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Abstract The reaction path is an important concept of theo-
retical chemistry. We analyze different forms of reaction path-
ways in the light of the abstract theory of calculus of vari-
ations: steepest descent from saddle point, the intrinsic re-
action coordinate (IRC), Newton trajectory (NT), variation-
ally optimized reaction paths and others. The paper is both
a mathematical review and a pointer to future research. Be-
sides the theoretical definitions, we shortly discuss hints at
the numerical effect of the definitions.

Keywords Potential energy surface · Variation of reaction
pathways · Euler equations · Steepest descent · Newton
trajectory

1 Introduction

The concept of the minimum energy path (MEP) or reac-
tion path (RP) of an adiabatic potential energy surface (PES)
is the usual approach to the theoretical kinetics of larger
chemical systems [1–5], see also [6–10]. It is roughly de-
fined as the line in the coordinate space, which connects
two minimizers by passing the saddle point (SP), the tran-
sition structure (TS) or a ”mountain pass” of an adiabatic
PES following the valley. It is able to describe pathways of
conformational rearrangements too. The energy of the SP is
assumed to be the highest value tracing along the RP. It is the
minimal energy a reaction needs to take place. Reaction the-
ories are based either implicitly (transition state theory [1]),
or explicitly (variational transition state theory [5,6]) on the
knowledge of the RP. These theories require only local infor-
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mation about the PES along the RP. They circumvent the di-
mension problem: it is impossible to fully calculate the PES
which remains to be a terra incognita. The SP and the mini-
mums form stationary points of the PES. Roughly speaking,
it is only of secondary interest, how a reaction path ascends
to the SP. This looseness makes a variety of RP definitions
possible.

The fundamental problem in handling an n-dimensional
hypersurface is the dimension. Molecules with more than
N=4 atoms would cause an overwhelming number of net
points for the PES. The RP concept is a promising way
out, because it reduces the problem of finding an algorithm
for one-dimensional curves – without any knowledge of the
whole PES. A parameterization t of the RP
x(t)=(x1(t), . . . ,xn(t))T is called reaction coordinate. Any
algorithm which allows to determine this pathway in a sui-
table approximation should be tested. The search for valley
pathways especially is an important part of the PES analysis;
up to date it still offers no satisfying concept for all aspects
of the problem.

Nowadays, the use of variational treatments reaches a
renovation [11–15]. In this paper, we will explore the differ-
ent definitions by the calculus of variations [16], like

– IRC, or steepest descent (SD) from SP [11–15,17,18],
– distinguished or driven coordinate method [19,20], or in

modern form Newton trajectories (NT) [8,9,21–23],
– the variational path method [24–27],
– gradient extremal (GE) [28–32].

The definitions lead to different curves which may well re-
flect different aspects of the idea of the MEP. These differ-
ences are the reason for treating other methods than SD once
for all. (So, the search for an appropriate MEP is not equiva-
lent to the finding of the SD pathway from the SP [7,33,34].)
The curve which follows a driven coordinate, or the NT can
also be used in certain cases for the minimum path only [8,



3

9]. The GE [4,28–32] appeared to represent a suitable ansatz
for a minimum path, however, with its many additional so-
lution curves and turning points [31,35,36] this concept in
its general form is not suited to be used as a routine program
for the calculation of such paths.

The valley structure may be of interest by itself as it is
the case in spectroscopy or for the selective choice of a reac-
tive channel in chemistry. There, it is assumed that a molec-
ular vibration takes place along the valley of the PES, and if
such a vibration is further excited, it may lead to a chemical
reaction. All the detailed activities for a simple calculation
of RPs are prerequisites for a number of dynamical theo-
ries to come into operation, including the famous Reaction
Path Hamiltonian [2]. Further, the methods of direct dynam-
ics [5,6,37] need an exact and physical sensible description
of the reaction path [38]. This way, the MEP is the leading
line characterizing the reaction channel in which the reac-
tion trajectories should move.

The mathematical simplest RP definition is the steep-
est descent from an SP, resulting in the well-known intrin-
sic reaction coordinate (IRC) of Fukui [7,33,34,39]. This
pathway is defined by an autonomous system of differential
equations for a tangent vector along the curve searched for.
Its solution is unique. Therefore, no bifurcation can occur
before reaching the next stationary point. Hence, no branch-
ing of PES valleys will be truly described by following the
IRC, see the discussion in refs. [40]. The unique character
will also emerge in a variational approach [11], which we
will explain again in Section 4.

An NT is a curve where the selected gradient direction
comes out equally at every curve point. There are curves,
which pass all stationary points in most cases. Thus, NTs
are an interesting procedure in order to determine by way of
trial all types of stationary points [8], as well as some kinds
of valley-ridge inflection points [9,10]. Pieces of NTs can
also be defined by a variational integral. This is developed in
this paper for the first time, to our best knowledge. However,
a whole family of NTs connects minimum and TS of index
one. Thus, there is no unique NT between a minimum and a
TS.

