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Can We Understand the Branching of Reaction Valleys for more than two
Degrees of Freedom?
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Abstract The model of the chemical reaction path is fundamental in Chemistry. We usually understand
it as the pathway along a valley of the potential energy surface (PES). However, often a valley bifurcation
occurs. This is controlled by a valley-ridge-inflection point (VRI). Up to now, 2-dimensional (2D) figures
of a PES govern our understanding. But for more degrees of freedom, this might be misleading. Here,
we explain the matter over a 3D configuration space; the PES is then a 3D hypersurface in an R4. In
this case a visualization is possible. We still can project curves on the PES down into the R3 of the
configuration space. A method for the calculation of Newton trajectories (NT) is applied, because NTs
bifurcate at VRI points. The example used is a simple mathematical test function. It ends with a threefold
combination manifold of three 1D VRI lines. The intersection of the VRI lines forms a super-VRI point.
The corresponding singular NT at the super-VRI point has eight branches.

Keywords Valley-ridge-inflection point, VRI manifold, Potential energy surface, Newton trajectory

1 Introduction

PES analysis remains an important basis for classifying and understanding the fundamentals of chemical
reactions and their dynamics. It leads to the conception of the so-called minimum energy path, or
the reaction path (RP) on a PES [1–3]. The RP is roughly defined as the line which connects two
minimizers by passing the saddle point of index one of the PES following the valley in between. The RP is
conventionally defined by the mass weighted steepest descent from the saddle point, the intrinsic reaction
coordinate(IRC) [4,5]. There are a number of other RP-definitions. The curves which follow projected
gradients, named Newton trajectories(NT) can be used. We explain their definition and calculation in
Section 2.

NTs open the possibility to find valley-ridge inflection (VRI) points of the PES because NTs bifur-
cate there. They have branching points (BP). The mathematical description of RP branching is of high
interest. In our opinion, it is one of those questions which always requires closer consideration in PES
computational chemistry: “The rate of a reaction can be estimated by transition state theory from the
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energy, structure, and vibrational frequencies of the transition state. Reaction path following can iden-
tify with some certainty the reactants and products connected by the transition state, unless the path
branches. If the branching occurs before the transition state, there will be a separate transition state
for each branch, and transition state theory can be used to estimate the relative rates. If the branching
occurs after the transition state, ... , the branching ratio cannot be determined by transition state theory,
but depends on the nature of the potential energy surface as it descends from the transition state toward
the different products. ..” [6]

There are a number of older as well as recent studies dealing with aspects of the definition of RPs
and their bifurcation: a sizable literature exists concerning BPs [7–10], to name a few. This present
paper uses a simple symmetric surface with symmetric VRI points as a model. It is organized as follows:
The next section gives a short review to NTs. Section 3 develops the pre-example of a 2D case of the
PES used, whereas in Section 4 our explicit goal is to explain the emergence of 1D VRI manifolds for
the 3D case of the PES. The last section is a conclusion.

2 Calculation of Newton trajectories

Looking for the potential of the usual RP following to locate bifurcations we have to treat firstly the IRC
[4,5]. It is a simple RP concept forming the steepest descent from an SP. This pathway is defined by an
autonomous system of differential equations for a tangent vector. Its solution is unique. Therefore, no
bifurcation can occur before reaching the next stationary point. Hence, no branching of PES valleys will
be truly described by following the IRC, see the discussion in Refs. [11,12] An exception is the symmetric
case where we can observe the development of the eigenvalues of the Hessian along the IRC: where their
zero is crossed there can be a VRI.

It is helpful to consider that RP branching of NTs is connected with the emergence of a special class
of points of the PES, the VRI points [13–15]; we first give a definition of these points.
Definition A VRI point is that point in the configuration space where, orthogonally to the gradient, at least

one main curvature of the PES becomes zero.

(i) one eigenvalue of the Hessian must be zero, and

(ii) the gradient is orthogonal to the corresponding zero-eigenvector.

VRI points in the sense of the definition exist independently of an RP definition. VRI points are, in
general, not identical with BPs of any RP. Usually, VRI points represent non-stationary points of the
PES [14]. A problematic aspect of the IRC concept is that the IRC can miss asymmetric VRI points.

