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The reaction path is an important concept of theoretical chemistry. We discuss the
definition with the help of the following of the reduced gradient (RGF) [see Quapp
et al., Theoret. Chem. Acc. 100 (1998) 285], also named the Newton trajectory. All the
important features of the potential energy surface are definable independently of the
coordinate system. We demonstrate it for the Newton trajectory. We design a numer-
ical scheme for the RGF method including the intrinsic curvilinear metric of internal
coordinates. For the path following we extend the previous method to the use of a gen-
eralized singular value decomposition (SVD). An example of the HCN isomerization
pathway is discussed.
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1. Introduction

The concept of the minimum energy path (MEP) or reaction path (RP) of
an adiabatic potential energy surface (PES) is the usual approach to the theo-
retical kinetics of larger chemical systems [1–6]. It is roughly defined as a line in
coordinate space, which connects two minima by passing the saddle point (SP)
(the transition structure) of a PES. The energy of the SP is assumed to be the
highest value tracing along the RP. It is the minimal energy a reaction needs to
take place. Reaction theories are based either implicitly (transition state theory
[1]), or explicitly (variational transition state theory[5]) on the knowledge of the
RP. These theories require only local information about the PES along the RP.
They circumvent the dimension problem for medium-sized or large molecules:
it is impossible to fully calculate their PES. Any parameterization s of the RP
x(s) = (x1(s), . . . , xn(s))T is called reaction coordinate. It is an uncertainty of
the RP definition, how a reaction path ascends to the SP. We use here the dis-
tinguished or driven coordinate method [7] in the modern form of RGF [8–13].
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We remark that the search for an appropriate MEP is not necessary equivalent
to the finding of the steepest descent (SD) pathway from the SP.

Reaction paths are a widely used concept in theoretical chemistry. Proper-
ties of such paths should be independent of the coordinate system employed [3,
6]. If this were not the case we would obtain different dynamic and thermody-
namic properties from different coordinates. This seems like a trivial point, and
we are sorry to belabor it. We will develop the corresponding formulas for RGF
pathways which are called Newton trajectories. Some of the methods are imple-
mented as independent modular programs. The programs can be obtained on
request or retrieved [14].

2. Definition of RGF curves

The starting point is a geometrically defined pathway which may serve as a
reaction path. Geometrically defined means that only properties of the PES are
taken into account like in the SD, however, no dynamical behavior of the mol-
ecule is observed. It was proposed to choose a distinguished coordinate along
the valley of the minimum, to go a step in this direction, and to perform an
energy optimization of the residual coordinates. However, the methodology of
the distinguished coordinate method was criticized by some workers: Müller [15],
Müller and Brown [16], Williams and Maggiora [7], and Cioslowski et al. [17].
They found examples, where the distinguished coordinate method fails: it can-
not follow the path over a turning point. Recently, the method was transformed
into a new mathematical form to RGF [8,9]. The concept is that any selected
gradient direction is fixed

g(x)/|g(x)| = r, (1)

where r is the unit vector of the search direction. The search direction may corre-
spond to an assumed start direction of a chemical reaction. For example, it may
be the direction between the two minima of reactant and product. The property
(1) is also realizable by a projection of the gradient onto the (n−1)-dimensional
subspace which is orthogonal to the one-dimensional subspace spanned by the
search direction r. A curve belongs to the search direction r, if the gradient of
the PES always remains parallel to the direction of r at every point along the
curve x(s) with a suitable parameter s

(n−1)Prg(x(s)) = 0, (2)

where (n−1)Pr projects out the search direction r. This means (n−1)Prr = 0. The
projector (n−1)Pr in equation (2) “reduces” the gradient. It is to be constructed
by (n − 1) row vectors being orthogonal to the search direction r. They can
be obtained by a modified Gram–Schmidt orthogonalization [18]. Based on the
explicit definition, we can follow curve (2) along its tangential vector. This is the
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RGF method (the reduced gradient following) using the derivative of equation
(2) to obtain the tangent x′ to the curve