Gradient extremals (GE) form another approach for RP
following [4,28–32,35,36]. They are more complicated than
the IRC, but better fitted to solve the valley branching prob-
lem by the determination of a GE bifurcation [32]. How-
ever, other problems arise due to the occurrence of pairs of
turning points (TP) instead of a branching point (BP) of the
curve. Such turning points may interrupt the pathway be-
tween minimum and SP. The GE curves often show some
kind of avoided crossing [4,29,30,40]. In the light of the
variational ansatz, GEs do not fit to this idea, in contrast to
their name.

The paper is organized as follows: Section 2 repeats fun-
damentals of the theory of variations. That will be applied to
the IRC and other PR definitions in Section 3. Section 4 dis-
cusses conjugate points and the exceptional role of the IRC
in this respect. In Section 5 we apply transformations of the
curve parameter. We finally add a conclusion.

2 Variational Methods [16]

2.1 The Variational Integral

Before we give the go-ahead, some basics. Let be
F(x1, ...,xn,z1, ...,zn) a function with continuous first and
second partial derivatives with respect to all its arguments.
We search an extremum of a functional of the form

I(a,b) =
∫ b

a
F(x1(t), ...,xn(t),x′1(t), ...,x

′
n(t)) dt (1)

which depends on n continuously differentiable functions
x(t) = (x1(t), ...,xn(t))T being the components of an RP,
x(t), in n-dimensional configuration space. We regard all
vectors as column vectors. The prime ′ is derivation to t.
Note that I is a one-dimensional integral. The boundary con-
ditions of the RP are (x1(a), ...,xn(a))T = A, and
(x1(b), ...,xn(b))T = B. These are usually the coordinates of
minimum and transition state, or of two adjacent minimums,
and t ∈ [a,b] is the curve parameter. With A and B given, the
task is named the simple fixed endpoint problem in the cal-
culus of variations.

2.2 Necessary Condition for Extremals

The necessary condition for a curve xi = xi(t), i = 1, ...,n,
to be an extremal of the functional (1) is the system of Euler
equations where we use subscripts to denote differentiation

Fxi −
d
dt

Fx′i = 0 , i = 1, ...,n. (2)

The integral curves of Euler’s equations are called extremals
in mathematics in the field of variational calculus.

Example 1
The arc-length functional is

L(a,b) =
∫ b

a

√
x′(t)T x′(t) dt, (3)

with F(xk,x′k) =
√

∑n
k=1 x′k 2, which does not explicitely de-

pend from the xk. Thus, with

l(x′(t)) =
√

x′(t)T x′(t) =

√
n

∑
k=1

x′k(t)2 (4)

the Euler equations (2) become
d
d t

lx′i = 0 , (5)
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and it follows lx′i = Ci , where Ci is a constant. Thus we have

x′i√
x′T x′

= Ci , (6)

but not all Ci are independent; it is

(x′i)
2 = C2

i

n

∑
k=1

(x′k)
2 , i = 1, ...,n. (7)

Summation over i leads to the condition ∑n
i=1 C2

i = 1. We get
the general solution of the arc-length extremal:

xi(t) = αit +βi, and Ci = αi/
√

∑
k

α2
k . (8)

2.3 A Nonlocal Variational Integral

The development of the Euler equations (2) in ref. [16] em-
ploys arguments essentially local in nature. They apply to
every local point of the extremal x(t). Sometimes one treats
the nonlocal functional

Inl(a,b) =
1

L(a,b)

∫ b

a
E(x(t))l(x′(t)) dt . (9)

The Euler equations for the extremals of Inl become some-
how more complicated, cf. [41]. We use L(x′) = L(a,b) for
a subsidiary condition in an isoperimetric problem, and we
form a Lagrange ansatz [16] with the functionals of nomi-
nator and denominator of (9), where the denominator is the
arc-length (3)

E(x(t))l(x′(t))+λ l(x′(t)) = (E(x)+λ ) l(x′) . (10)

λ is the Lagrange multiplier. The first variation has to be

0 = g l− d
dt

(
(E(x)+λ )

x′

l

)
(11)

= g l− (gT x′)
x′

l
− (E +λ )

d
dt

(
x′

l

)
.

2.4 Sufficient Conditions for a Minimal Extremal

An important kind of points in the variational theory is the
following definition [16]:
If a curve is an extremal of Eq.(1), starting at any point A,
and a second ”neighboring” extremal of Eq.(1), also starting
at A, intersects the first curve in a next point, say point B,
then the intersection point is called conjugate point (CP).

Example 2
On a sphere the meridians through the poles are the great
circles with the shortest arclength (in one hemisphere) but
the poles are CPs because the extremals intersect there.

