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A b s t r a c t - - A  procedure is proposed to follow the "minimum path" of a hypersurface starting 
anywhere in the catchment region of the corresponding minimum. The method uses a modification 
of the so-called "following the reduced gradient" [1]. The original method connects points where the 
gradient has a constant direction. In the present letter, this is replaced by the successive directions 
of the tangent of the searched curve. The resulting pathway is that valley floor gradient extremal 
which belongs to the smallest (absolute) eigenvalue of the Hessian. The new method avoids third 
derivatives of the objective function. The effectiveness of the algorithm is demonstrated by using 
a polynomial test, the notorious Rosenbrock function in two, 20, and in 100 dimensions. @ 2001 
Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - M i n i m a ,  Path following, Saddle point, Reduced gradient, Gradient extremal. 

1 .  I N T R O D U C T I O N  

The  idea of this note comes from applications of pa th  following procedures in theoret ical  chem- 

istry [1-3]. There,  the concept  of the min imum energy pa th  of  a potent ial  energy surface is the  

usual approach  to theoret ical  kinetics of  chemical systems. The  search for valley pa thways  is an 

impor t an t  par t  of the analysis. This search is not equivalent to the finding of steepest  descent 

pathways,  which is the  main concept  in chemistry [4,5], if not  the  well-known zigzagging emerges, 

see, for example,  [6]. The  usual curves of R G F  (see below) can be used only in certain cases for 

the min imum path  [1,2]. The  gradient  extremal [7-13] appeared to represent a suitable ansatz  

for a min imum path,  but ,  with its many  addit ional solution curves and turning points  [13,14], 

this concept  in its general form is not  suited to be used as a routine program for the  calculat ion 

of such paths.  Additionally, the calculation of the gradient extremal  needs third  derivatives of 

the  cost function. 

In this letter, the  combinat ion  of the gradient extremal  concept  with the  "reduced gradient  

following" (RGF)  [1,2] opens a manageable  way to follow the s t reambed of  the  surface, f (x ) .  We 
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understand the term streambed [15] as the valley-floor gradient extremal of the surface following 
the direction of the eigenvector to the smallest (absolute) eigenvalue. This gradient extremal 
leaves the minimum with the gentlest ascent. RGF finds a curve where the selected gradient 
direction comes out at every curve point, x = x(t):  

Vf (x ( t ) )  
iiVf(x(t))ll - r, (1) 

where t is the curve parameter, and r is the unit vector of the fixed search direction [2]. [[x[[ is 
the Eucl id/2-norm of vector x. The RGF method needs gradient and (updates of) the Hessian 

of the objective function. There are curves, which pass all stationary points in most cases. Thus, 
RGF is an interesting procedure in order to determine all types of stationary points [1]. 

The idea of this letter is to modify the RGF method to intrinsically search the minimum path. 

We replace the constant search direction r in equation (1) of the RGF method by a variable 
direction. We take the tangent of the searched curve itself as new direction. This is iteratively 

realizable by predictor and corrector steps of the RGF method. Every corrector step is calculated 
with the tangent direction of the previous predictor. This quickly leads to self-consistency on 
the valley floor gradient extremal. We term the method the TAngent Search Concept: TASC. 
Practically, equation (1) is realized by a projector ansatz [2], and the curve following requires 
the derivation of the ansatz [16]. However, we do not derivate the projector of the "reduced 

gradient" to calculate the tangent of the next predictor. With this trick, we avoid the irritating 
third derivatives of the cost function which occur in the terms of current gradient extremal 
calculations [12-14]. The error due to this trick is compensated by self-consistent iterations. 
Usually the smallest eigenvalue of the Hessian belongs to that  eigenvector which describes the 
streambed direction of the surface. A counterexample is the region of a Don Quixote type saddle 
point [17] (a saddle point with a large curvature along the valley pathway and at least one 
smaller curvature across the path, as one might use on an emaciated horse). While TASC is 

strictly limited to follow the direction of the smallest eigenvalue, such a Don Quixote region is 
to leave by steepest descent. 