We introduced the reduced gradient following [16,15], which is now named Newton trajectory (NT)
method. The NT method finds a curve with a selected gradient direction at every curve point [17,18]

g(x)/‖g(x)‖ = r , (1)

where r is the unit vector of the search direction, and g is the gradient of the PES. Different branches of
the solution of the same reduced gradient curve in respect to r may cross each other. Such cross-points
of the NT form the VRI points of the surface [15]. Of course, not every NT has such a BP. The path
following along those NTs which have a BP allows one to find VRI points – but finding such curves is
the general problem. They are named singular NTs, in contrast to the great remainder of regular NTs
without a VRI point.

We repeat the way to look for the NTs [16,15,19–21]: we choose a search direction r being a unit
vector and define a projector Pr which realizes Pr r = 0. It is a constant matrix of rank (N-1) where N
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is the dimension of the coordinates. If there is a point x where the gradient g(x) fulfills the system of
projector equations

Pr g(x) = 0 (2)

then this gradient is named the reduced gradient with respect to the direction r. Solutions of eq.(2)
build the NT to direction r. It connects stationary points which differ in their index by one, if no BP is
crossed. We numerically follow the curve (2) by tangent continuation. The tangent x′(t) is obtained by
the solution of the system of the derivative to the curve parameter

0 =
d

d t
[Pr g(x(t))] = Pr

dg(x(t))

d t
= Pr H(x(t)) x′(t) . (3)

H is the Hessian. In general, the search direction, r, and the tangent, x′(t), to the NT to r are different.
We use a predictor-corrector method: the predictor step goes along the tangent x′(t), and Newton-
Raphson steps of the corrector search (usually orthogonal to this direction) a solution of curve (2) [16,
15,22,21,17,23]. The simplicity of NTs is based on the constance of the Pr matrix which is used in eq.(3).
We recall that NT curves are not generally the so-called valley ground pathways, or valley floor lines.
Nevertheless, these curves may follow a valley in favorable cases, at least qualitatively. Like steepest
descent curves, also NT curves form a dense family of curves in the coordinate space. Be g(x) 6= 0 then
the point x is the carrier of an NT to r where r = g(x)/‖g(x)‖.

The early ansatz of Branin [24] to the Newton trajectory method was another one: he uses the adjoint
matrix of the Hessian matrix: Branin’s NT is defined by

x′(t) = A(x(t)) g(x(t)) , (4)

where A is the adjoint matrix [15] to the Hessian, H. Matrix A is defined as ((−1)i+jmi j)
T where

mi j is the minor of H obtained by deletion of the ith row and the jth column from H, and taking the
determinant. The superscript T denotes the transposition. Branin’s method is additionally well adapted
to exactly calculate symmetric VRI points [15], namely if it is A(x) g(x) = 0 along an NT.

In the textbook of Jongen, Jonker, and Twilt [25] we find the property of VRI points to build
manifolds of dimension N −2, if N is the dimension of the PES. We will discuss here the second simplest
case (after N = 2), the case N = 3. Then the VRI points can build a 1D manifold. The existence of
a manifold of VRI points is given here not for the first time. A successful search of VRI regions for
the molecules H2O [19], H2S, H2Se, H2CO [20], C2H+

5 [9], HCN [26,27], and H−5 [28] is reported. Note
that also the approximation of asymmetric VRI points on the PES is a task which was already solved
elsewhere [26].

3 A 2D PES model and its VRI points

At the beginning we stated that an RP connects two minima of the PES via a transition state. However,
this simple definition does not exclude more complex courses of reactions by a more ’roaming’ behavior
[29–32]. Such non-RP dynamics may well be the rule rather than the exception for hot molecules. Often
the non-RP processes are in regions where a saddle of index two emerges, and we know that between
such a summit and the minimum always exits a VRI point.

First we treat the 2D case of a 2D combination of a simple mathematical function (cos(x)/x2 for
2 ≤ x ≤ 10) for an explanation. The function can be found in many Calculus text books.

E(r1, r2) =

2∑
i=1

cos(ri)

r2i
(5)
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Fig. 1 PES of function (5). One detects four minimums, four saddle points of index one, and one saddle of index two.