Besides the condition of the Euler equation, there are two
further conditions for a minimum:

(i) One of the sufficient conditions of a curve x(t) to be an
extremal is the Jacobi condition that the curve has not to
contain CPs.
(ii) The second sufficient condition is the positive definite-
ness of the second variation, of the matrix Fx′x′ .

3 Variational Analysis of RPs

The adiabatic PES of the molecular system of observation is
the basis of our treatment. Using the Born-Oppenheimer ap-
proximation, the PES is the sum of the Coulomb-repulsion
of the atomic kernels and the Schrödinger equation of the
electrons, H Ψ = EΨ . The explicit calculation of the en-
ergy E is not of interest here. We assume the PES is given
by a scalar function of the coordinates of the molecule at
every point of interest.

Let K be a subset of Rn. K is the configuration space
of the PES. Let x = (x1, . . . ,xn)T ∈ K. The function E(x):
K →R is an n−dimensional potential energy surface (PES).
The set Ec = {x ∈ K,E(x) = c} is named equipotential hy-
persurface. The configuration space of a molecule is re-
stricted. We assume at least a twofold differentiability of
the PES for practical reasons. The vector of first derivatives
g : K → Rn with

g(x) =
(

∂E
∂x1

(x), . . . ,
∂E
∂xn

(x)
)T

(12)

is the gradient. The next definition is the functional σ(x),
the norm of the gradient

σ(g(x)) =
√

gT (x) g(x) =

√
n

∑
k=1

g2
k(x) . (13)

σ2 is the scalar product of the gradient with itself. The sec-
ond derivatives of E form the Hessian matrix H(x) ∈ Rn×n

H(x) =
(

∂ 2E
∂xi∂x j

(x)
)n

i, j=1
. (14)

The Hessian is symmetric.
The adjoint matrix A of the Hessian matrix H is defined
as ((−1)i+ jmi j)T where mi j is the minor of H obtained by
deletion of the ith row and the jth column from H, and taking
the determinant. The adjoint matrix satisfies the relation

HA = det(H) In , (15)

det(H) is the determinant of H, and In is the unit matrix.

3.1 Steepest Descent: IRC

A pathway of wide interest is the IRC [39], cf. also [7].
The steepest descent from the SP in (usually mass-weighted)
Cartesian coordinates [42] is a simple definition of a reaction
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path, which is well-known as the intrinsic reaction coordi-
nate (IRC), but its definition may go back to Euler. Using t
for the curve parameter, a general steepest descent curve x(t)
is defined by the system of vector equations in n dimensions

x′(t) =− g(x(t)) . (16)

The SD system is a system of autonomous differential equa-
tions of the first order allowing an integration constant. Thus,
its solution can start at an arbitrary initial point (where the
gradient is not zero). The path (16) is given by the nega-
tive gradient of the PES for the tangent vector of the curve.
But the potential force is the zero vector at stationary points.
With the exception of the stationary points the solution of
the differential equation of the IRC is unique.

Taking the IRC as a model, in some cases, we may un-
derstand the definition of the RP by a system of ”simple”,
autonomous differential equations

x′(t) = f(x(t)) , (17)

for example, even if f(x(t)) = −g(x(t)), it is the SD. If the
Jacobian matrix of f(x) is symmetric, then there is a simple
possibility to transform such an RP definition from a differ-
ential equation into the variational form of Eq.(1). If x(t) is
an RP with definition (17) then its variational formulation
works with

F(x,x′) =
√

fT (x(t)) f(x(t)) l(x′(t)) , (18)

because this F immediately fulfills the Euler equations.
It is

Fxi =
1√
fT f ∑

k
fk

∂ fk

∂xi
l = ∑

k
fk

∂ fk

∂xi
, (19)

because here is l =
√

fT f and

− d
dt

Fx′i =− d
dt

(√
fT f

x′i√
x′T x′

)
. (20)

If one uses eq.(17) then the two roots again cancel each other
out. We obtain

=− d
dt

( fi) =−∑
k

∂ fi

∂xk
x′k =−∑

k

∂ fi

∂xk
fk . (21)

If the derivation is symmetric:
∂ fi

∂xk
=

∂ fk

∂xi
, the Euler con-

dition is fulfilled. With f(x(t)) = −g(x(t)) the symmetry
holds. One has the variational formula for the steepest de-
scent [11–15,17,18]

ISD =
∫ b

a

√
gT (x(t)) g(x(t))

√
x′T x′ dt . (22)

The extremal of ISD = min !, for A = min and B = T S, is the
IRC which is frequently used as a synonym for the MEP.
For integrants like Eq.(18), the matrix Fx′i x′i has a zero de-
terminant. The matrix is not positive definite. The second
sufficient condition of subsection 2.4 for a minimum is not
fulfilled. However, because the integrant of the task (22) has
a positive first part, the extremal is a minimal curve [43].