0 = d
ds

[Prg(x(s))] = Pr dg(x(s))

ds
= PrH(x(s))x′(s). (3)

The matrix H is the Hessian. The algorithm has already been realized by the pre-
dictor-corrector method [9,19] using (n−1)Pr. The RGF is a simple but effective
procedure in order to determine all types of stationary points [8]. In most of the
cases, each RGF curve passes each stationary point [20]. RGF curves are defined
by a constant gradient vector, and a full family of them connects the extrema.
Nevertheless, some of the curves may follow a reaction valley in favorable cases.
The possibility of the MEP calculation then depends on a clever definition of the
search direction [21].

If working in a curvilinear coordinate space the projection into an (n − 1)-
dimensional subspace in equation (2) may obscure the structure of the metric.
If the zero in equation (2) is exactly fulfilled, a curve point is given. However,
if equation (2) is not fulfilled then the (n − 1) dimensional vector in equation
(2) is to be measured in an unknown metric. One remedy is the exact use of the
internal metric, see section 6. Another way is to define a new Pr by the dyadic
product of the unit vector r with rT

nPr = In − rrT , (4)

where In is the unit matrix. Again, we pose

nPrg(x(s)) = 0. (5)

This nPr is an n × n matrix of rank n − 1, because r is a column vector, rT

is a row vector, and their dyadic product is a matrix. For projector (4) we can
measure the zero of equation (5) directly in the n-dimensional curvilinear met-
ric. This version of nPr is used in section 7.

The turning point (TP) case [7,16,20] divides RGF curves into those which
can serve as loose RPs, and others: if the RGF curve does not contain a TP at
the pathway from minimum up to the SP, it may be used as an RP model. How-
ever, if a TP emerges, it will usually have an energy higher than the energy of the
respective SP and, hence, this path does not meet the meaning of an RP.

3. Description of the first RGF algorithm

In order to get the system of equations for RGF, we have to define the pro-
jector (n−1)Pr. In procedure mrgf2 [14], we calculate (n − 1) orthonormal direc-
tion vectors being also orthogonal to the selected search direction r by using the
modified Gram–Schmidt algorithm [18]. (The metric of internal coordinates may
be included into the orthogonality relation of the Gram–Schmidt procedure.)
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Then, the projector (n−1)Pr is the matrix of these (n−1) rows. Its action in equa-
tion (2) is measured in an Euclidean, (n − 1)-dimensional norm. The equation
(3) for RGF becomes (n−1)PrH t = 0, a linear equation for the tangent vector t.
It makes up the predictor step. The system is solved by QR decomposition [19].
The reduced Hessian (n−1)PrH, an (n−1)×n matrix, is augmented by the tangent
vector to an (n × n) matrix which is the so-called K matrix [19]. The corrector
step is applied if the Euclidean norm of the reduced gradient (n−1)PrgI is greater
than a threshold ε which is given as a parameter. The subsequent Newton–Raph-
son step of the corrector orthogonally to the tangent is realized by solving a lin-
ear equation where the K matrix forms the left hand side, and the right-hand
side is given by the reduced gradient augmented by zero in the n-th row. Either
the predictor step, or the corrector step is added to the current z matrix values of
the internal coordinates, and the next loop of the algorithm is started. (A com-
bination of predictor and corrector gives even better results [22].) RGF is now
tested to be an effective tool in determining the next SP [11–13,20,23–25], on a
PES if starting at a minimum. As long as it was used to find stationary points,
the coordinate system did not matter so much; however, RGF curves can also be
defined independently of coordinates, see below.

