1

2G2

N
∑

j

H2
j . (46)

The next summand in (42) is

− 1

4

N+1
∑

I

AI A
I = − 1

4G2

N
∑

i

H2
i +

1

4G
(TrH)2 . (47)

All in all, the condition (42) has the following summands, if we use (40), (46) and
(47) and sort equal terms

1

4G
(TrH)2 − 1

2G

N
∑

i

∂

∂qi
Hi

(

1 +
N − 1

N

)

+
1

4G2

N
∑

i

H2
i

(

5 + 6
N − 1

N

)

. (48)

The expression seems never to be zero.
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Conclusion The first condition is not fulfilled for the validity of a strong HP of the
wave operator (1), for Hadamard’s ’minor premise’. Thus, wave operator (1) is not a
Huygens’ operator.

A second condition only concerns the coefficients AI and the metric [26]. We define
(by another capital letter than Ref. [26] to differentiate from the Hessian)

KI J :=
1

2

(

∂

∂qJ
AI −

∂

∂qI
AJ

)

. (49)

Because of symmetries, it holds Ki j = 0 for i, j = 1, ..., N , as well as KN+1N+1 = 0.
Only two kinds of components are not zero:

KN+1 j =
1

2

∂

∂qj
AN+1 = −Kj N+1 = −1

2

∂

∂qj
TrH

G
. (50)

The second condition of [26] is
∇JKI J = 0 . (51)

It is defined [9]

∇LAI = ∂LAI −
N+1
∑

M

ΓM
LIAM , (52)

and [28]

∇LKI J = ∂LKI J −
N+1
∑

M

ΓM
LIKM J −

N+1
∑

M

ΓM
LJKI M , (53)

thus we get

∇JKI J = gJL∇LKI J = gJL
(

∂LKI J −
N+1
∑

M

ΓM
LIKM J −

N+1
∑

M

ΓM
LJKI M

)

. (54)

If 1 ≤ i ≤ N , then

∇JKi J = gJL∇LKi J = gN+1L∂LKi N+1 − gj N+1ΓN+1
N+1 iKN+1 j − gJLΓN+1

LJ Ki N+1 = 0 .
(55)

However, if I = N + 1 it is

∇JKN+1 J = gJL∇LKN+1 J = gjL∂LKN+1 j − gj lΓN+1
l N+1KN+1 j

−gN+1N+1
N
∑

m

Γm
N+1N+1(KmN+1 +KN+1m)

=
N
∑

j

∂jKN+1 j −
N
∑

j

ΓN+1
j N+1KN+1 j =

N
∑

j

1

2

(

∂2

∂qj 2
+

1

G
Hj

∂

∂qj

)

−TrH
G

6= 0 , (56)

in the general case. So also the second condition of Ref. [26] for a strong HP is not
fulfilled; and we stop these calculations here.
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7. Special geodesics for the LS wave equation

Generally, the geodesics are determined by a system of ordinary differential equa-
tions:

d2qI

ds2
+ Γ I

J K

dqJ

ds

dqK

ds
= 0, I, J,K = 1, ..., N + 1 , (57)

where s is the arclength parameter (see a remark below, after Eq.(78)), and it is
summarized over J and K. Again, we use qN+1 = ν, and the lower-case indexes for
the qi, and get the (N+1) coupled equations:

d2ν

ds2
− 2

G

dν

ds
(
N
∑

j

dqj

ds
Hj) = 0, (58)

d2qi

ds2
− Hi

G2
(
dν

ds
)2 = 0, i = 1, ..., N . (59)

Eq. (58) can be simplified

d2ν

ds2
−
(

d

ds
log (G)

)

dν

ds
= 0 . (60)

The equation has a solution

ν(s) =
∫ s

so
G(q(τ))dτ with

dν

ds
(s) = G(q(s)) . (61)

The function G(q) determines the relation between the level, ν, and the arclength
parameter, s. Using it in Eq.(59), we can then try the steepest ascent ansatz for the
(formally decoupled) solution for the space coordinates by

dqi

ds
(s) =

∂V

∂qi
(q(s)) , i = 1, ..., N . (62)

For the proof of Eq.(62) we do a next derivation to s. It is

d2qi

ds2
=

N
∑

k

∂

∂qk
(
∂V

∂qi
)
dqk

ds
=

N
∑

k

∂V

∂qk
∂2V

∂qk∂qi
= Hi , (63)

thus, the correct expression in Eq.(59). Of course, all coordinates depend on each other
because they all are used in G(q) and V (q). Thus indeed, we get the steepest ascent
lines for the surface, V(q), for being special geodesics. And ν develops corresponding
to Eq.(61).