In the 2D case we can draw the surface in the 3D space over two coordinates, r1 and r2, and one
energy coordinate, E, in Fig. 1. Note that we use the two coordinates in a Cartesian manner, and the
length unit may be any arbitrary unit. The left global minimum is at (2.45, 2.45), the first SP1 are at
(5.98, 2.45), and (2.45, 5.98), and the next intermediate minimums are at (9.23, 2.45), and (2.45, 9.23). At
the symmetry line we have the VRI points at (3.58, 3.58), and (7.39, 7.39), and the summit at (5.98, 5.98).

Fig. 2 Three-atomic ring: the extension of bond r1 for fixed r2 leads to an SP1 with distance r′1 to the central atom,
as well as the extension of bond r2 for fixed r1 leads to a symmetric SP1 with distance r′2 to the central atom. The
symmetric extension first leads to the left VRI point of Fig.3 and then to the SP2.

A schematic connection to a molecular problem can be seen in Fig.2. (Here the two coordinates
would be internal coordinates; nevertheless, we may imagine this molecule in our PES (5). A further
reduction of the model is the missing of a third coordinate.) The shown molecular ring may correspond
to the global minimum of the PES. A single extension of one bond, r1 or r2, is lower in energy than
a symmetric double stretching of r1 and r2, at the same time. The single extension of one bond leads
along a valley up to an SP1 and after this to a kind of a van der Waals minimum, compare the left panel
of Fig.3. At the beginning, the symmetric stretching version also leads uphill in the bowl of the global
minimum. But anywhere at the slope the curvature of the level lines changes from convex to concave
behavior. The crossing point is the VRI point, see the right panel of Fig.3. A singular NT draws the
pathway from minimum to VRI, and from there further uphill to the SP2. Two unsymmetric branches
lead from the VRI point to the two SP1.
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Fig. 3 Level lines of the PES (5) and NTs projected down into the plane of the coordinates, r1 and r2. Left: NT with
full thick lines along direction (1,0), NT with dashes along direction (0,1). They connect the minimums with the SP1,
and these with the SP2 in the center. The stationary points are nodes of NTs. Right: NT with full thick lines along
direction (1,1), NT with dashes along direction (1,-1). The singular NT (full line) connects the minimums with the VRI
points, and further the VRI points uphill with the SP2, and with the two corresponding SP1: a singular NT has four
branches.

Note, the surface is ’decoupled’ in the sense that there mixed terms do not exist in the definition.
Because of this simplicity, the NTs to the coordinate directions, r1 or r2, are the valley pathways (the
minimum energy paths) or the ridge lines, see Fig.3, the left hand panel.

Another kind of NTs detect the VRI points of the 2D case, see Fig.3, right hand side. They are
on the symmetry line r1=r2. There the convex region of the corresponding minimum bowl ends, and
the concave region of the summit begins, the saddle of index two. We use for the NTs in the case the
search directions (1,1) and (1,-1). With the theory of NTs we know that the dimension of the VRI point
manifolds on an N = 2 dimensional surface is maximally N − 2 = 0, thus there only single VRI points
can emerge.

4 The 3D PES model and its VRI points

First, we try a kind of training of the imagination by the hypercube, see Fig. 4. We may think the
construction of the 4D-cube in the following kind: to every corner of a 3D-cube is added a line of equal
length 1 in the forth dimension, so to say, over the 3D configuration space of the 3D-cube is drawn a
constant function, a hypersurface of dimension 3, and of value one. In the trivial case of the constant
hypersurface, we can it project into the plane: the red 3D-cube. The full region between the former (the
black) 3D-cube and the cover hypersurface (the red nodes) is the 4D-cube.

To make the step from the well understandable 2D case of a PES to the not that lucid 3D case of
the PES, we extend the former test function by a sum in three degrees of freedom

E(r1, r2, r3) =

3∑
i=1

cos(ri)

r2i
(6)
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Fig. 4 The black cube is the projection of a normal 3D-cube into a plane. Black and red points together are corners of
the 4D-cube, again projected into the plane.

Note that we again use the coordinates ri in a Cartesian manner. If we use the new r3 variable
at a constant value then we get the former surface (5) plus a constant, thus a 2D problem. (The r3
coordinate could complete the molecular model of the previous Section 3. To model a trimer, we would
have to restrict the coordinates by the triangle inequalities: ri + rj ≥ rk, for i, j, k = 1, 2, 3 and cyclic
changes.) Other PES representations for trimers are proposed elsewhere: for T-shaped Ar3 [33], and for
(LJ)3-cluster [22,34,35].