4. Branin’s method to calculate symmetric valley-ridge inflection points

The gradient directions of the PES are uniquely determined. Curves calcu-
lated by RGF to different directions r cross if and only if the gradient vanishes at
the crosspoint, i.e., the crosspoint has to be a stationary point. However, differ-
ent branches of the solution of the same reduced gradient curve with respect
to r may also cross each other. These points are characterized as the branching
points (BP) of the reduced gradient curve. On the other hand, the BP of a reac-
tion path is an interesting issue in theoretical chemistry (see [26] and references
therein). The branching of an RGF curve is connected with the emergence of
special points of the PES, the valley-ridge inflection (VRI) points of the surface
[9,27,28]. The traditional definition is that a VRI point is that point in the con-
figuration space where, orthogonally to the gradient, at least one main curvature
of the PES becomes zero. Usually, VRI points represent non-stationary points of
the PES. VRI points in the narrow sense of this definition are defined indepen-
dently of an RP definition. However, whenever a reduced gradient curve reaches
a VRI point, the curve branches, and at every VRI point of the PES the solu-
tion of a corresponding reduced gradient curve branches [9]. However, not every
RGF curve has a BP. (The path following of those RGF curves which have a BP
allows to find VRI points.)

The RGF approach shows an analogy to the mathematical theory of
Branin [29], the global Newton method [30,31]. It utilizes the adjoint matrix A
of the Hessian matrix H. This is defined as ((−1)i+jmij )

T where mij is the minor
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of H obtained by deletion of the ith row and the j th column from H, and tak-
ing the determinant. The adjoint matrix satisfies the relation

H A = Det(H)In, (6)

where Det(H) is the determinant of H, and In is the unit matrix. The adjoint
matrix A is used to define an autonomous system of differential equations for
the curve x(s), where s is a curve parameter:

dx
ds

= ± A(x)g(x). (7)

The “+” option is used for searching stationary points with an odd index (SPs
with an odd number of negative eigenvalues of the Hessian), where the “−”
option searches for stationary points with an even index. Because solutions of
a differential equation are named trajectories, the solutions of (7) are named
Newton trajectories. They are the same curves like RGF curves using the same
gradient [9].

The Branin method is a fine tool to find symmetric VRI points as exactly
as we need them. For the calculation one chooses the steplength parameter, l, by
trial and error and discretizes Branin’s differential equation (7) to

xm+1 = xm ± lAmgm, (8)

where m is the step number [9,10,25,29,32]. Am is the adjoint matrix of the
Hessian and gm is the gradient at point xm. Two-dimensional VRI manifolds
were detected lying in the 3-D subspace of symmetry coordinates of H2CO [32].

5. Invariance of coordinate system

It is evident that the invariance problem of the MEP, which has mathe-
matically been solved a long time ago [3] and report [6], penetrates the discus-
sions in this field again and again [33–36]. In a reaction, each atom describes its
own pathway in the 3-D Cartesian space, and the total movement of N atoms
of the molecular system defines the migration of a point in the configuration
space R3N , say by coordinates yi , i = 1, . . . , 3N . One needs coordinate invari-
ance for any mass-weighted internal coordinates xk = xk(yi), k = 1, . . . , n, with
n = 3N − 6. They are given by a z matrix. The corresponding B matrix [37] is

B =
(

∂xk

∂yi

)
, k = 1, . . . , n, i = 1, . . . , n + 6 (9)

with n rows and (n + 6) columns. The PES E(x1, . . . , xn) is a scalar depend-
ing on the coordinates xk of the molecule. The coordinates are assumed as the
contravariant vector x = (x1, . . . , xn)T . Each derivation of E(x) to xk, with



370 W. Quapp / Reaction path metric

k = 1, . . . , n, yields a component of a vector, termed the gradient vector of
E. ∂E/∂xk takes the k-th place in the gradient gI = (g1, . . . , gn)

T which is a
covariant vector [6,38]. The B matrix serves as a linear approximation of the
transformation

gC = BT gI (10)

for the change of the gradients in Cartesian or internal coordinates, and

HC = BT HI B + � (11)

for the change of the Hessians. The � term comes out of the chain rule to

�ij =
∑

k

(gI )k
∂2xk

∂yi∂yj
. (12)