With the tangent search concept in connection with steepest descent, we propose a practicable 
algorithm for searching minima of complicated, rugged surfaces. The search is restricted to 
the catchment region of any minimum. This region is defined as the collection of all points 

of the R n from where steepest descent paths lead (theoretically) to the minimum. Thus, no 
global search is the aim of this note. Given an initial point, we start  downward with steepest 
descent. At the emergence of zigzagging we switch to TASC which leads along the streambed to 
the minimum. If it is necessary, there may be additionally done some Newton-Raphson steps, 
to exactly calculate the minimum. The method is implemented as a subroutine in our research 
code of the quantum chemical GAMESS-UK program [18], or as a separate FORTRAN shell. We 

would like to distribute it on request. 
The letter is organized as follows: Section 2 shortly repeats the mathematicM fundamentals of 

the RGF method [1-3], and defines the modified RGF by the iterative method of the "tangent 
search". Subsequently, the success is demonstrated by the example of the Rosenbrock function. 
We finally conclude in Section 4. 

2. M O D I F I C A T I O N  O F  R G F  B Y  F O L L O W I N G  T H E  
T A N G E N T  O F  T H E  P R E V I O U S  P R E D I C T O R  S T E P  

2.1. T A S C  

We consider the solution of the unconstrained minimization problem 

minimizex~R, f (x ) .  (2) 
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The objective function f (x)  : R n --* R 1 is assumed to be twice-continuously differentiable, 
and g(x) is its gradient vector. To appreciate the gist of the method employed here, it is worth- 
while to briefly review general aspects of following the reduced gradient [2]. To realize the 
requirement (1) on a curve x(t), the RGF algorithm uses a projection of the gradient to fulfill 
the n equations or rank n - 1  

Prg(x(t))  = 0. (3) 

This results in the zero vector of the reduced gradient. The projector, Pr ,  was chosen to be a 
constant n × n-matrix: that  one which enforces the gradient to point at every curve point, x(t), 
into the same direction r. The tangent to a curve (3), xt(t), is obtained by a solution of the 
system of equations: 

± 
d t [Prg(x(t))] = Pr  d g(x(t)_______~)dt - PrH(x( t ) )x ' ( t )  = 0, (4) 

where H is the Hessian matrix of the objective function. The predictor-corrector method of 
RGF is the predictor step along the tangent x'(t), and Newton-Raphson steps of the corrector 
to search, orthogonally to this direction, a solution of curve (3) [16]. The simplicity of RGF is 
based on the constance of the Pr  matrix. Now, we change the projector after the predictor step: 
the tangent direction of the previous curve point iteratively becomes the search direction for 
the next point being the result of corrector steps. The procedure is named the TAngent Search 
Concept (TASC). (The task is: find the minimum path! and the motto: don't run, float [19].) 
But all calculations of the predictor-corrector method were done by equations (3) and (4). In the 
derivation of (4) we assume a "constant" Px,(t) matrix in the current step. 

2.2. Example 

Figure 1 illustrates the action of TASC. We use the notorious Rosenbrock function in two 
variables [20] in a global view at the deep parabolic valley, along y : x 2, 

f (x ,y )  : 100 (y - x 2 )  2 + (x - 1) 2 . (5) 