3.2 Newton Trajectory (NT) or Reduced Gradient [44]

A quarter of a century ago it was proposed to chose a driv-
ing coordinate along the valley of the minimum, to go a step
in this direction, and to perform an energy optimization of
the residual coordinates [20]. A combination of the distin-
guished coordinate method starting at the SP and steepest
descent was also used [45]. Recently, the method was trans-
formed into a new mathematical form [8]. The chemically
most important features of the PES are the reactant and the
product minimum and the SP lain in between. These sta-
tionary points of the PES are characterized by the condition
g(x) = 0. It is valid at extremizers of the PES, but single
components of the gradient can also vanish in other regions
of the PES. Using this property, a curve of points x can be
followed which fulfills the n−1 equations

gi = 0, i = 1, ...,k−1, k +1, ...,n (23)

omitting the k−th equation [8,19]. This produces the (n−1)-
dimensional zero vector of the reduced gradient; the method
was subsequently called reduced gradient following. Eq. (23)
means that the gradient points into the direction of the pure
xk coordinate. The concept may be generalized by the chal-
lenge that any selected gradient direction is fixed

g(x)/|g(x)|= r, (24)

where r is the selected unit vector of the search direction;
and the corresponding curve is named Newton trajectory.
The search direction may correspond to the start direction of
a chemical reaction. The “reduction” of Eq.(24) is realized
by a projection of the gradient onto the (n−1)-dimensional
subspace which is orthogonal to the one-dimensional sub-
space spanned by the search direction r. A curve belongs to
the search direction r, if the gradient of the PES always re-
mains parallel to the direction of r at every point along the
curve x(t)

Pr g(x(t)) = 0 (25)

where Pr projects with the search direction r. This means
Pr r=0. Employing such a projector, instead of eq. (24), one
refrains from the use of the very uncomfortable differentia-
tion of the absolute value in the denominator. A possibility
to define Pr is [9,46]

Pr = In − rrT , (26)

where In is the unit matrix. This Pr is an n×n matrix of rank
n−1, because r is a column vector, rT is a row vector, and
their dyadic product is a matrix of rank 1.

NTs have also a definition by a differential equation. The
adjoint matrix A has to be used [47–49] to define an au-
tonomous system of differential equations, similar to eq.(17),
for an NT curve x(t), where t is again the curve parameter

x′(t) =±A(x(t)) g(x(t)) . (27)
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With the symmetric Hessian, the adjoint matrix A is also
symmetric. However, the Jacobian matrix of (27) is non-
symmetric, in the general case. If the additional symmetry
holds:
∂Aik

∂xl
=

∂Alk

∂xi
, (28)

than we have, with one line of system (27)

x′i =±∑
k

Aik gk := fi (29)

the derivation of fi

∂ fi

∂xl
=±∑

k

(
∂Aik

∂xl
gk +Aik

∂gk

∂xl

)
(30)

=±∑
k

(
∂Alk

∂xi
gk +Aik Hkl

)

=±∑
k

(
∂Alk

∂xi
gk +Alk Hki

)
=

∂ fl

∂xi
.

The last line holds because of Eq.(15), we have for i 6= l that
∑k AikHkl = 0 = ∑k AlkHki. Thus, an NT with definition (27)
and symmetry (28) fulfills the necessary extremal condition
of the variational integral

INT =
∫ b

a

√
(Ag)T (Ag) l(t) dt (31)

=
∫ b

a

√
gT A2 g

√
x′T x′ dt .

A special case where the condition (28) holds is the PES in
an exact quadratic form, see [32],

E(x) = Eo +(x−xo)T H (x−xo)/2 .

xo is the critical point, H is a constant matrix and the gra-
dient is H (x− xo). Then the mixed derivatives (28) are all
zero. In the general case, where the symmetry relation (28)
is not fulfilled, the ansatz (31) is unlikely for an NT calcu-
lation. One may use a different variational functional by the
general ansatz (see ref.[15] for SD)

F(x,x′) =
(
x′ ∓ A(x) g(x)

)T (
x′ ∓ A(x) g(x)

)
. (32)

Of course, it is the differential equation (27) put into a vari-
ational functional. If the minimum of a variational integral
with this integrant exists, it should be zero.

3.3 Variationally Optimized Reaction Path

It is remarked (not fully correctly) that the RP of an SD,
Eq.(16), fulfills the extremal task

IRP =
∫ b

a
E(x(t)) l(x′(t)) dt = min ! (33)

where a and b are the parameters of reactant and product of
a reaction, respectively [50]. We will see that the extremals

of this variational integral are not exactly SD pathways. It is
F(x,x′) = E(x) l(x′). With the parts

Fxi = gi l , i = 1, ...,n (34)

and

− d
dt

Fx′i =− d
dt

(
E

x′i√
x′T x′

)

=−∑
k

Exk x′k x′i
l

+E
∑k(x′′i x′kx′k− x′i x′kx′′k )

l3 (35)