Note: another, trivial solution of Eq. (58), in contrast to Eq.(61), is dν/ds = 0
which allows straight lines in the qi-space for the geodesics, in a hyperplane ν =constant.

8. The characteristic surface and the initial value problem (IVP)

The method of characteristics is a technique developed for first order equations,
though it is also valid for a second order hyperbolic equation. The idea is to reduce a
partial differential equation to a family of ordinary differential equations along which
the solution can be integrated from some initial data given on a suitable hypersurface.

12



First, we look for the characteristic manifold of operator (1) [6], part II, Chap.VI, §2.
We can treat the direct solution of Eq. (2) ψ(q, ν) = F (V (q)− ν). Then we have the
phase function

S(q, ν) = V (q)− ν (64)

which directly fulfills the characteristic equation [6] pertaining to operator L of Eq. (1)

(∇qS(q, ν))
T (∇qS(q, ν))−G(q)

(

∂

∂ν
S(q, ν)

)2

= 0 . (65)

It is identical with the eikonal Eq.(5). On the other hand, if we treat a steepest ascent
trajectory (q(s), ν(s)) then S(q, ν) is constant along this line. It is

d

ds
S(q(s), ν(s)) =

∂V

∂qi
d qi

ds
− d ν

ds
=

N
∑

i=1

(
∂

∂qi
V (q))2 −G(q) = 0, (66)

where we used the property of steepest ascent lines. The constant is zero, of course,
because along the steepest ascent line it holds V (q) = ν.

On the other hand, with Friedlander [9], p.79, a characteristic surface, ϕ(q, ν) = 0,
is a null-surface in the metric of the space used, thus (13). The coefficient of the ν
coordinate is not constant, thus we cannot treat distances over global regions by the
usual ’Pythagoras’. We have to use local neighbourhoods and differentials. With the
local point of view, to formally find the characteristic manifold, we have to treat the
quadratic form which is connected with the metric (13)

N
∑

i=1

(
∂

∂qi
ϕ(q, ν))2 − 1

G(q)
(
∂

∂ν
ϕ(q, ν))2 = 0 . (67)

It describes a cone for every point (q, ν). If we assume a curve embedded in the
characteristic surface, (q(s), ν(s)), s is the arclength, then the tangent direction has
to be a null vector

N
∑

i=1

(
dqi

ds
)2 − 1

G(q)
(
dν

ds
)2 = 0 . (68)

Using the steepest ascent equation with eqs.(62) and (61) which is a null geodesic, we
again get Eq. (65) by

N
∑

i=1

(
∂

∂qi
V (q))2 − 1

G(q)
(G(q))2 = 0 . (69)

Note, by the use of the steepest ascent equation in the ansatz of the characteristics, we
only use one sort of ascending lines, and thus exclude the full ’conoid’. The result is
then, indeed, the function V(q) only. It emerges as an envelope of the current cones.

We find that S(q, ν) = ϕ(q, ν) is a special characteristic manifold. The ”space-like”
derivatives of function S are the derivatives of the surface, V(q). Consequently, V(q)
itself is a characteristic surface to operator (1). Characteristic surfaces S(q, ν) = 0 are
considered as potential carriers of wave fronts [6]. But the hypersurfaces S(q, ν) = 0
with fixed ν are also the contours of the surface, V.
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A further trivial solution of system (65) is the function S+(q, ν) = V (q)+(ν−2ν0)
with any fixed value ν0. Generally, it is not of interest for us; we are interested in the
contours S = 0 of the phase function (64) only.

However, using together phase functions like S and S+ we can pose an initial value
problem for Eq.(2) [14]. We assume two functions F and D of one real variable,
F,D : IR→ IR, with some continuous derivations, and we put

ψ(q, ν) =
1

2
{F (V (q) + ν) + F (V (q)− ν) +D(V (q) + ν)−D(V (q)− ν)} . (70)

It is a solution like (3) of the wave Eq. (2), as well. We get back (3) if we use D = F .
Solution (70) fulfills the following initial values, for example for νo = 0

ψ(q, νo) = F (V (q)) (71)

and
∂

∂ν
ψ(q, ν)|ν=ν0 = D′(V (q)) . (72)

Of course, the free functions F (x) and D(x) are here only one-dimensional, because
the solution (70) is adapted to the N -dimensional surface, V (q), being the basic of the
operator (2). Thus, (71) and (72) do not pose the most general initial value problem.
However, they are for (2) a well posed Cauchy initial value problem.