Explicit derivatives of the B matrix to the Cartesian coordinates are given [39,
40]. The transformation of gC to the gradient gI inverse to (10) can go on first
by a multiplication from the left-hand side with B and second with the use of
the inverse of the regular (B BT ) matrix:

(B BT )−1BgC = gI . (13)

The transformation matrix on the left-hand side is the “left inverse” of BT . It is
called the pseudoinverse matrix B+, cf. [41] for its use in spectroscopy. It is also
an n × (n + 6) matrix. The contravariant metric tensor G−1 = (gij ) is calculated
point by point along the pathway of an MEP taking B BT where the usual met-
ric tensor G = (gij ) forms its inverse matrix. The pseudoinverse is B+ = G B.
The gradient gC and the Hessian matrix HC are calculated in Cartesian coor-
dinates by most quantum chemical programs. However, at any point they are
transformed to their internal version by B+gC = gI and B+ HC (B+)T = HI

(where we usually ignore the � term in (11) for the Hessian, because it is usually
small).

6. The invariance of RGF and of Branin’s equation

In internal curvilinear coordinates we have the covariant version of the gra-
dient in equation (1), and we have also to use a covariant vector for the selected
direction r. It is intuitively plain that the projector (2) can be defined by orthog-
onal vectors in a correct sense of the internal metric. The means is the modified
Gram–Schmidt (MGS) method [18] with the internal metric of the correspond-
ing scalar products. Setting pn = r, we get an orthonormal system of covariant
vectors {p1, . . . , pn} with relation

pT
k G−1pl = δkl, k, l = 1, . . . , n. (14)
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Starting point for the projector (2) is the row matrix P of this basis, reduced by
the last row, the r vector. But a next step is necessary; we have to build the con-
travariant components of the vectors by

PG−1 =: (n−1)Pr . (15)

It is again a matrix of (n − 1) rows and n columns. One may name the rows of
the new matrix by pk symbols to hint for the contravariant character. By con-
struction, it is

(n−1)Prr = 0. (16)

(The zero vector on the right-hand side is (n − 1)-dimensional.) We also build
rcontra, the contravariant components of r = rcov. It is

ri =
n∑

j=1

gij rj . (17)

It holds ∑
j=1

rj rj =
∑
i,j=1

gij rirj = 1. (18)

r is a unit vector in the curvilinear space. If a is any vector given by its covariant
components like the gradient, we can construct the projection of it by (n−1)Pr , as
well as by rcontra. We will get n numbers:

pka = ak, k = 1, . . . , n − 1, pna = rcontraa = an. (19)

Because the pk are also an orthonormal basis, the numbers ak are contravariant,
as well as covariant components of the vector a. (The definitions of the two com-
ponents are in accord.) We may represent the covariant a by the system of covar-
iant basis vectors:

a =
n−1∑
k

pka
k + ran. (20)

The norm of a is simply the Cartesian sum

‖a‖ =
(

n∑
k

(ak)2

)1/2

(21)

using equation (14), and the norm of the projection of a orthogonal to r is this
sum up to (n − 1) terms. Consequently, the projector is a mixed co- and contra-
variant tensor. The projector has to be recalculated at new curve points because
the metric changes from point to point. Note that the metric usually changes
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slowly along an RP, then the change of the pk is also slowly. By its construction,
the projector (n−1)Pr may be seen to be an invariant tensor under coordinate
transformation. It is applicable to the covariant gradient in equation (2), as well
as to the two-fold covariant Hessian in equation (3), but it does not change the
character of its argument after application. Then an RGF calculation is invari-
ant under coordinate transformation. The condition equation (2) defines a one-
dimensional curve of points, x(s) which are contravariant vectors. The aim of a
path following procedure is the calculation of x(s). The tangent for the predictor
step is given by

