
TCA manuscript No.
(will be inserted by the editor)

A Catastrophe Theory Based Model for Optimal Control of Chemical
Reactions by means of Oriented Electric Fields

Josep Maria Bofill ?,1 · Wolfgang Quapp#,2 ·
Guillem Albareda#,3 · Ibério de P.R. Moreira#,4 ·
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Abstract The effect of oriented external electric fields (OEEF) on chemical reactivity has been
studied theoretically and computationally in the last decades. A central goal in this research area is
to predict the orientation and the smallest amplitude electric field that renders a barrierles chemical
process with the smallest possible strength. Recently, a model to find the optimal electric field has
been proposed and described (J. M. Bofill et. al., J. Chem. Theory Comput. 18, 935 (2022)). We here
proof that this model is based on Catastrophe and Optimum Control Theories. Based on both theories
a technical treatment of the model is given and applied to a two-dimensional generic example that
provides insight into its nature and capability. Finally, the model is applied to determine the optimal
OEEF for the trans-to-cis isomerization of a [3]cumulene derivative.

1 Introduction

The effect of applying and oriented external electric field (OEEF) on the reactivity of a given molecule
or molecular system has been the subject of study in theoretical/computational chemistry for several
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decades. Pioneering studies uncovered the important impact of OEEFs in SN2 reactions[1], Friedel-
Crafts reactions[2], Diels-Alder cycloadditions[3], C-H hydroxylations[4] and activation[5], and C=C
epoxidations[4]. The field of OEEF-driven catalysis experienced a resurgence of interest after a land-
mark single-molecule experiment that demonstrated that a Diels-Alder reaction can be catalyzed
by means of an OEEF created by a bias voltage between an electrode and a scanning tunnelling
microscopy[6]. In addition to single molecule experiments[7,8], other experimental techniques with
a higher potential for scalability[9] have been also recently introduced[10–15]. These experiments
have motivated new computational studies aimed at understanding and predicting the influence of
OEEFs on reactivity[16–20]. These studies have demonstrated that OEEFs can accelerate many types
of processes, such as cycloaddition reactions[21–25], the Menshutkin reaction[26], ring opening re-
actions[27], electrophilic aromatic substitutions[28], oxidative addition reactions between palladium
catalysts and alkyl/aryl electrophiles[29], the Kemp elimination reaction[30], degradation of bromoben-
zene[31], CH4 oxidation[32], processes in heterogeneous catalysis[33,34], isomerizations[35], conforma-
tional rearrangements[36], proton-transfers[37,38], etc. In parallel to all these efforts, the impact of
electric fields in the active sites of enzymes on biochemical processes has also received a great deal of
attention in recent years[39–47].

In the context of OEEF-driven catalysis, the direction in which an OEEF is applied is certainly
one of the key variables that needs to be considered. In a recent work, we introduced a theoretical
framework that allows establishing the optimal direction in which an external electric field should
be applied to accelerate a given reaction in the most efficient form[48]. In particular, the optimal
OEEF obtained in our model is defined as the smallest amplitude field that renders a barrierless
chemical process. Our theoretical framework is based on a generalization of the Newton Trajectories
(NT) model[49] and on the construction of an effective potential energy surface (PES) built from an
unperturbed PES of the molecular system under study and the energy change due to the action of an
OEEF on the dipole moment of the system. Given a chemical process and an external electric field
with a fixed direction that is assumed to be adequate to promote the reaction, our ansatz provides
theoretical tools to evaluate how the structures of the reactant and transition state configurations
are distorted under the effect of the field. One of the main concepts of the proposed model is the
so-called Force Displacement Stationary Points (FDSP) curve. There exists a different FDSP curve
for each direction of an OEEF. Each point of a given FDSP curve corresponds to a stationary point
of the effective potential generated by a particular intensity of the applied OEEF. For a well-behaved
system, the OEEF will distort the reactants in such a way that their nuclear configuration become
closer to the transition state (TS) configuration. By the same token, the TS configuration will become
closer to the reactants. As the OEEF amplitude increases, reactants and TS become more distorted
and their configurations resemble to a larger extent. There exists an OEEF amplitude at which both
configurations coalesce. This specific FDSP point is called bond-breaking-point (BBP). Since each
FDSP has its own BBP and each FDSP corresponds to a different OEEF direction, it follows that for
each OEEF direction there exists a different BBP. For a given set of OEEFs, each one well suited to
promote the reaction of interest, the optimal OEEF (i.e. the one that renders the reaction barrierless
with the smallest possible amplitude) corresponds to the FDSP curve that passes through the so-called
optimal BBP (oBBP). At this point, the gradient of the original or unperturbed PES is an eigenvector
of zero eigenvalue of the Hessian matrix of the effective PES.