9. The geodesic distance

Note that the considerations in this Section are again of local character.

Lemma
Be (q(s)T , ν(s)) a point on a general geodesic line. It holds

d

ds

[

N
∑

k=1

(
dqk

ds
)2 − 1

G
(
dν

ds
)2
]

= 0 . (73)

It is an important relation which enfolds somewhat of the character of a geodesic
distance.
Proof
If one derivates, it holds

=
N
∑

k=1

2(
dqk

ds
)(
d2qk

ds2
)− (

d

ds

1

G
)(
dν

ds
)2 − 2

G
(
dν

ds
)(
d2ν

ds2
) (74)

and with the differential equations of the general geodesics (58),(59) it is

=

[

− d

ds

1

G
− d

ds

1

G
− 2

G2

d

ds
G

]

(
d2ν

ds2
) . (75)

But the last summand is +2 d
ds

1
G
. Thus, the given relation is correct, cf. also Ref. [19].

A consequence of Eq. (73) is

N
∑

k=1

(
dqk

ds
)2 − 1

G
(
dν

ds
)2 = const = D , (76)
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where D may differ with different geodesic lines, but it is constant along a given
geodesic. If we integrate the square root of the equation along a geodesic line q(τ) it
is with J,K = 1, ..., N + 1 in the general case

∫ s

o

[

gJK(q(τ)) q̇
J(τ) q̇K(τ)

]1/2
dτ , (77)

thus here

J (q, ν, s) =
∫ s

o

[

N
∑

k

q̇k(τ)2 − 1

G
ν̇(τ)2

]1/2

dτ = D1/2 s , (78)

Eq.(78) is the formula for the arclength of the geodesics between a point (qT
o , νo) at

parameter s = 0, and the final point (q(s)T , ν(s)). It means that the definition of
this kind of curves by the differential equation (57) is automatically parametrized
by the arclength [29]. Note that the point (q(s)T , ν(s)) can lie outside the special
characteristic surface of Section 8. But if we use the solutions of the eqs.(58),(59),
the formulae (61) and (62), we get again D = 0 on the special characteristic surface
V (q) = ν

∫ s

o

[

N
∑

k

(
∂V

∂qk
)2(τ)−G(τ)

]1/2

dτ = 0 . (79)

In the next subsection, we derivate the geodesic distance along a partial direction.
This will usually be a direction which does not point along the steepest ascent line,
or another geodesics. We have for j = 1, ..., N , while D 6= 0,

∂

∂qj
J (q, ν, s) =

1

2D1/2

∫ s

o

[

2
N
∑

k

q̇k(τ)
∂q̇k

∂qj
− (

∂

∂qj
1

G
)ν̇2 − 2

G
ν̇
∂ν̇

∂qj

]

dτ . (80)

With partial integration it becomes

=
1

D1/2

[

N
∑

k

q̇k(τ)δkj −
1

G
ν̇
∂ν

∂qj

]s

o

− 1

D1/2

∫ s

o

[

1

2
(
∂

∂qj
1

G
)ν̇2 +

N
∑

k

q̈k(τ)
∂qk

∂qj
+ ν̈

∂ν

∂qj

]

dτ .

(81)
It is equal

=
1

D1/2
(q̇j(s)− q̇j(0))− 1

D1/2

∫ s

o

[

1

2
(
∂

∂qj
1

G
)ν̇2 + q̈j(τ)

]

dτ . (82)

The integrand of the right hand side summand is zero because of the geodesic property,
Eq.(59). We get with (76)

∂J
∂qj

=
q̇j

D1/2
=
∂
√
D

∂q̇j
. (83)

Analogously, we get
∂J
∂ν

= − ν̇

D1/2 G
=
∂
√
D

∂ν̇
. (84)