0 = d
ds

[Pr g(x(s))] =
[

dPr

ds
g(x(s)) + Pr H(x(s))

]
x′(s). (22)

The tangent x′(s) again is a contravariant vector. The first summand at the right
hand side will be estimated to be zero because Pr changes only slowly with s.
The approximation concerns only the predictor step, not the exactness of the
corrector. Thus we may assume that the older equation (3) again works well. It
is an homogeneous system of equations and it is nontrivially solvable at regu-
lar curve points because we have (n− 1) equations and n unknowns. So we may
continue here as in section 3.

RGFs are defined by equations (2) and (5). However, they are also solutions
of the differential equation of Branin (7) using the adjoint matrix A. The prop-
erty (6) holds. H is a two-fold covariant tensor. To fulfill equation (6) under any
coordinate transformation: giving a “constant” matrix on the right-hand side,
the matrix A has to be a two-fold contravariant tensor. Thus, in equation (7),
the matrix A shifts the covariance of g, and saves the contravariant character of
x′. In contrast to the steepest descent [6,42], no additional use of the metric is
needed.

7. The invariance of RGF: a second algorithm for a dyadic projector

For the invariant definition of RGFs using the projector (4) in equation (5),
we have to start with a covariant unit vector r = rcov for the search direction
because we will compare it with the covariant gradient. Additionally, we have
rcontra by (17). We use for the transpose rT the contravariant form in the pro-
jector

Pr := I − rcovrcontraT . (23)

It is Prrcov = 0. The projector again has to be recalculated at new curve points
because the metric changes from point to point. Because the metric usually
changes slowly along an RP, the change of rcontra is also slowly. Pr may be
seen to be an invariant tensor because a coordinate transformation is possible
in equation (23). The dyadic product makes that Pr is a mixed tensor with one
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covariant and one contravariant index. Pr is applicable to the covariant gradi-
ent in equation (5), as well as to the two-fold covariant Hessian in equation (3).
It does not change the character of these arguments after application. Then an
RGF calculation is invariant under coordinate transformation.

The dyadic matrix rcovrcontraT has rank 1, and the projector rank (n − 1).
RGFs are defined by equation (5). The condition defines a one-dimensional
curve of points, x(s). The points in the gradient function are contravariant vec-
tors. The procedure for the path following gives x(s). Equation (5) is automati-
cally fulfilled in stationary points. The tangent for the predictor step is to grasp
by equation (22). The tangent x′(s) is a contravariant vector. Again, the first
summand will be estimated to be zero because rcontra changes slowly with s. Thus
we reduce equation (22) to the old equation (3). It is an homogeneous system
of equations and it is non trivially solvable because Pr has a rank deficit of one.
The matrix (Pr H) is singular per definition, and a way to solve the system is
the singular value decomposition (SVD) [43]. The SVD of any (n × n) matrix S
is the decomposition

S = U[�]VT , (24)

where U and V are orthonormal matrices and [�] is a diagonal matrix of the sin-
gular values σkk � 0 [43]. Only if S is a singular matrix, then a row with number
z of VT to the singular value σzz = 0 gives the solution of the problem

St = 0. (25)

We have to use t = vz. It is VT t = {0, . . . , 1, . . . , 0}T , where the 1 is at place
z. This single 1 meets the singular value σzz = 0, and the zero equation (25) is
fulfilled. In (24) the zero singular values may be sorted into the last rows and
columns. Then the first columns of U and V are orthonormal bases of the col-
umn space of S with

Svk = σkkuk, σkk > 0. (26)