The main purpose of this article is to analyze key mathematical concepts introduced in our pre-
viously proposed model[48] for defining optimal OEEFs. In particular, we will show that the FDSP
curve and BBP points are concepts rooted in Catastrophe and Optimal Control Theories. The article
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is structured as follows: Section 2 is devoted to discuss the mathematical nature and structure of the
model and for proving the optimality of the OEEF derived in [48]. Section 3 shows that a detailed
numerical analysis of a generic two dimensional model system allows one to deeply understand the
full nature of the proposed model. In Section 4 we apply the model to a real chemical system, namely,
the trans-to-cis [3]cumulene isomerization. In Section 5 the main conclusions of the present study are
provided.

2 Nature, structure and treatment of the model

2.1 Basic nature and structure of the model

In this subsection, we will first summarize some of the key concepts and mathematical expressions
of the model presented and discussed in [48]. We will then prove that this theory falls within the
Catastrophe Theory.

The action of an OEEF, e = Een, with modulus E and direction en, modifies the original PES of
a molecular system. It is assumed that the modified PES is given by the following ansatz [48]

Ven
(x, E) = V (x) + Pen

(x, E) = V (x)− eTd(x) = V (x)− EeT
nd(x) , (1)

where V (x) is the original PES, Pen
(x, E) is the perturbation energy, d(x) is the dipole moment

vector, xT = (x1, y1, z1, . . . , xM , yM , zM ) is the vector of all M atoms’ Cartesian coordinates, and
eT
n = (ex, ey, ez) is the three-dimensional normalized field direction vector. We recall that the dipole

vector is a three-component vector, where each component is dependent (in a nonlinear manner)
on the x-vector, dT (x) = (dx(x), dy(x), dz(x)). We assume that V (x) and di(x) are “well-behaved”
functions of x, thus [∇x∇T

xV (x)] = [∇x∇T
xV (x)]T and [∇x∇T

xdi(x)] = [∇x∇T
xdi(x)]T for i = x, y, z,

where ∇T
x = (∂/∂x1, . . . , ∂/∂zM ). The stationary condition on Ven

(x, E) reads

∇xVen(x, E) = g(x)− [∇xdT (x)]enE = g(x)− hen(x)E = 0 (2)

where
hen(x) = [∇xdT (x)]en =

∑
i=(x,y,z)

ei(∇xdi(x)) (3)

and g(x) = ∇xV (x). We note that −hen(x)E = ∇xPen(x, E), is the gradient of Pen(x, E) with
respect to x. Let us consider a given normalized constant vector en, then the set of points (x, E)
satisfying Eq. (2) is called force displaced stationary point (FDSP) curve. At each point of this curve,
(x(t), E(t)), where t is the parameter that characterizes the curve, an effective PES, Ven

(x, E(t)),
is generated that satisfies the stationary condition Eq. (2). Thus, for each normalized en-vector the
corresponding FDSP curve generates a sequence of Ven(x, E) effective potentials, and each effective
potential has its own fixed E, being the x coordinates the set of variables. Thus, the set of coordinates
x plays the rule of variables whereas the intensity E the rule of parameter. The FDSP curve is a
special NT curve where the amplitude of field E changes at each point to satisfy Eq. (2). At each
point of a FDSP curve the parameter E coincides with the quotient

E =
(gT (x)g(x))1/2

(hT
en

(x)hen
(x))1/2

= q(x) . (4)

A point x outside the FDSP curve the value of the quotient q(x) does not coincide with E. Thus, at
a stationary point of the effective PES, in particular at any point of a FDSP curve, the parameter E
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coincides with the quotient value between the norm of g(x) and the norm of hen(x). It is interesting
to note that the normalized vector en plays the rule of control axis. It then follows that the associated
E is the control parameter. Thus, we emphasise that the effective energy potential, Ven

(x, E), can
be seen as a function of x and the parameter E. When the control variable E has a fixed value the
system settles into a structure where the variables x stationarize (locally) the function Ven

(x, E). In
particular, the current point x(t) of the FDSP curve corresponding to the control axis en is a station-
ary point of Ven(x, E) since this point satisfies Eq. (2) for the current control parameter E(t). As the
control variable changes, namely from E(t) to E(t+∆t), a local stationary point can disappear and the
variables x jump suddenly to a different structure. In particular the current stationary point changes
from x(t) to a new point, x(t+∆t), satisfying Eq. (2) for the new E(t+∆t). In a similar manner, for a
given normalized en-vector the manifold of points satisfying det[Hen

(x, E)] = 0 varies as the control
parameter E varies, where Hen(x, E) = ∇x∇T

xVen(x, E) is the Hessian matrix of Ven(x, E). For the
E parameter associated with a given normalized en-vector the corresponding FDSP point x is also a
point belonging to the manifold det[Hen

(x, E)] = 0, this point x is a degenerate stationary point of
the current Ven

(x, E). The structure of Ven
(x, E) around this point is the object of analysis of Catas-

trophe Theory and has a shoulder form. In the present context, we call this point Bond-Breaking-Point
(BBP) (xBBP , EBBP ) associated with the control axis en. The explanation given above is represented
schematically in Figure (1).