The minimum of f at (1, 1) T is zero, and the highest equilevel line in Figure 1 is level 100, 
but the value of f at ( -1 ,  1) T near the minimum pathway is only 4. Along the parabola, we 
have f (x ,  x 2) = (x - 1) 2. Note, the parabola is not exactly the minimum pathway! However, it 
is the reduced gradient curve fy = 0. To give the general case, we start at the "other side" of the 
central ridge: the starting point at ( -1 ,  0.733) T is chosen beside the minimum path. The first 
step is steepest descent, which in the Rosenbrock mountains quickly end at the valley ground 
(far away from minimum). For TASC we take a simple polynomial line search for the steplength 
of the predictor along x' [21,22], but a constant threshold (of 0.25) for the corrector steps, cf. [1]. 
Beginning with an ad hoc value of the initial steplength of 0.25, we find the following automatically 
adapted predictor steplengths: (0.22, 0.278, 0.309, 0.343, 0.180, 0.157, 0.159, 0.166, 0.172, 0.173, 
0.167, 0.152, 0.125, 0.084, and 0.031) for 15 predictor steps. We observe one corrector step before 
the next predictor is done. Because the valley is curvilinear, the predictor steps are somewhat 
skew to the valley line, and at least one corrector step is necessary to find back into the bottom 
region. Of course, if there is an interest at the exact bottom line, the threshold of the corrector has 
to be as small as necessary. The convergence of the solution to the optimum at (1, 1) q- is readily 
apparent. The polygonal path (whose vertices are corrector points) successfully progresses along 
the shallow valley to the true minimum bypassing the corner. The eigenvalues of the Hessian at 
the minimum are ~1 = 0.4 and ~2 = 1001.6, thus, the condition number ~max/)kmi n is 2.5 X 10 3. 

The contour lines, whose axes lengths are proportional to the inverse of the eigenvalues, are thus 
quite elongated. For a valley with bent valley floor, the precise determination of the minimum 
point has been rather difficult up to now. Most optimization methods converge very slowly. 
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Figure  1. Convergence of TASC on the  Rosenbrock surface [20] .f(x,y) = 100(y - 
x2) 2 + (x - 1) 2. Con tour  lines are at  0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 
50, 60, 70, 80, 90, and  100. S ta r t ing  at  ( - 1 ,  0.733), t he re  are 15 predic tor  s teps  to  find 
the  m i n i m u m  at  (1, 1) T 

Adapted methods give the following results [21,22]: (#fg is the number of function and gradient 
evaluations). Truncated Newton method: 22 iterations, #fg: 27; nonlinear conjugate gradient: 
14 iterations, #fg: 31; and Quasi-Newton, full-memory BFGS: 40 iterations, #fg: 47. 

2.3. T h e  A c t i o n  of  T A S C  

In general, the resulting curve of TASC is the valley floor. After the initial steepest descent, and 
after a small number of steps, the method follows the streambed of the valley along the direction 
of the eigenvector with the smallest (absolute) eigenvalue. In the next subsection we show that  
the gradient extremal equation actually is the background of TASC, and the resulting curve is 
a numeric approximation of the valley floor gradient extremal. The reason of this behavior is 
an intrinsic action of the RGF method. This can be explained using the equivalent differential 
equation of Branin [23], which has the same solution curve as the RGF method [2]. It is 

d x  
d--~ = x'(t) = +Ag(x(t ) ) ,  (6) 

where x~(t) is the tangent to the solution curve of the RGF ansatz, and A is the adjoint matrix 
of the Hessian. A is defined by A H  = Det(H)I  with the unit matrix I. (The sign is chosen to 
enforce Ag to search for stationary points of even or odd index.) If e l , . . . ,  e,~ are the eigenvectors 
of H with eigenvalues/kl,. •. ,  An, then they are also the eigenvectors of A but with the eigenvalues 
#i = l-[k~i Ak. This is due to the equation 

He~ = ~iei, (7) 

and, by multiplication with the adjoint matrix, we get 

with 

AHe i  = Det(H)e~ = AiAei (s) 

Det(H) = I2I )~k. (9) 
k=l 

If a point of the solution curve of the RGF method with the search direction r is reached, the 
gradient of equation (6) points in the same direction. Expressing r by the eigenvectors 

r = ~ riei, (10) 
i ~ l  
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we obtain the relation for the tangent direction 

x I = Ar = E ri %k 
i=1 

ei. (II) 

L e t  )k 1 be the smallest (absolute) eigenvalue. The el component of the preceding search direction r 
is enforced, if in the next step the new direction x' (11) is used in equations (3),(4). Thus, if the 
search direction is the tangent of an RGF curve, this direction is now turned to the el direction. 
The action is larger the larger the differences of the eigenvalues A2,.. •, A~ are against A1. The 
rate of convergence of an initial direction against the minimum path depends on the ratio of the 
extremal eigenvalues of H, but it is also dependent on the entire matrix spectrum. Formula (11) 
allows an effective procedure of eigenvector following to the smallest eigenvalue A1, which is 
automatically realized by TASC. Using TASC, the diagonalization of the Hessian to calculate the 
eigenvectors is not necessary. In contrast, we may use the product [12,13,24] 

gXHg 
ilgii 2 (12)  

to guess the smallest eigenvalue on a TASC pathway, and the gradient is the corresponding 
eigenvector; cf. also formula (17) below. The aspect becomes computationally important for very 
large systems [25]. 