We use Eq.(76) for a further derivation [6], p.119. Put F =
√
D. Then it is

N
∑

k

q̇k
∂F

∂q̇k
+ ν̇

∂F

∂ν̇
=

1

F
(
N
∑

k

(q̇k)2 − 1

G
(ν̇)2) = F . (85)
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Now we have for k = 1, ..., N using eqs.(81) and (82)

Jqk = Fq̇k =
1

F

N
∑

l

δlkq̇
k =

q̇k

F
, and Jν = Fν̇ =

1

F

(−1)

G
ν̇ . (86)

The multiplication of eqs.(86) with the inverse metric matrix gJK and a further mul-
tiplication with Jqj = Fq̇j for j = 1, ..., N , and with Jν = Fν̇ and addition over all
terms for j, k = 1, ..., N , and ν, results in

N
∑

k,j

gkjJqkJqj −GJ 2
ν =

N
∑

k

J 2
qk −GJ 2

ν =
1

F
(
N
∑

j

Fq̇j q̇
j + Fν̇ ν̇) = 1 (87)

because of eqs.(85) and (86). Now, put Λ = J 2 being the square of the geodesic
distance between the points q and qo. In physics the Λ is sometimes called the world
function (with interchanged signature, and ν is replaced by the time). With

∂Λ

∂qI
= 2J ∂J

∂qI
(88)

we have the well-known differential equation of the first order

N
∑

k,j

gjk ΛqkΛqj −G (Λν)
2 =

N
∑

j

(Λqj)
2 −G (Λν)

2 = 4 Λ . (89)

10. Singular part of the elementary solution

We use formula (2.10) of Czapor/McLenaghan [26] for the elementary solution of
eq. (41)

V (q, ν,qo, νo) =
1

2π
(ρ(q, ν,qo, νo))

−1/2 exp

(

1

4

∫ s(q,ν)

0
AI Λ,I

dt

t

)

(90)

where

ρ(q, ν,qo, νo) = 8(γ(q, ν) γ(qo, ν0))
1/2

[

det(
∂2Λ

∂qI∂qJo
)

]−1

. (91)

The factor 8 here emerges because the Ref. [26] uses the dimension n=4 only. In
general, we have the factor 2n−1. The part ρ is the so called discriminant function,
and γ is the norm of the determinant of the metric (13). One should also compare
the theory in Ref. [9], p.129 ff. At the beginning we approximate the square of the
geodesic distance Λ, see (78). We locally define the square of the geodisic distance by

Λ(q, ν;qo, νo) =
N
∑

k

(qk − qko )
2 − 1

G(qo)
(ν − νo)

2 +O(|(q, ν)− (qo, νo)|3) . (92)

It is Λ(q, ν;qo, νo) = 0 the equation of the characteristic conoid with apex in (qo, νo).
We can differentiate it. Up to linear terms it becomes

∂2Λ

∂qi ∂qjo
=

{

0 ; 1 ≤ i, j ≤ N, i 6= j
−2 ; i = j

(93)
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and
∂2Λ

∂qi ∂νo
= 0,

∂2Λ

∂ν ∂νjo
=

2

G(qo)
,

∂2Λ

∂qio ∂ν
=

4

G(qo)2
(ν − νo)Hi, (94)

The determinat of all entries is (if one weights all by factor 1/2)

det
(

1

2
ΛqI qJo

)

=
(−1)N

G(qo)
. (95)

Then the factor in formula (90) becomes

∣

∣

∣

∣

∣

det

(

1

2

∂2Λ

∂qI ∂qJo

)∣

∣

∣

∣

∣

1/2

γ(q)1/4γ(qo)1/4
=

(

G(q)

G(qo)

)1/4

, (96)

where we use the norm of the determinant, γ = 1/G, of the metric (13). The factor
is really equal one at the beginning of the geodesic line, if (q, ν) = (qo, νo).