Finally, if we assume that a reaction path, x(s), is a parameterization of a PES through the so-
called reaction coordinate s, then the effect of an OEEF on a chemical reaction system according to
this model is schematically explained in Figure (2).

2.2 Mathematical treatment

As shown in [48], the integration of the FDSP curve is an important ingredient of the model. Here,
we will explain in detail some mathematical tricks regarding this integration that were not presented
in [48].

Basically, the differential equation that gives us the tangent of the FDSP curve is obtained by
applying the directional derivative to the FDSP curve condition, Eq. (2),

d(∇T
xVen

(x, E))

dt
=
(
(dx/dt)T dE/dt

) [(∇x
∂
∂E

)
(∇T

xVen(x, E))

]
=
(
(dx/dt)T dE/dt

) [Hen
(x, E)

−hT
en

(x)

]
= 0T

(5)
Eq. (5) can be written in a more compact way as

Hen
(x, E)

(
dx

dt

)
= hen

(x)

(
dE

dt

)
(6)

where the explicit form of this Hessian matrix reads

Hen
(x, E) = H(x)− E 〈N(x)en〉 (7)

being H(x) = ∇x∇T
xV (x) the Hessian matrix of the original PES, V (x), and

−E 〈N(x)en〉 = −E
∑

i=(x,y,z)

ei(∇x∇T
xdi(x)) = ∇x∇T

xPen
(x, E) (8)
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V e
n(

x,
E)

x,E-space
(x0, E0) s.p. of Ven(x,E0)

(xi, Ei) s.p. of Ven(x,Ei)

(xj, Ej) s.p. of Ven(x,Ej)

(xBBP, EBBP) 
s.p. of Ven(x,EBBP)

FDSP curve

(x0*, E0) in det(Hen(x,E0))=0 manifold

(xi*, Ei) in det(Hen(x,Ei))=0 manifold

(xj*, Ej) in det(Hen(x,Ej))=0 manifold

(xBBP, EBBP) in det(Hen(x,EBBP))=0 manifold

(xk, Ej) point outside the
FDSP curve, thus 

q(xk) ≠ Ej for Ven(x,Ej)

Fig. 1: For a given control-axis, en, (the normalized direction of OEEF) the corresponding FDSP
curve generates a sequence of Ven

(x, E) functions, one for each E value, represented by Ei. Each
point of this FDSP curve, namely xi, is a stationary point (s.p.) with respect to x of the current
Ven(x, Ei) function. Thus the point xi of the curve satisfies the condition ∇xVen(x, Ei)|x=xi = 0.
Every point labeled by x∗

i represents a point of the manifold where det(Hen
(x, Ei)) = 0, that is to

say, the determinant of the second derivatives with respect to x of the function Ven
(x, Ei) vanishes.

The point of the FDSP curve that belongs to this manifold is a degenerate stationary point labeled
as (xBBP , EBBP ). Each control axis, en, has a different (xBBP , EBBP ) point. We note that a point
x not belonging to the FDSP, the corresponding quotient q(x) defined in Eq. (4), does not coincide
with the E parameter.

is the Hessian matrix of Pen(x, E) with respect to x. We note that the Hessian matrix, Hen(x, E),
is symmetric since H(x) and −E 〈N(x)en〉 are symmetric matrices. Eq. (6) tells us how the planes
tangent to the iso-contours, V (x) = ν and Pen

(x, E) = π, with parallel normals, g(x) and −Ehen
(x),

respectively, are transported through the FDSP curve associated with the field en.

The practical problem to integrate the FDSP curve under a given normalized constant en-vector
implies solving Eq. (6). For this purpose we first consider a predictor step. If det[Hen

(x, E)] 6= 0, the
tangent, dx/dt, is computed through the expression,

dx

dt
= [Hen(x, E)]−1hen(x)

(
dE

dt

)
(9)
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V e
n(
s,
E)

s

E
0

s

Ven(s,0)

s

Ven(s,E’’)

s

Ven(s,E’)

E’ E’’

Fig. 2: In the plane defined by the axes Ven
(s, E) and s for E = 0 the energy profile of a chemical

reaction has the usual folding form, two minimums associated with the reactants and products and
a maximum associated with the Transition State. When an OEEF with normalized direction en is
applied then the energy profile takes an unfolding form located in the planes with axis Ven(s, E) and s
for E 6= 0. The complete unfolding form takes place when E = EBBP . Thus the present OEEF model
description corresponds to an Unfolding Catastrophe.