=−1
l

(gT x′) x′i−
E
l3 (x′′i l2− x′i(x

′′T x′)) ,

the vectorial Euler equations are the following expression

0 = g l− 1
l
(gT x′) x′− E

l3 (x′′ l2−x′(x′′T x′) ) . (36)

It is a complicate system of differential equations of second
order for the RP which is not fulfilled by the steepest descent
(in the usual curvilinear case), because with x′ = ∓g, and
gT g = l2, only the first two terms cancel each other out, and
we get with x′′ =∓Hx′ = Hg

0 ?=
E
l3 (Hg l2−g(gT Hg) ) . (37)

gT Hg/l2 is a scalar, the Rayleigh-quotient [51], and usually
the vectors H g and g point into different directions, thus the
Euler equations are not fulfilled for an SD curve. Only if g
is an eigenvector of the Hessian matrix itself, the two last
terms also nullify as well. In the case, the steepest descent
additionally has to be a gradient extremal, see below, and
this is the case if the SD is a straight line only [32]. The sec-
ond derivatives x′′ in Eq.(36) describe the curvature of the
RP. If x(t) is SD and GE, they are zero. Thus, the ansatz
(33) is an interesting proposal for an MEP, but it does not
produce the IRC of Fukui (if A=minimum, and B=TS) [41].

Pratt [27] and Elber and Karplus [20,24,26] proposed
to solve the nonlocal extremal integral along a set of curve
points x(t) again seen as the reaction path approximation:

IORP =
1

L(a,b)

∫ b

a
E(x(t)) l(x′(t)) dt (38)

like Eq.(9), where a and b may again be the parameters of
reactant and product of a reaction, respectively. The path
length L additionally emerges in the denominator. It was as-
sumed that the solution is an MEP, a reasonable approxi-
mation of the IRC. The derivation of the first variation is
similar to the above mentioned. Additionally, we have to
use the Lagrange multiplier λ . We get the Euler equations
(11) for a non-local variational task [41]. The difference to
Eq.(36) is only the factor: for E we have (E +λ ). If one tests
the SD path, then again the first two summands nullify, but
the third term is only zero for linear pathways, like above.
Thus, in the general case, the task (38) will not be solved
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by SD curves. If the SD, coming from a strong side slope,
reaches the valley floor with a “sharp” curvature then the
corresponding Elber-Karplus path cuts the corner [52]. Note
that in the former reference, the functional IRP, Eq.(33), is
replaced by

IHS =
∫ b

a
Exp(βE(x(t))) l(x′(t)) dt , (39)

however, arguments concerning Eq.(37) still hold further.
The ansatz (38) is an interesting proposal for an MEP

under a simple numerical approximation by discrete differ-
ences, see also [53]. Applications are given in [52,54], and
in references therein. The extremal task (38) has triggered
a long row of interesting works to MEPs and TS searches
called nudged elastic band method, cf. [55–57] and refer-
ences therein.

3.4 Gradient Extremal (GE)

Pancı́ř [58] and Basilevsky/Shamov [28] formulated local
criteria for describing a valley floor line. Pancı́ř determined
two conditions which he assumed to be obviously given:
( i) The energy must increase along all directions perpendic-
ularly to the direction of the valley floor line.
(ii) The curvature of the energy surface along the direction
of the valley must be less than the curvature along any other
direction. Pancı́ř came to the conclusion that a path satis-
fying (i) and (ii) should be a sequence of points where the
gradient, g, is an eigenvector of the Hessian, H.

If the norm of the gradient forms a minimum along points
of an equi-hypersurface, Ec(x), i.e. along all directions per-
pendicular to the gradient [28–31,59,60], a point of gentlest
ascent of a valley is found. The measure for the ascent of the
function E(x) is the norm of the gradient vector, the func-
tional σ2. The implicit condition E(x)=c may be fulfilled by
the sub-hypersurface x(u,c), where u may be an (n−1)-di-
mensional parameter. One treats the parametric optimization
problem with the objective function

σ(x)2 → Min
x(·,c) ! (40)

where the nonlinear constraint is E(x)=c. Thus, objective
function and constraint are developed from the function E
itself. We are interested in following a path of local minima
as the parameter increases (if we do an ascent to the sur-
face) or decreases (if we go downhill). For almost all values
of c one generally might expect that a local minimum x(c)
of problem (40) depends differentially on c. Using the nor-
malized gradient

w(u,c) := g(x(u,c))/|g(x(u,c))| (41)

and

Pw(u,c) := In−w(u,c) w(u,c)T , (42)

the requirement for an extremal value of σ is expressed by

Pw(u,c)∇ (σ2(x(u,c))) = 0 , (43)

where c is constant. Because of ∇(σ(x)2)=2H(x)g(x), and
setting λ = wT Hw, it results in the basic eigenvector rela-
tion

H(x) g(x) = λ (x)g(x) . (44)

The proportional factor λ (x) is an eigenvalue of the Hes-
sian matrix, and the gradient is its eigenvector. The GE
eq.(44) selects points of the configuration space having an
extreme value of σ (x) with respect to variations on equi-
hypersurfaces. So, if σ (x) has a minimum the PES may have
a valley-floor GE. (Note: the extrema of σ (x) can also be
maxima or degenerate stationary points [4,31,32].) The de-
velopment gives rise to the formulation of the streambed de-
scription of the valley ground GE, which follows the small-
est eigenvalue: If we are on this gradient extremal, then from
the left as well as from the right hand side the SD lines
confluent to this valley line [32]. The GE forms an isolated
curve in the configuration space. It does not form a family
of curves as the SD lines do. But if the lines of two different
families of SD curves confluent into the GE, from the right
as well as from the left, it may serve as a model of the valley
floor.