In the next step, we treat the integral of (90). The factor (96) only concerns the
second order operator; but the integral also includes the first order terms. We have
to calculate

exp

(

1

4

∫ s

0
(
∑

i

Ai ∂iΛ + TrH ∂νΛ)
dt

t

)

(97)

where the path integral goes along a geodesic line from (qo, νo) to (q, ν). We again
use the explicite definition Λ = J 2 and J = Fs, see (78) and (85). The integrant is

∑

i

Hi

G
2J q̇i

F
+ TrH 2J (−ν̇)

F G
, (98)

see (86). The integral in (97) becomes

∫ s

0

(

2
∑

i

Hi

G
q̇i − 2TrH

ν̇

G

)

dt (99)

=
∫ s

0



−2
√
G
∑

i

∂

∂qi
(

√

1

G
) q̇i − 2TrH

ν̇

G



 dt . (100)

The first sum is a gradient in the space of the q variables, but does not depend on ν,
we can write it as a pure derivation to t. Thus we get with the gradient theorem for
path integrals

= −2log (

√

1

G
)

∣

∣

∣

∣

∣

∣

q

qo

− 2
∫ s

0
TrHdt = log (

G(q)

G(q0)
)− 2

∫ s

0
TrH

dν

G
. (101)

The first term with factor 1/4 in (97) results in the same expression like the factor
from the second order part in result (96), and the last term remains a path integral
giving the singular part of the elementary solution

U(q, ν;q0, ν0) =
1√
2π

(

G(q)

G(qo)

)1/2

exp(−1

2

∫ s

0

TrH

G
dν ) . (102)
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The elementary solution (or Green’s function) is

U(q, ν;q0, ν0)δ
(±)(Λ) +W (q, ν;q0, ν0)Θ

(±)(−Λ) . (103)

δ(±) is the (N+1)-dimensional Dirac delta distribution, but Θ(±) is the Heaviside step
function with support in the forward (+) or backward (-) conoid. The functions U and
W are unique. The equations for W are hard to solve, and no analytical expression
is known in a general metric.

Though the integrant of the path integral is independent on ν and ν0, the integral
depends on the (N+first) variable, ν, over the kind of pathway which determines the
corresponding geodesic line. For example, two points (qT , ν) and (qT

0 , ν0) on a steepest
ascent path are connected by the corresponding steepest ascent line, see Section 7.
However, if we compare the two points (qT , ν0) and (qT

0 , ν0) in a pure “space-like”
hyperplane, νo=constant, then we can choose dν/ds = 0 and get with Eq.(59) that
the geodesic line is a straight line in the q-space. Thus, two space points q and q0

are connected by two different geodesics depending on the value of the ν variable.

For the validity of a strong HP, it is to test P U
?
= 0 where P is the adjoint

differential operator to (1). That would be immediately a sufficient HP property by
W = 0, see [26] as well as Ref. [12]. Then only the first term in (103) appears. It
has support along the null conoid, and it represents a sharp, wake-free wave front.
The W -term is sometimes named the tail. It accounts for the possibility of a diffusive
propagation. The adjoint differential operator P to (1) is, compare (41)

P U = gI J ∇I ∇J U(q, ν)− ∇I(A
I U(q, ν)) . (104)

However, a calculation results in P U 6= 0, in general, as it is to expect from our
conclusion in Section 6.

11. Discussion

The present investigation can be regarded as an investigation of operators that
allow progressing wave families as defined by Courant. [6] The wave front (3) solves
the differential equation (2) in an IRN+1. It satisfies a Huygens’ principle if one uses
a distribution ansatz in Eq.(3). By a Huygens’ principle of the propagation of waves
we first understand that sharp signals propagate as sharp signals. The ”signal” here
is the (N − 1)-contour to a corresponding level of the given surface V in IRN+1. The
differential equation (2) is linear, but its second order part has one nonconstant coeffi-
cient. Note that the nonlinear coefficients of operator (1), G(q) and Tr H(q), are built
from the gradient and the Hessian of the function of interest, V(q). The operator (1)
is constructed for this function. The function V(q) then also emerges in the very sim-
ple solution (3) being a progressing wave, for which we can also pose an appropriated
Cauchy initial value problem (71) and (72). However, if we pose a general IVP for (2),
we cannot expect such a simple solution like (3); in contrast, we will find a general so-
lution formula, an integral over a full conoid region. Thus, the strong HP in the sense
of Hadamard’s ’minor premise’ will not be fulfilled. That is the result of the calcula-
tion of diverse necessary criteria for the strong HP: they are not fulfilled. We found
that Eq. (2) itself is not a Huygens’ equation. Wave operators that themselves satisfy
the strong HP are known to be very rare, while those with families of progressing
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wave solutions are much more common. There may be no single connection between
the two classes of equations [18]. Nevertheless, it is perhaps worth pointing out that
operator L in Eq.(2) allows undistorted progressing waves in every dimension, and its
splitting property (10) is a hint that we could bring forward a Huygens’ principle of
the propagation of waves from one kind of subdimensionM < N , say odd, to the other
kind, say even, and vice versa. Hadamards ’major premise’ holds in any case, and
for the special IVP (71) and (72) also the progressing wave solutions (3) are wake-free.