If we are in a point of the FDSP curve, then E is computed from Eq. (4). We note that the value of
dE/dt is only a scaling factor on the resulting predictor direction. Normally, a fixed step length through
the normalized tangent criterion is used, namely, (dx/dt)T (dx/dt) = 1. From this normalization we
compute first,

dE

dt
= {hT

en
(x)[Hen

(x, E)]−2hen
(x)}−1/2 (10)

and substituting this value in Eq. (9) we obtain dx/dt to finally compute the predictor point. If
det[Hen

(x, E)] = 0 then an eigenvector of Hen
(x, E) has null eigenvalue. When this occurs at a point

of the FDSP curve the eigenvector with null eigenvalue is taken as normalized tangent vector, dx/dt.
Regarding Eq. (6), with this tangent the left hand-side part is zero. The equality is satisfied taken
dE/dt = 0. Thus, at the point (xT , E) of the FDSP curve where det[Hen(x, E)] = 0, the electric
field amplitude E shows a turning point. This point is labeled as bond-breaking point (BBP) and
the intensity of the field is labeled as EBBP . As explained in the previous Subsection 2.1 this point
is a degenerate stationary point since it is a stationary point and belongs to the manifold of points
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where det[Hen(x, EBBP )] = 0 of the current Ven(x, EBBP ). Finally, the corrector step consists in mov-
ing the predicted point through a circle centered in the previous point to a new point satisfying Eq. (2).

We discuss now the initial value problem to integrate a FDSP curve. Once the original PES, V (x),
and the dipole function, d(x), are given, we need as initial values a fixed normalized field vector,
en, and a point in configuration space, x0. With this information, the electric field amplitude E0 is
computed through Eq. (4). Applying Eq. (6) to this initial point, (xT

0 , E0), a new point is found as
explained in the previous paragraph. We proceed in this way until we find a point where the absolute
value of E is below a given threshold.

It is usually convenient to consider that the initial point x0 is associated with the reactants and that
the initial amplitude of external field action is null. That is, (xT

0 , E0) = (xT
min, 0), where, xmin is a mini-

mum of the original PES, V (x), associated with the reactants, i.e., g(xmin) = 0 and det[H(xmin)] > 0.
Since g(xmin) = 0 then q(xmin) = 0 and E0 = 0 due to Eq. (4). Thus, given the normalized en-vector,
the Hessian matrix H(x) at x = xmin is computed. Since E0 = 0 then H(xmin) = Hen(xmin, 0). With
these elements at hand and the vector, hen(xmin), we can apply Eqs. (10) and (9) and a new point x
is obtained. With this new point a new value E is computed through Eq. (4). We proceed in this way
until the BBP of this FDSP curve is located. The corresponding EBBP is the maximum amplitude of
the given external field, en, to be applied on this system. The integration process is continued until a
point where E is below to a given threshold in absolute value is reached.

2.3 Optimal nature of the model

Having presented the OEEF model as well as a way to solve it computationally, a remaining question
that needs to be addressed is: is there an OEEF with normalized direction en such that under this
field the system evolves optimally in some way? To answer this question for the first time, we consider
a set of FDSP curves all of them starting at the same point coordinates x0 but different normalized
en vectors and thus different E0 (according to Eq. (4)). Each FDSP curve reaches the corresponding
BBP at a different t value and, consequently, at a different (xT , E) point. According to the previous
Subsection 2.2, at the BBP, (xT

BBP , EBBP ), the next two conditions are satisfied,

dE

dt

∣∣∣∣
E=EBBP

= 0 (11a)

Hen
(x, E)

(
dx

dt

)∣∣∣∣x = xBBP

E = EBBP

 = 0 . (11b)

If we substitute Eq. (7) into Eq. (11b), using the resolution of identity and dividing by the tangent
norm we have,(

I− ẋẋT

ẋT ẋ

)[
H(x)− E 〈N(x)en〉

]
ẋ√
ẋT ẋ

+

(
ẋẋT

ẋT ẋ

)[
H(x)− E 〈N(x)en〉

]
ẋ√
ẋT ẋ

= 0 (12)

where ẋ = dx/dt. Eq. (12) tell us that at the BBP the tangent ẋ is an eigenvector of the matrix,
Hen(x, E), resulting from the sum of the two matrices, H(x) and −E 〈N(x)en〉. Thus the expectation
value of these two matrices, ẋTH(x)ẋ/(ẋT ẋ), and ẋT [H(x)−E 〈N(x)en〉]ẋ/(ẋT ẋ), should be the same
but opposite sign at the BBP, (xT

BBP , EBBP ). We conclude that the functions V (x) and Pen
(x, E) at
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the BBP coincide in the first and second derivatives with respect to x, but with the oposite sign. Thus
the xBPP point is the contact point of order two of the functions V (x) and Pen(x, E) for E = EBBP .
Two functions are said to be contact order two in a point if the first and second derivatives of these
functions coincide in this point.