Curves x(c) defined by Eq.(44) consisting of such points
on consecutive equi-hypersurfaces for different sections of
increasing or decreasing c are termed gradient extremals
[29]. This kind of curves do not build a field of curves spread-
ing over the PES, however, they are ”single” solutions.
Though GEs can be seen to be a curve with an induced tan-
gent by the derivation of Pg H g = 0, see [61], where Pg is
the projector in direction of g, as well as NTs which allow
an analogous definition, for GEs we do not know a definition
like Eq.(17). And because GEs are not a field of curves, an
integral extremal condition with boundaries a and b should
not be possible, indeed. So, it seems that this RP curve which
is named an extremal, even the GE, does not have a varia-
tional extremal definition.

4 Conjugate Points of Extremals

4.1 IRC

To see the deeper meaning of the CPs, we treat the catch-
ment region of a minimum of the PES [3]. Catchment re-
gions generate a partition of the n-dimensional configura-
tion space K. Using the concept of SD curves, a catchment
region KA of the PES in K is defined as the collection of
all those nuclear configurations B from where an infinitely
slow, vibrationless relaxation path, as expressed by the SD,
leads to a given critical point A. The index A is connected
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Fig. 1 Pedagogical example of a gradient field around an SP at zero,
and some SD curves.

with the index of the critical point (the number of negative
eigenvalues of the local Hessian matrix of the PES) at A. The
concept of catchment regions is closely related to ridges of
the PES. Usually, an (n-1)-dimensional ridge system sepa-
rates the catchment regions of two adjacent minimums, and
every ridge ends below at an SP, cf. the 3D example of HCN
in [62], and [63]. An SP of index one is the TS which con-
nects the two adjacent minimums by the IRC.

The catchment regions have their origins in the inspired
works of Cayley and Maxwell, cf.[64], who used some of
the mathematical properties of catchment regions for the de-
scription of geographical terrains, expressing the relations
between hills, valleys, dales, and watersheds. However note:
here in chemical applications, the dividing surface between
two catchment regions is an (n-1)-dimensional hypersurface.

A basic point in the theory of variational extremals [11]
is the possibility of embedding the extremal curve under
consideration in a family of neighboring curves which is fit
to a field of directions. If the endpoint B of the extremal
curve is in the catchment region of start point A, then the
original extremal can be embedded in a field. A field of
curves is defined by the set of extremal curves cutting the hy-
persurfaces Ec transversally [11]. But still more explicitely,
the cutting of SD curves to Ec is orthogonal.

The set of extremal curves emerging from a central point
A will constitute a field up to its conjugate points to the
central point. In the present problem of SD curves flowing
together into the point A, which is a minimum, other SD
curves may intersect this SD for the first time at the station-
ary points of the PES of a character saddle point, or maxi-
mum. These types of stationary points are the possible CPs
with respect to central point A because there the gradient

becomes zero again. Other points are not possible, because
in other points the vector Eqs.(16) for SD curves are unique.
Thus, a CP can be a stationary point of a character saddle
point of any index, or maximum on the PES. However, for
saddle points with one negative eigenvalue, saddle points
of index one, only one SD curve emerging form the central
point A arrives at this type of stationary points. As a conse-
quence, the first-order saddle points are not conjugate points
with respect to the central point. This result is proved from
a rigorous mathematical point of view in ref.[11], using the
Jacobi equation associated to the variational problem under
consideration.

For the IRC no CP can exist. We illustrate it by the sim-
ple, schematic Fig. 1. Different SD curves can only cross or
confluent at saddle points. At maximums, as well as mini-
mums, the field of SD curves starts, or confluents, at all [32,
65]. For a saddle of index 1 there is the IRC trough the SP,
and the (n-1) corresponding ridge lines along the orthogonal
directions do cross the curve. However, those ridge lines can
never start at the minimum. All neighboring curves do cir-
cumvent the SP in a hyperbolic kind. That is the reason that
a variational minimization of the IRC path works, if we fix
the two startpoints to two minimums. From another point of
view, seeing the SD curves from the two minimums, there
are infinitely many SD curves which confluent there. How-
ever, only the IRC comes from the SP, and it is this single
curve which connects the two minimums. So to say, the IRC
is a singular SD curve.