2.4. P r o o f  t h a t  TASC Yields a Gradien t  Ex t remal  

Instead of RGF (3) we may use the equivalent Branin method, equation (6). There is the 
tangent, x', of a solution of RGF, as well. The projector of the original RGF was Pr  to the 
search direction, r. We replace this constant direction after every predictor step by the direction 
of the tangent, xq Thus, the projector for the next step must be constructed with the vector Ag. 
This may be done by the dyadic product 

PAg = I (Ag)(Ag)T 
iiAgll 2 (13) 

(because it realizes PAg(Ag) = 0). If we search for a solution curve of (3), this becomes 

PAgg = 0 = g -- Ag (gTAg) (14) 
iiAgll~ • 

Multiplication by H from the left-hand side gives 

Hg = Det(n)Ig (gTAg) (15) 
NAgH= 

Det(H)I is commutative with all other terms and can change its place into the product (gTAg), 
and then we can replace it back to AH. Thus, the expression on the right-hand side, without 
one g, is a scalar. If we denote it by %(x(t)), we obtain the known eigenvector equation 

H g  = Ag, (16) 

which is the equation of the gradient extremal [9]. Note that with Ag = v the eigenvalue becomes, 
cf. [13], 

vTHv 
iivll2 . (17)  
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3.  P E R F O R M A N C E  

3 . 1 .  R o s e n b r o c k  F u n c t i o n ,  D i m e n s i o n  n = 20 

We test TASC with the high dimensional, extended Rosenbrock function in a version where all 

dimensions are coupled [26] 

n -  1 

i = l  

As well as in the two-dimensional case, the minimum is the point Xmin = (1 , . . . ,  1) T. A good 
21-1 

approximation of the minimum pathway is again the "super-parabola" xi = t , i = 1 , . . . ,  20. 
It leads from the global minimum over a saddle point at (rounded) 

xsp --~ ( - - 0 . 5 5 5 ,  0.322, 0.115, 0.024, 0.011, 14 × 0.010, 0.0001) T 

to a second minimum XM2 near the point ( - 1 ,  1 , . . . ,  1) T. The initial point of the test search 

reported here lies at the saddle side, but in opposition to the global minimum. A typical result 
is reported in Figure 2. We start  near the saddle point, however not directly on the valley floor. 
We choose xl  = -0.45,  and the other coordinates are put to the values of the saddle given above. 
This is Xstar t. The first step is done by steepest descent down to the minimum pathway. There 
the method switches to TASC. The corrector threshold 1 is used. The predictor steplength of the 
TASC is started with a value of 0.3, and it is extended if possible by a rough steplength stretch as 
long as the function (18) decreases along the step. This is done in the saddle point region where the 
streambed profile is not convex, where, in contrast, a region of indefinite curvature is encountered 
(A1 is very small, but negative). The influence of the saddle point region extends over 22 predictor 
steps where the steplength could not be larger then 0.45. Then the minimum bowl is really 
reached, where all the eigenvalues become positive. The predictor steplength is now dynamically 

calculated by a polynomial line search [21,22]. The method TASC needs a totality of 30 predictor 
steps to reach the minimum, and 50 corrector steps are used to follow the valley ground more or 
less exactly. Figure 2 shows the behavior of the coordinates: the diamond symbol o represents 

the coordinates Xlmod5~ the star symbol * represents the coordinates X2modS, the square [] 
represents the coordinates X3mod5, the triangle /~ represents the coordinates X4mod5, and the 
bullet • represents x0 rood 5. The steepest descent step 1 is shown, and the final convergence of the 
iteration steps to the minimum. The coupling of the coordinates in the objective function (18) 
enforces a successive search across the 20 dimensions of the problem, which can be seen by the 