Stationary points on the PES (6) are analogously distributed to the 2D case. Using the symmetry of
the PES, we guess the search directions for some series of NTs on the 3D surface, with r1 = r2 to get
the VRI points in this symmetry plane. (We take the search directions as inputs for the NTs and do not
discuss here how they are generally chosen.) We generate a sequence of VRI points to different NTs on
the PES for different r3. Figure 5 starts some views to the case of the PES (6).

Because the PES (6) is decoupled, the Hessian has only entries on the diagonal. Then also the adjoint
matrix, A, has only entries on the diagonal. If we name the second derivatives H11, H22, and H33, then
in the simple case we are using here, the entries are A11=H22 H33, A22=H11 H33, and A33=H22 H11.
It follows that if H11 = 0 and if H22 = 0, on the symmetry plane (r1=r2,r3), one has A g = 0 a VRI
point. This happens for a continuity of r3 sections. Thus, the VRI manifold is a line in the r1=r2 plane.
The zero curvature happens, for the second derivations, at r1=r2=3.58836. The line may start anywhere
for values of r3 > 2; realistic molecular values may begin near the global minimum 2.45. A critical
value, however, is the threefold symmetric VRI point r1 = r2 = r3 = 3.58836. The point is depicted
by a red bullet in Figures 5 to 7. It is a ’super’-VRI point because all three second derivatives of the
PES are zero there. It should be located in a manifold of dimension N − 3, thus zero here. At this
’super’-VRI point ends the 3D valley of the global minimum, and the 3D ridge of the SP3 begins. It
is the meeting point of the former VRI line with the two other VRI lines in the planes (r2=r3,r1) and
(r1=r3,r2), see Fig. 7. The family of singular NTs through the VRI line in Figures 5 and 6 concerns
the symmetry plane (r1=r2,r3). Two other analogous families of singular NTs exist in the symmetry
planes (r1=r3,r2) and (r2=r3,r1). We sketch the situation in Fig. 7 where only some outer NTs of the
corresponding families are drawn. It is a symmetric picture. Every one of the singular NTs of Fig. 7
(thick black bullets) corresponds to the singular NT of Fig. 3, right panel. The lower one in Fig. 7 is the
NT with r3 fixed to the global minimum value of 2.45, thus, it is an NT from the 2D problem. Analo-
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Fig. 5 Projections of NTs on the PES (6) down into the coordinate space by dotted curves. Four singular NTs from MIN
to SP2 go through VRI points (blue bullets) in the symmetry plane (r1=r2, r3). To every singular NT two accompanying
regular NTs are given which connect the MIN with the two symmetric SP1 in the corresponding (r1, r3), or (r2, r3)
planes. The diagonal red line is the fully symmetric NT. The red VRI point is a super-VRI, see text. The blue line is a
line of VRI points from the super VRI to the bottom of the figure: it is a part of the VRI-manifold.

gously, the left NT is drawn for fixed r2=2.45, and the last one at the back side is drawn for fixed r1=2.45.

The VRI points in the plane (r1=r2,r3) form a straight line. Depending on the parameter, r3, we
find different energies along this line. We show the relation in Fig. 8.

Not shown in Fig. 7 is that the VRI manifold (the three blue straight lines) continues ’above’ the super
VRI. However, the character of its VRI points changes. Below the super VRI the branches of a singulat
NT either connect the minimum and an SP2, or the two SP1 ’left and right’ from the corresponding
symmetry plane. Above the super VRI the 4 branches of a singular NT through a VRI point now connect
either two SP2, or they connect the SP1 in between and the SP3, correspondingly. Note that again the
index theorem for NTs [36] holds.

From the chemical point of view for a trimer, the ’upper’ region of the VRI manifold is not so
interesting, because the energy values are high. They are very higher than the energies of the reaction
pathways over the SP1. The encounter of the two regions of the VRI manifold is the super VRI point.
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Fig. 6 Same as Fig.5. The viewpoint is from above. Compare the 2D case in Fig. 3, right panel. It seems to be the
perpendicular projection of the 3D case.