In Fig.1 we show the schematic situation at SPs of index
one in a 2-dimensional example. The surface y2−x2 is used.
The zero is the SP, and the x-axis may be the IRC. At the SP
a second SD crosses, however it comes from above.

If an IRC is a ”broken” extremal, like an IRC between
two SPs of index one and a minimum, where the IRC runs
down first between the two adjacent SPs, and then turns
to the final minimum, the discussed relations are in order,
see ref.[13]. The case concerns ramified reaction valleys. Of
course, an IRC connection between two SPs is only possible
in special, symmetric cases of the PES [62].

SPs of an index higher than one, on the other side, are
CPs of an adjacent minimum. It starts with SPs of index two,
cf.[66,67], which often are of chemical interest, too. Conse-
quently, an SD between an SP of index two and a minimum
is not unique.

4.2 NTs

For NTs Eq.(27) is also unique, in nonstationary points, if
additionally Det(A) of the adjoint matrix is not zero. But if
Det(A) = 0, we have a bifurcation point (BP) of an NT. The
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Fig. 2 Five NTs (dashed curves) of the family of NTs between mini-
mum at (1,0) and SP at (0,0). Vector field A g. Level lines (thin) Ec.

NT divides different families of NTs which connect differ-
ent stationary points [68]. However, for NTs the structure of
the CP relation is quite more complicate than for SD curves.
The reason is, adjacent stationary points like minimum and
TS, are conjugate points of NTs. Any NT without a BP con-
nects stationary points with an index difference of one. Fig-
ure 2 shows a family of NTs between minimum and SP. The
surface x2(x2−2)+ y2 with a double minimum at (±1,0) is
used, being the ideal case: it is found to occur in many sys-
tems. Additionally, the field of directions of the NT, Eq.(27),
of A g is shown. It is to observe that the minimum is a re-
pulsive stationary point, but the SP of index one is an attrac-
tive stationary point. The NTs fit the directions of A g. Fig-
ure 2 shows that a minimization of a variational functional
with integrant Eq.(32) between a minimum A=(1,0) and a
TS B=(0,0) is not useful, because the solution is not unique.
Of course, that NT with the shortest pathlength, L(a,b), can
be used for an MEP [69]. It is here the line between 0 and 1
on the x-axis, the IRC.

Only points B in the ”NT-catchment region” of A being
no stationary points are possible to uniquely calculate (at
least theoretically) by the ansatz (32).

In contrast to the determination of stationary points, NTs
open the possibility for a new method to calculate all kinds
of valley-ridge inflection (VRI) points. (The symmetric case
is already discussed [9,10,62].) The pattern of NTs around
a VRI is the same like the pattern of SD curves around an
SP, see Fig.1 above, and Figs 2-4 in ref.[62]. The analogy is:
like the IRC is spanned over the SP of index one which is
not a CP, because the IRC is the single curve which is go-
ing through the SP, a singular NT is going through a VRI

which is not a CP either. A VRI point is the location which
is crossed by the one, single NT which connects a minimum
and an SP of index two, or which connects two SPs of in-
dex one. The branch of the single NT separates families of
hyperbolic NTs which connect different stationary points.
So to say, the branch of a single NT is the border of catch-
ment regions of different TSs. The corresponding regions of
the PES are also named ”reaction channels” to TSs [68]. A
method to calculate the VRI-NT by a variational ansatz will
be reported in a forthcoming paper.

5 Transformation of the parameter

In the extremal task of Eq.(1) we will change the used pa-
rameter, t. We have a first possibility with L(a,t) in Eq.(3)
with a≤ t ≤ b

L(a, t) = s(t) =
∫ t

a

√
x′(τ)T x′(τ) dτ =

∫ L

0
ds . (45)

s(t) is a new parameter instead of t, and the pathway now
will be x(s). The boundary for t = a is s = 0, and for t = b
it is even s = L(a,b). Note that L(a,b) 6= 1, in the general
case. The tangent to the curve x(s(t)) is

dx
dt

=
dx
ds

ds
dt

,

thus with the derivation of Eq.(45)

x• =
dx(s)

ds
=

dx(t)
dt

/∣∣∣∣
dx(t)

dt

∣∣∣∣ . (46)

It has unit length. The dot • is the derivation to path length s.
In Eq.(16) we get the path length, s, for the parameterization,
if we normalize the gradient by its length to unit vector

dx(s)
ds

=− g(x(s))
|g(x(s))| . (47)

It is the well-known equation for the SD with IRC-parame-
ter, s. Using the right hand side for the vector function f(s)
in ansatz (18), we may obtain the variational integral

ISDs =
∫ L

0

√
gT (x(s)) g(x(s))√

|g|2
√

x•T (s) x•(s) ds . (48)

The two square roots with the gradients cancel each other
out in the integral, and the tangent vectors have unit length,
see above, so it remains the task

∫ L
0 ds = min!, which is use-

less because nothing is to variate.