The last columns of U and V are the orthonormal bases of the null space of ST

and S [43].
In curvilinear coordinates, we have to modify the ansatz of SVD. The met-

ric forms a Riemannian space of the configurations, and the matrix (Pr H) has to
be observed in its tensor character. We assume that H is two-fold covariant, Pr is
a mixed two-tensor: one index covariant, one index contravariant. Then (Pr H)

again is two-fold covariant: one contravariant index of Pr and one covariant of
H “cancel out” by the matrix multiplication. Equation (25) is the product of the
two-fold covariant (Pr H) with the contravariant tangent: a covariant vector. But
because it is a zero vector, its character does not matter
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n∑
j=1

(ph)kj t
j = 0k. (27)

The comparison with (25) shows that possible covariant vectors vi of V of the
SVD (24) cannot be equalized with the contravariant t vector. The remedy is a
more tricky use of the SVD in a generalized metric version [44]. We decompose
the inverse metric matrix (glm) by Cholesky decomposition into a product of a
lower and an upper triangular matrix.

(glm) = LLT =

L11 ·· 0

·· ·· ··
Ln1 ·· Lnn




L11 ·· L1n

·· ·· ··
0 ·· Lnn


 , (28)

which means for the elements

glm =
n∑

k=1

LlkLkm =
n∑

k=1

Llk Lmk. (29)

The calculation of L starts with L11 =
√

g11 and obtains by iteration the further
Llm.
Matrix L is sometimes also described by (glm)1/2. We use the representation

(Pr H) = L−T (LT (Pr H)L)L−1 (30)

and we put the internal part (LT PrH L) into the usual SVD. It gets like equa-
tion (24)

(LT Pr HL) = U[�]VT (31)

and in combination with (30) we obtain the decomposition

(PrH) = (L−T U)[�](VT L−1). (32)

Setting

L−T U = Ugen and L−T V = Vgen (33)

where the subscript “gen” means generalized for internal metric, gives the gen-
eralized SVD

(PrH) = Ugen[�]VT
gen. (34)

The new decomposition matrices Ugen and Vgen fulfill an orthogonality condi-
tion, but within the correct metric part. It is with (28) and (32)

UT
gen(g

kl)Ugen = (UT L−1)(LLT )(L−T U) = I (35)
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and it is analogously

VT
gen(g

kl)Vgen = I. (36)

Ugen and Vgen are orthonormal matrices with column vectors of covariant char-
acter and measure. Coming back to equation (27), we have to choose the tangent
to be the contravariant version of the covariant column vector vz of Vgen

tk =
∑

l

gkl(vz)l. (37)

We can multiply equation (34) by this t from the right hand side and get

(Pr H)t = Ugen[�]VT
gent = Ugen[�]




0
·
·
1
·
·
0




= 0, (38)

where the 1 is at the z-th place. The tangent t is a contravariant vector and it is
used as predictor direction for the predictor step. It is a contravariant basis vec-
tor of the null space of (Pr H).
After doing the predictor step, xm+1 = xm + l tm, we may be out of the searched
curve. It means the reduced gradient is not the zero vector in the metric of cur-
vilinear coordinates

Prg(xm+1) �= 0. (39)

It is a covariant vector

(Prg) =
(∑

j

p
j

kgj

)
= (γk). (40)

To find the step back to the RGF curve we try to solve a Newton–Raphson step
�x by

(Pr H)�x = −Prg. (41)

However, the matrix (Pr H) is singular per definition, and there is only
a pseudo-inverse which we can use. With the generalized SVD we construct
the solution. From (35) we know that UT

gen(g
kl) is the inverse of Ugen in the

Riemannian metric, and from (36) we know that (gkl)Vgen is the inverse of VT
gen

in the Riemannian metric. The pseudo-inverse of [�] with at least one zero
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singular value is that diagonal matrix where only the non-zero elements are
inverted:

[�]+ = [1/σkk] for kk �= zz, (42)

but again the z-th row is a zero row. Rewriting equation (41) now is(
Ugen[�]VT

gen

)
�x = −(Prg). (43)

Successively, we apply from the left-hand side: first UT
gen(g

kl), a matrix of contra-
variant vectors, thereafter [�]+, and at last (gkl)Vgen, again a matrix of contra-
variant vectors. We refer to equation (44) as the solution for the corrector step

�x = −[UT
gengkl][�]+ [gkl Vgen] (Pr g). (44)

The step results as a contravariant vector, as it is expected for the corrector in a
coordinate space. Equation (44) is applied until convergence.