If one compares operator (1) with a wave equation with constant coefficients, then
1/G would correspond to the velocity c of the wave movement. In a certain sence this
fits here as well: If G is small then the level hypersurfaces change by large steps, but
if G is large then the levels are dense. But note that this ’velocity’ does not explicitely
appear in the solution (3).

Throughout the paper we have assumed that G 6= 0. The contrary case concerns
the stationary points of the surface V of interest. There the ’rays’ of operator (1), the
steepest ascent/steepest descent lines, meet in a singularity, and the level hypersurface
reduces to a point (in minima or maxima), or it forms a caustic (in saddle points).
The treatment of such saddle points is a further problem, see for example Ref. [30].
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[30] J.-D. Benamou and I. Solliec, An Eulerian Method for Capturing Caustics J.

Computat. Phys., 162 (2000) 132-163.

[31] R. Sulanke, Notebook “Vector and Tensor Algebra”, (2013) on www.irm.
mathematik.hu-berlin.de/∼sulanke

Glossary

Definitions (by Wikipedia) of field-specific terms in this paper:

• Characteristic surface S for operator Lψ = 0: if data for ψ are prescribed on the
surface S, then it may be possible to determine the normal derivative of ψ on
S from the differential equation. If the data on S and the differential equation
determine the normal derivative of ψ on S, then S is non-characteristic. If the
data on S and the differential equation do not determine the normal derivative of
ψ on S, then the surface is characteristic, and the differential equation restricts
the data on S: the differential equation is internal to S.

• Christoffel symbols: named for Elwin Bruno Christoffel (1829-1900), numeri-
cal arrays of real numbers that describe, in coordinates, the effects of parallel
transport in curved surfaces and, more generally, manifolds.

• Curvature tensor: the infinitesimal geometry of Riemannian manifolds with
dimension at least 3 is too complicated to be described by a single number at
a given point. Riemann introduced an abstract and rigorous way to define it,
now known as the curvature tensor.

• Eikonal: the meaning of this equation is that any change in the region is pushed
to move at right angles to the constant hypersurfaces, and along lines of steepest
descent/ascent determined by the field of the vector and its sign.
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• Geodesic line: is a generalization of the notion of a straight line to curved
spaces. In the presence of an affine connection, a geodesic is defined to be a
curve whose tangent vectors remain parallel if they are transported along it. If
this connection is the Levi-Civita connection induced by a Riemannian metric,
then the geodesics are (locally) the shortest path between points in the space.

• Huygen’s principle: named for Christiaan Huygens (1629-1695), any point on a
wave front may be regarded as the source of secondary waves. The surface that
is tangent to the secondary waves can be used to determine the future position
of the wave front.

• Initial value problem: (also called the Cauchy problem) is the differential equa-
tion together with specified values of the unknown function and its derivative(s)
at given points in the domain of the solution.

• Metric: named after Georg Friedrich Bernhard Riemann (1826-1866), the Rie-
mannian metric g is a symmetric tensor that is positive definite. It is an inner
product on the tangent space at each point which varies smoothly from point to
point. Riemannian geometry is the branch of differential geometry that studies
smooth manifolds with a Riemannian metric. This gives, in particular, local
notions of angle, length of curves, surface area, and volume. From those some
other global quantities can be derived by integrating local contributions.

• Ricci tensor: named after Gregorio Ricci-Curbastro (1853-1925), represents the
amount by which the volume of a geodesic ball in a curved Riemannian manifold
deviates from that of the standard ball in Euclidean space. As such, it provides
one way of measuring the degree to which the geometry determined by a given
Riemannian metric might differ from that of ordinary Euclidean IRN . Like the
metric itself, the Ricci tensor is a symmetric bilinear form on the tangent space
of the manifold.

• Wave equation: a second-order linear partial differential equation for the de-
scription of waves as they occur in physics such as sound waves, light waves
or water waves. Wave equations are examples of hyperbolic partial differential
equations, but there are many variations.
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