At any point of a FDSP curve, such curve crosses the iso-contours of V (x) = ν and Pen
(x, E) = π,

through the tangent planes of these iso-contours with parallel normals, g(x) and −Ehen
(x), respec-

tively forming with the tangent ẋ an angle. At a BBP, both functions, V (x) and Pen
(x, E), are contact

of order two, which means that ẋTHen(xBBP , EBBP )ẋ/(ẋT ẋ) = 0 (see the discussion of the previous
Eq. (12)). Now we consider the case that the tangent vector ẋ forms a zero angle with the parallel
normals g(x) and −Ehen

(x) in the BBP. We note that in this case the relation

ẋ√
ẋT ẋ

=
g(x)√

gT (x)g(x)
=

hen(x)√
hT
en

(x)hen
(x)

(13)

holds since we are in a point of a FDSP curve. The normalized tangent of the FDSP curve coincides
with the normalized form of Eq. (2). We label this special BBP as oBBP for the reason explained
below. Eq. (13) allows us to rewrite Eq. (11) in the following form,

dE

dt

∣∣∣∣
E=EoBBP

= 0 (14a)

Hen(x, E)

(
g(x)√

gT (x)g(x)

)∣∣∣∣x = xoBBP

E = EoBBP

 = 0 g(x) 6= 0 . (14b)

Taking into account this fact and the first term of the left-hand side part of Eq. (12), we can rewrite
this equation in a decoupled form,[

I− g(x)gT (x)

gT (x)g(x)

]
H(x)

g(x)√
gT (x)g(x)

=

−
[
I−

hen
(x)hT

en
(x)

hT
en

(x)hen(x)

][
− E 〈N(x)en〉

]
hen

(x)√
hT
en

(x)hen
(x)

.
(15)

Thus when the tangent of the FDSP curve at the BBP is parallel to the first derivatives of both V (x)
and Pen(x, E) functions with respect to x then the derivative of the gradient norm, gT (x)g(x), with
respect to these variables x is equal to, but with the sign changed, the derivative of the gradient norm,
hT
en

(x)hen
(x)E2, with respect to the same variables. Now if we take the second term of the left-hand

side part of Eq. (12) we can write

g(x)√
gT (x)g(x)

gT (x)H(x)g(x)

gT (x)g(x)
= − hen

(x)√
hT
en

(x)hen(x)

hT
en

(x)

[
− E 〈N(x)en〉

]
hen

(x)

hT
en

(x)hen
(x)

. (16)

Thus the expectation value, gT (x)H(x)g(x)/(gT (x)g(x)), is equal to minus the expectation value,
hT
en

(x)[−E 〈N(x)en〉]hen
(x)/(hT

en
(x)hen

(x)), being this equality a particular case occurring when
Eq. (13) is satisfied at the BBP. Finally, if we differentiate at the BBP the quotient q(x) that coincides
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with the amplitude of the electric field E, see Eqs. (4), with respect to x and we impose the condition
Eq. (13), we obtain,

∇xq(x) = ∇x

[
(gT (x)g(x))1/2

(hT
en

(x)hen(x))1/2

]
=

1√
hT
en

(x)hen
(x)

[
H(x)− E 〈N(x)en〉

]
ẋ√
ẋT ẋ

=
1√

hT
en

(x)hen
(x)

Hen(x, E)
ẋ√
ẋT ẋ

= 0 .
(17)

In the derivation of Eq. (17), Eqs. (4),(13) and (7) have been used. Thus the control-axis en that
generates a FDSP curve such that the corresponding BBP satisfies Eq. (13) enables the transformation
of Eq. (12) into Eqs. (15) and (16) in addition to Eq. (17). This control-axis is labeled optimal OEEF,
en, and the BBP associated is the optimal BBP (oBBP). To analyze more deeply Eq. (17) we apply
the resolution of identity in this expression obtaining,

∇xq(x) =

(
I− ẋẋT

ẋT ẋ

)
∇xq(x) +

ẋẋT

ẋT ẋ
∇xq(x) =(

I− ẋẋT

ẋT ẋ

)
∇xq(x) +

ẋ√
ẋT ẋ

(
1√
ẋT ẋ

dq(x)

dt

)
=(

I− ẋẋT

ẋT ẋ

)
∇xq(x) +

ẋ√
ẋT ẋ

(
1√
ẋT ẋ

dE

dt

)
=

1√
hT
en

(x)hen
(x)

{(
I− ẋẋT

ẋT ẋ

)
Hen

(x, E)
ẋ√
ẋT ẋ

+

ẋ√
ẋT ẋ

(
ẋTHen

(x, E)ẋ

ẋT ẋ

)}
= 0 .

(18)

Thus, according to Eq. (18), the projection of ∇xq(x) in the space spanned by ẋ-vector results in
ẋT∇xq(x) = dq(x)/dt = 0 coinciding with dE/dt = 0, which is a condition satisfied by any BBP,
see Eq. (11a). In addition the projection of ∇xq(x) in the outer space orthogonal to ẋ-vector should
be the zero vector, 0. These two stationarity conditions constitute the optimal conditions that an
optimal OEEF should satisfy, see Figure (3). Algorithms to locate the oBBP and the optimal OEEF
are reported and described in references [48,50,51]. These results are a generalization of the corollary
described in reference [52] for Mechanochemistry. In this case, the second derivative with respect to
x variables of corresponding perturbed energy term of Eq. (1) is equal zero since it depends linearly
with respect to x variables thus the right hand side term of Eq. (15) is equal zero and the FDSP curve
at the oBBP coincides with a Gradient Extremal point[53] of V (x) function.