x_ 1 to x_20 

? 0 . 5  

0 . 2 5  

- 0.25 " l  5 10 15 20 steps 

- 0 . 5  

Figure  2. Convergence  of T AS C  on the  20-dimensional  Rosenbrock funct ion  in 30 
i tera t ion s teps  to the  m i n i m u m  ( 1 , . . . ,  1) T,  see text .  
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successive convergence of the different coordinates to the final value 1. The intrinsic curvilinearity 
of the surfaces valley ground is the notorious property of this special test function. Near the min- 

imum, the steplength used by the predictor is successively reduced downwards. At the minimum, 
the ratio of ,tl to )~2 is ~ 0.049, and A1/,/20 is ~ 0.017, thus, TASC is very well adapted to do 
the minimum search in such a rugged hypersurface along the direction of the smallest eigenvalue. 
Note, steepest descent will die of zigzagging, and Newton's method (with Xstart)  accidentally 

found the second minimum XM2. An actual genetic method needs quite more steps (using only 
function calls) and does not reach the accuracy of TASC (in the cases n = 3, 11, and 21: see [26] 
where the special character of the coupling in the objective function (18) is explicitely used). 

3.2. R o s e n b r o c k  F u n c t i o n ,  D i m e n s i o n  n = 100 

The objective function (18) with n = 100 has an analogous saddle as in the case of 20 dimen- 
sions, at (rounded) xse  = (-0.555, 0.322, 0.115, 0.024, 0.011, 94 x 0.010, 0.0001) T 

Again, we start  at Xl = -0.45,  and put all other coordinates as given above. We use the eorrec- 

tor threshold 2, and an initial steplength of 0.25. Seen over the minimum path, the (calculated) 
arclength down to the global minimum is quite long: 39.28 against 9.20 in the 20-dimensional 

case, and the slope along the minimum path is also quite flat: the function value difference be- 

tween saddle point and minimum is 98.697 for n = 100, but for n = 20 it is 19.505. The curvature 
of the minimum path between the coordinates from i to i + 1 is analogous to the lower-dimensional 

cases. The minimum path is near to the parabolic relation X~+l = x~, i = 1 , . . . ,  99, but because 
of the longer list of coordinates, it is a little more coupled. The steplength for predictor steps 
which guarantees descent is the small value of 0.423. It is tested from step to step, and it is 
decreased by the polynomial steplength search [21,22] in the last 10 steps only. Resulting, TASC 
finally finds the minimum, but it needs 84 predictor and 171 corrector steps to find through the 
rugged Rosenbrock mountains in this high-dimensional case. 

4 .  C O N C L U S I O N S  A N D  P E R S P E C T I V E S  

We demonstrate the workability of the TASC algorithm for following the streambed gradient 

extremal. We test a highly coupled problem with strong nonlinearity: the Rosenbrock function. 
The method performs well in practice. We start at any point in the catchment region of a 

minimum and follow the gradient down the slope to the "minimum path". Then we follow this 
path in direction of the smallest eigenvector. We use the evaluation of gradient and Hessian per 
iteration step, and an additional gradient for the line search of the predictor. 

The procedure is a potent method for studying the streambed of a multidimensional surface 
which is calculable as exactly as we need it. Its success is based on the tracing of the minimum 
path, which we geometrically understand as the valley floor gradient extremal. The original 

RGF [1,2] forms an interesting tool to find minima or saddle points, where the choice of the 
search direction is quite arbitrary. But RGF can diverge more or less from the minimum path 
even if it starts in eigenvector direction. The choice of the actual tangent in TASC now overcomes 
the arbitrariness of the direction choice used in the RGF method. 

Because the fundamental property of TASC to explore the minimum path usually does not 
depend on the direction--downhill or uphil l -- the method can also be used to search for saddle 
points of index one starting at a given minimum. This is reported in a forthcoming paper [27]. 
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