8. Example

It is natural to ask how the intrinsic metric compares to the previous
method in terms of performance. An objective comparison does not seem
straight-forward since there are different possibilities of internal coordinates. We
use the HCN 6–31G∗ potential surface as our illustrative vehicle. The isomeriza-
tion pathway serves as a numeric example. Figure 1 shows calculated RGF path-
ways in the HCN configuration space in internal coordinates. The distances of
CH and CN are given in Å, and α is the angle between the bonds. Curve a is
the Newton trajectory calculated with the help of projector (15) in the correct
metric version. Curve b uses the RGF with the dyadic projector (23) in the met-
ric version, however, c uses the RGF with projector (2) in the “Cartesian” metric
version using a unit matrix instead of (gij ). The search direction r of equation
(1) is the gradient at a point close to the HNC minimum distorted by 1◦ in the
bending direction α. The search is from bottom to top in figure 1. It leads from
HNC minimum up in energy to the SP, but then downhill in energy to the next
minimum, the HCN valley. (The calculation is not terminated at SP.) The CN
distance is nearly constant along the pathway. For the step length of the predic-
tor steps we use a large l=0.5 in internal units, and we put a small ε = 0.0005
for the threshold of the corrector. (It is less than the proposal for RGF [9]
being ε ≈ l/100, however, compare the still better ratio ≈ l/1 given in [22]).
Figure 1 shows the expected results: Curves a and b do nearly coincide, where c
goes besides. Note that case c misses the SP and the HCN minimum. Step length
and corrector threshold are too large for this coarse approximation. Because the
internal coordinates are two distances and one angle, their measure should not
be reduced to the Cartesian norm! The progress of the pathway is mainly the
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HCN Min
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Figure 1. Clumsy approximations of RGFs on the PES of HCN isomerization given in the 3-D con-
figuration space of distances CH and CN (in Å ), and angle α (scaled by 1/90). Shown are predictor
and corrector steps. a and b use the projectors (15) and (23), respectively, in the correct internal met-
ric. c uses the projector (2) in a “Cartesian” metric version. The dashes are the gradient extremal for

comparison giving the valley ground line.

angle, and if the norms are calculated with the exact Riemannian metric we get
the more exact path following. The gradient extremal is given for orientation in
the HCN mountains, for the valley ground line of the isomerization. Usually,
RGFs are not on the gradient extremal [42].

9. Discussion

An RGF line may be understood to be a line where the uphill driving force
has always the same direction, the force which has to overpower the gradient.
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RGF is a pre-dynamical allegory for a chemical reaction path like the IRC, the
steepest descent from saddle point.

We have extended the algorithms for RGF to the use of internal coordi-
nates. The Newton trajectories can follow loose RP definitions, as exactly as one
needs it, to find a corresponding SP by going uphill, or a minimum by going
downhill. RGF curves are definably independent of the coordinate system. To
circumvent the usual way of following a curve by a projection into an (n − 1)-
dimensional subspace [19], we propose and apply a generalized singular value
decomposition (SVD) in the full n-dimensional curvilinear space. It is a new
mathematical tool for the path following along a given definition of a curve.

Next to the problem of defining a suitable curve for the reaction path
of chemistry is the possibility of RP branching. The corresponding points are
bifurcation points. The branching of Newton trajectories is connected with the
valley-ridge inflection points of the PES. The method of following a reduced gra-
dient as well as the Branin method have succeeded in computing symmetric VRI
points. (Un-symmetric VRIs can be found by following the valley extremals [26].)
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