3 A Generic Example

In this section, we will show, through a generic two-dimensional example, the features of the model
explained in the previous Section 2 and more specifically in Subsections 2.1 and 2.3. The original
PES, V (x), used to illustrate the model was taken from reference [52]. Notice that in the present case
x = (x, y). The expression of this function is

V (x) = V (x, y) = 4.5(1.0− exp[−x+ 1.0])2 + 1.75y2 − 0.1y4 . (19)
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{x0,en}-space

{xBBP,en}-space

EoBBP

(xoBBP,en-optimal)

optimal-FDSP

FDSPFDSP

E
EBBP

EBBPEBBP

EBBP

FDSPFDSP

E0

Fig. 3: Optimal OEEF control of a FDSP curve. A scheme illustrating our framework to solve the
problem of FDSP curve generated by an OEEF associated with chemical reaction by optimizing the
E-parameter. The spatio-external electric field profile is defined by {x, en}, where x is the set of
variables and en the control-axis. The chemical transformation along the FDSP involves the evolution
of the reactant at the position x0 and field, en, to a position xBBP with the same field en in a finite
E value. The final E value is EBBP or EoBBP .

Concerning the function Pen(x, E) = Pen(x, y, E), we have selected the nonlinear dipole vector field
reported in [48] such that this function takes the final form

Pen
(x, E) = Pen

(x, y, E) = −E(exdx(x, y) + eydy(x, y)) (20)

where

d(x) = d(x, y) = (dx(x, y), dy(x, y))T = (cos(0.5(x+ y)), 0.333− 0.15(x2 − y))T . (21)

The first and second derivatives of V (x, y) and Pen
(x, y, E) with respect to x and y, given in Eqs. (19)

and (20) respectively, are reported in the Appendix 7.

We will now analyze two different FDSPs: one passing through the oBBP and the other one pass-
ing through a non-optimal BBP. Both curves start at (x, y) = (1.0, 0.0), which is a minimum energy
configuration of V (x, y), assumed to be the reactant species. The curve passing through the oBBP
corresponds to an optimal external field or control-axis, whereas the curve passing through a BBP
corresponds to a non-optimal external field. Since in both cases we start at the minimum point of
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V (x, y), then as discussed in Subsection 2.2, E0 = 0 and the tangent vector is computed by the expres-
sion, d

dt (x, y)T |x=1,y=0,E=0 = {H−1(x, y)hen(x, y)}|x=1,y=0, where H(x, y) and hen(x, y) are evaluated
using Eqs. (28) and (30), respectively, once the field (ex, ey) is given. The term dE/dt|x=1,y=0,E=0 is
determined through Eq. (10) taking into account that Hen

(x, y, E)|x=1,y=0,E=0 = H(x, y)|x=1,y=0.
Proceeding as explained in Subsection 2.2, the FDSP curves are computed until their corresponding
BBP (the point where det(Hen

(x, y, E)) = 0 and dE/dt = 0) are reached. The FDSP curve generated
by the optimal field or control-axis reaches the oBBP. All units of the quantities appearing in this
Section are expressed in arbitrary units.

The normalized non-optimal field used for the present discussion is en = (−0.373,−0.928)T

whereas the optimal one is en = (−0.549,−0.836)T . The optimal normalized field en was found
solving Eq. (14b) by the procedure briefly discussed in Ref. [48]. We recall that the set of conditions
given in Eqs. (14) is the unique one to be satisfied by the field or control-axis to be optimal. These
conditions differentiate the optimal field from the non-optimal fields as discussed in Subsection 2.3.

In Figure (4) we represent the effective potential Ven
(x, y, E) for different values of the E-parameter

from E = E0 = 0 until E = EBBP generated during the integration of the FDSP curve corresponding
to the non-optimal OEEF with normalized direction en = (−0.373,−0.928)T . At E = EBBP = 3.97
we found the maximum value of the E-parameter being located at the point (1.470,−0.017), which
is the BBP of this FDSP curve generated by the normalized control-axis en = (−0.373,−0.928)T .
On the other hand, in Figure (5) we represent the effective potential Ven

(x, y, E) for different values
of the E-parameter from E = E0 = 0 until E = EoBBP generated during the integration of the
FDSP curve corresponding to the optimal OEEF with normalized direction en = (−0.549,−0.836)T .
At E = EoBBP = 3.77 we found the maximum value of the E-parameter being located at the point
(1.476, 0.072), which corresponds to the oBBP, since the FDSP curve at this point satisfies the condi-
tions given in Eqs. (14), numerically demonstrated below. Notice that EoBBP = 3.77 < EBBP = 3.97,
which can be seen as a numerical proof of Eq. (18) and schematically represented in Figure (3).