Another transformation of the curve parameter may also
be interesting [11,13]: We start with a new variational inte-
gral and look for the Euler equations.
∫ β

α
(gT (x(τ))g(x(τ)))(x•T (τ)x•(τ))dτ (49)
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where the dot • is the differentiation to the parameter τ . The
Euler equations are

(Hg)(x•T x•)− d
dτ

(gT g x•) = 0. (50)

If one put

x• =
−g
gT g

(51)

and if one uses
d

dτ
g = H x• =−H g/(gT g) (52)

then the Euler equations are fulfilled. Of course, the differ-
ential equations (51) describe a field of SD curves. The new
normalization leads to a special parameterization. We treat
an SD curve x(τ) starting at TS in the direction of the moun-
tain pass. We know that it is orthogonal to the hypersurfaces
Ec. We study a region around E(x(τ)) = c . If τ goes on, we
get a function c(τ). We can do the derivation

dc
dτ

= ET
x

dx
dτ

= gT x• . (53)

If we insert Eq.(51) we get dc/dτ = −1. The parameter c
is the value of the PES itself, it is the inverted τ . The para-
meterization of the SD curves in differential equations (51)
goes on with the energy as the curve parameter. Of course, it
only works in monotone regions of E. This is also obtained
directly: in regions where g 6= 0 and x• 6= 0 one can define
the inverse derivation
dτ
dc

=
1

gT x•
. (54)

If we use now c for the new parameter, c =−τ , we obtain
dx
dc

=
dx
dτ

dτ
dc

=
x•

gT x•
=

g
gT g

> 0 (55)

where the dot • is still the derivation to τ . The parameteriza-
tion of bf x by c of the SD curves goes on with an analogous
direction as E itself, because it is E.

In general, starting with a variational ansatz by integrant
(18) in the functional (1), we can do any regular parameter
transformation, t = t(θ). We put x(t(θ)) = x̃(θ) and use the
dot for derivation to θ . With t•(θ) > 0 we get

x̃• =
dx̃(θ)

dθ
=

dx(t(θ))
dt

dt
dθ

= x′ t• . (56)

Because l(x′(t)) is homogenous with degree one, we get the
variational integral

∫ β

α

√
fT (x̃(θ)) f(x̃(θ))

√
x̃•T (θ)

t•
x̃•(θ)

t•
t• dθ (57)

The transformation cancels each other out in the integral.
The integral is of the same kind as the starting form. How-
ever, in the corresponding differential equation, the transfor-
mation will have an effect, at least by a different normaliza-
tion. The conclusion is: the variational integral to a given

curve definition by a differential equation is not unique. The
possibility to transform the parameter in the variational inte-
gral opens a very practical way. The parameters in Eqs.(16)
and (51) are not truly comfortable: In Eq.(16) the range for
t is (−∞, ∞) for the SD between TS and minimum, but in
Eq.(51) the length of the tangent vector diverges to infinity
for the approximation of a stationary point. The transforma-
tion to pathlength parameter s opens the possibility to use
equidistant, or nearly equidistant, steps for a discrete ap-
proximation of the integral, because integral (57) becomes
the trivial form
∫ L

0

√
fT (x̃(s)) f(x̃(s))ds . (58)

In Eq.(16) any change in the scaling of the right hand side
does not change the direction of the tangent along the path,
the left hand side. The scaling only changes the curve pa-
rameter, not the curve points x itself in K. So to say, the
curve parameter, t, comes out to be only a ”dummy” inte-
gration parameter [17].

6 Conclusion

We verify the finding of refs.[11–15,17,18] at a general math-
ematical level, that the IRC can be defined by a variational
integral. The result is: the IRC is a unique extremal. We
obtain that a corresponding definition of the integral is not
unique. The ansatz (18) for a general variational integral is
also applicable for other RP definitions like NTs in special
cases. However, using NTs for an RP, the adjacent station-
ary points for an RP, minimum and TS, are conjugate points.
That disturbs one of the sufficient conditions for a unique
minimal extremal, the Jacobi condition.

Other extremal definitions, like the one for the optimized
RP, are proven not to be solved by steepest descent curves,
because the necessary Euler equations are not fulfilled. Thus,
they have to give different MEP solutions than the IRC. The
possibility to do a parameter transformation in the varia-
tional integrant (18) has opened the definition for a wide use
by approximate formulas.

Not discussed here are the differences of a path which
minimizes a certain integral, and the (possibly other) RP
which maximizes the rate of transitions at the SP, between
reactant and product, see [15,52,70]. So, with IRC, NTs,
ORPs in their different kinds, GEs or still other pathways,
we find unsolved the ultimate question [44,61]:

“What is the ‘true’ MEP?”
Because the careful identification of a ”good” reaction coor-
dinate is crucial for the calculation of reaction rates.
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