Here, the singular branches unite of the VRI points of the two different parts of the VRI manifold. The
singular ’super’ NT through the super VRI has 8 branches: the two fully symmetric lines to minimum
and to SP3 (the lines of red bullets), the three branches to the three SP2, and the three branches to the
three SP1, compare Fig. 7.

5 Conclusion

By Fig. 9 we discuss our result: the VRI points form a manifold in the configuration space of the molecule
where the corresponding point of the manifold depends on the distance r3. This r3 is a parameter, or
an spectator variable for the bifurcation occurrence of the corresponding NT. Here, with the uncoupled
PES (6), we find the VRI point for the same values (r1,r2)=(3.58836,3.58836), for every value r3 of
a certain interval. In a realistic molecular PES, we will find curvilinear manifolds of VRI points for
changing values of the parameter [19,20,9,26–28]. The critical bound for r3 is here the symmetry case
r1=r2=r3 = 3.58836 where at the crossing of the three zero eigenvalues on the symmetric NT the super
VRI emerges: the red bullet in Fig. 7.

An energetically global, lower VRI point emerges if r3 has the equilibrium value of the global mini-
mum, or r1 or r2 are at their lower minimums, respectively. The corresponding points are the three blue
bullets in Fig. 7. For shorter r3 a compression of the remaining diatom leads again to a higher energy.
If the remaining diatom in Fig. 9 vibrates [37], this can happen. But the shortening of the bond has
physically quickly an end. Thus, the VRI manifold should be continuable behind the fat black NTs in
Fig. 7, however, not very wide.
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Fig. 7 Projections of NTs on the PES (6) into the coordinate space. Shown is the threefold symmetry of the PES.
Three ’outer’, straight singular NTs (black bullets) connect the MIN with the three SP2. Three regular NTs (thin black
points) are shown which connect the MIN with the three SP1 but touch the VRI region, as well as three further singular
NTs are shown (also thin black points) which connect the MIN over a VRI (near the super VRI, red bullet) with the
three SP2. The last NTs cross the VRI manifold (light blue line). Three parts of the VRI manifolds are depicted in light
blue where the red line is the fully symmetric NT from MIN to SP3.

One should compare this example (6) of this paper with the older, somewhat more difficult case of
Ref. [15] where also a 3D test PES is treated.

The index theorem for NTs [36] is coupled with the manifold character of the VRIs for Newton
trajectories. It is similar to the Mezey-partitioning for steepest descent curves into catchment regions
[38–41]. There the borders are formed by (N-1)-dimensional ridges starting from the SPs of index one.
Here the borders are formed by the one-dimensional singular NTs starting at the (N-2)-dimensional
manifold of VRI points. Together this set of points again forms an (N-1)-dimensional partitioning of the
coordinate space.

As the name suggests, stationary points are true, singular points on the PES. The condition is that
the gradient is the zero vector. (We do not treat the exception of a degenerate surface.) One can try to
imagine such points also on a higher dimensional PES, especially the orthogonal dynamics to the SP
col [42]. However, we have learned here that VRI points are usually parts of a larger manifold. Their
main property (zero eigenvalue(s) of the Hessian) is not concentrated on an isolated point. We face an
unforeseen challenge which such simple molecules, beginning with trimers, hold for our understanding.
If we start in a minimum and go uphill in the direction to a ridge, then we usually meet not just one
VRI point, where the bowl valley bifurcates. For a continuity of values of a parameter variable, or more
parameter variables in still larger molecules (spectator variables), we find different VRI points. But the
good news is: for (a) fixed value of the parameter(s) we have exactly one VRI point. In our simple
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Fig. 8 PES section over the (r1=r2,r3) plane for the VRI line. The symmetric value of bonds r1 and r2 is fixed at
(3.58836, 3.58836), where the ’parameter’, r3, can vary. The PES varies with it. Because of the simplicity of the PES,
one can compare an analogous energy curve at the edges of Fig. 1, but only somewhat lifted.

Fig. 9 Escape of one atom from the three-atomic ring: the symmetric extension of bonds r1 and r2 leds up to a VRI
point on the PES with distances r′1 and r′2 to the remaining diatom. This happens for an aggregate interval of r3 values.

example we have three energetically lowest VRIs, and at the other end there is one super VRI which is
also energetically maximal, see Fig. 8. Such border VRIs may build a frame for our understanding.
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