At the oBBP, located at (1.476, 0.072), one of the expectation values of the Hessian matrix as-
sociated with V (x, y) function coincides with one of the expectation values of the Hessian matrix
associated with Pen

(x, y, 3.77) function with en = (−0.549,−0.836)T . Taking into account the results
discussed in Subsection 2.3, the oBBP, as well as any other BBP, is the point where the functions
V (x, y) and Pen(x, y, E) given in Eqs. (19) and (20), respectively, are of contact order two. The tangent
vector of the non-optimal FSDP at (x, y)BBP = (1.470,−0.017) is an eigenvector of Hessian matrix,
Hen

(x, y, E), with null eigenvalue, being this Hessian function of Hessian matrices of the functions
V (x, y) and Pen

(x, y, E) with respect to x, y, see Eq. (11b) and Eq. (7). The tangent of this FDSP curve
at the BBP does not coincide with the gradient of V (x, y) and Pen

(x, y, E) with respect to x, y. On the
other hand, for the optimal FDSP curve the tangent at (x, y)oBBP = (1.476, 0.072) coincides with the
gradients of V (x, y) and Pen(x, y, E) with respect to x, y. Notice that in both cases, the gradients of
V (x, y) and Pen

(x, y, E) are collinear since Eq. (2) should be satisfied at any point of any FDSP curve.

Now we proof numerically the results described in Eqs. (12), (15) and (16) for these non-optimal and
optimal FDSP curves. For the non-optimal FDSP, the expectation values of H(x, y) and [∇(x,y)∇T

(x,y)

Pen
(x, y, E)|E=EBBP

] matrices coincide but with the opposite sign. In this two-dimensional example
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the second term of the left-hand-side part of Eq. (12) takes the form and the value,

ẋTH(x, y)ẋ

ẋT ẋ

∣∣∣∣
x=1.470,y=−0.017

= 1.420 =

−
ẋT [∇(x,y)∇T

(x,y)Pen
(x, y, E)]ẋ

ẋT ẋ

∣∣∣∣
x=1.470,y=−0.017,E=3.97

,

(22)

being, ẋT = (ẋ, ẏ), whereas the equivalent expression and numerical value for the optimal FDSP is
given in Eq. (23),

gT (x, y)H(x, y)g(x, y)

gT (x, y)g(x, y)

∣∣∣∣
x=1.476,y=0.072

= 1.388 =

−
hT
en

(x, y)[∇(x,y)∇T
(x,y)Pen(x, y, E)]hen(x, y)

hT
en

(x, y)hen
(x, y)

∣∣∣∣
x=1.476,y=0.072,E=3.77

.

(23)

Eq. (23) is a two-dimensional example of Eq. (16) taking off the normalized gradients since we are
in a point of a FDSP curve and Eq. (2) is satisfied. The expressions for g(x, y), hen

(x, y), H(x, y)
and [∇(x,y)∇T

(x,y)Pen
(x, y, E)] are given in the Appendix 7. In Eq. (22) the normalized tangent is,

ẋ/
√

ẋT ẋ = (0.9964, 0.0854)T , which is the tangent direction vector the non-optimal FDSP at the
BBP. On the other hand, for the optimal FDSP at the oBBP, the normalized gradients coincide with
the normalized tangent of this FDSP curve at this point according to Eq. (13). In Eq. (23) the normal-

ized gradients are, g(x, y)/
√

gT (x, y)g(x, y) = hen
(x, y)/

√
hT
en

(x, y)hen
(x, y) = (0.993, 0118)T which

is also the tangent direction vector the optimal FDSP at the oBBP.

To analyse numerically these results, we first show in Figure (6) the function V (x, y) given in
Eq. (19) and the function Pen(x, y, E) given in Eqs. (20) and (21) for the optimal and non-optimal
OEEF at the corresponding Emax values, EoBBP and EBBP respectively. When the non-optimal
OEEF is considered, at the BBP point the normalized gradients of V (x, y) and Pen

(x, y, EBBP )

coincide, g(x, y)/
√

gT (x, y)g(x, y) = hen
(x, y)/

√
hT
en

(x, y)hen
(x, y) = (0.9996,−0.0290)T , since the

BBP is a point of the FDSP curve. This vector is depicted in green colour in Figures (6a) and (6b).
However, the normalized tangent of this non-optimal FDSP curve at the BBP point depicted as
blue arrow in the same figures is ẋ/

√
ẋT ẋ = (0.9964, 0.0854)T , being different from the normalized

gradients g(x, y) and hen
(x, y). The normalized gradients g(x, y) and hen

(x, y) and the normalized
tangent of this FDSP curve at the BBP point form an angle of 6.5◦. This angle is very small which
means that the optimal OEEF is close to the present field and also the BBP is close to oBBP. Eq. (15)
is not satisfied since we are in a BBP. In the present case the vector,[

I− g(x, y)gT (x, y)

gT (x, y)g(x, y)

]
H(x, y)

g(x, y)√
gT (x, y)g(x, y)

=

(
−0.0018
−0.0607

)
(24)

differs numerically from the vector,[
I−

hen
(x, y)hT

en
(x, y

hT
en

(x, y)hen(x, y)

][
∇(x,y)∇T

(x,y)Pen
(x, y, EoBBP )

]
hen

(x, y)√
hT
en

(x, y)hen
(x, y)

=

(
−0.0089
−0.3071

)
. (25)
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(a) Ven (x, y, E) for E = 0.0. The
blue point is the point of FDSP
curve located at (1.0, 0.0) for E =
0.0. This point is located where
∇xVen (x, y, E)|E=0.0 = 0.

(b) Ven (x, y, E) for E = 2.0. The
blue point is the point of FDSP
curve located at (1.105,−0.025) for
E = 2.0. This point is located where
∇xVen (x, y, E)|E=2.0 = 0.

(c) Ven (x, y, E) for E = 3.0. The
blue point is the point of FDSP
curve located at (1.193,−0.032) for
E = 3.0. This point is located where
∇xVen (x, y, E)|E=3.0 = 0.

(d) Ven (x, y, E) for E = Emax =
EBBP = 3.97. The blue point is
the BBP located at (1.470,−0.017)
of the FDSP curve. This
point satisfies the conditions,
∇xVen (x, y, E)|E=3.97 = 0 and
det[Hen (x, y, E)]E=3.97 = 0.

Fig. 4: Representations of Ven
(x, y, E) for different values of E-parameter for non-optimal OEEF with

normal direction en = (−0.373,−0.928)T . The blue points are the FDSP curve points corresponding
at each E-parameter. According Eq. (1) when E = 0.0 then Ven

(x, y, E) = V (x, y), which is the case
given in Figure (4a). Figure (4d) is a specific case to that given generically in Figure (1), when a point
of FSDP curve is a point of the manifold det[Hen(x, y, E)] = 0.

These two vectors are depicted in yellow in Figures (6a) and (6b). As expected Eq. (11b) is satisfied,

since we are in a BBP point and hence the norm of [Hen
(x, y, E)]ẋ/

√
ẋT ẋ|x=1.470,y=−0.017,E=3.97 vec-

tor ' 10−5. We recall that the normalized tangent vector of this BBP is, ẋ/
√

ẋT ẋ = (0.9964, 0.0854)T .

On the other hand for the optimal FDSP curve at the oBBP, Eq. (13) is satisfied, being its value

ẋ/
√

ẋT ẋ = g(x, y)/
√

gT (x, y)g(x, y) = hen(x, y)/
√

hT
en

(x, y)hen(x, y) = (0.993, 0118)T . The expec-

tation values that appear in Eq. (16) are already reported in Eq. (23). The corresponding Eq. (15) for
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(a) Ven (x, y, E) for E = 0.0. The
blue point is the point of FDSP
curve located at (1.0, 0.0) for E =
0.0. This point is located where
∇xVen (x, y, E)|E=0.0 = 0.

(b) Ven (x, y, E) for E = 2.0. The
blue point is the point of FDSP
curve located at (1.112, 0.012) for
E = 2.0. This point is located where
∇xVen (x, y, E)|E=2.0 = 0.

(c) Ven (x, y, E) for E = 3.0. The
blue point is the point of FDSP
curve located at (1.212, 0.029) for
E = 3.0. This point is located where
∇xVen (x, y, E)|E=3.0 = 0.

(d) Ven (x, y, E) for E = Emax =
EoBBP = 3.77. The blue point
is the optimal BBP located at
(1.476, 0.072) of the FDSP curve.
This point satisfies the conditions,
∇xVen (x, y, E)|E=3.77 = 0 and
det[Hen (x, y, E)]E=3.77 = 0.

Fig. 5: Representations of Ven
(x, y, E) for different values of E-parameter for the optimal OEEF with

normal direction en = (−0.549,−0.836)T . The blue points are the FDSP curve points corresponding
at each E-parameter. According Eq. (1) when E = 0.0 then Ven

(x, y, E) = V (x, y), which is the case
given in Figure (5a). Figure (4d) is a specific case to that given generically in Figure (1), when a point
of FSDP curve is a point of the manifold det[Hen(x, y, E)] = 0.

this two-dimensional case has the following numerical values,[
I− g(x, y)gT (x, y)

gT (x, y)g(x, y)

]
H(x, y)

g(x, y)√
gT (x, y)g(x, y)

=

(
−0.0293
0.2477

)
=

−
[
I−

hen
(x, y)hT

en
(x, y

hT
en

(x, y)hen
(x, y)

][
∇(x,y)∇T

(x,y)Pen(x, y, EoBBP )

]
hen(x, y)√

hT
en

(x, y)hen
(x, y)

.
(26)

Thus, neither g(x, y) nor hen
(x, y) are eigenvectors of H(x, y) and [∇(x,y)∇T

(x,y)Pen
(x, y, EoBBP )]

respectively at oBBP point. Finally, the norm of the vector of Eq. (14b) is ' 10−5 indicating that
this point is an oBBP. Finally, taking Eq. (18) and the numerical results of Eqs. (23) and (26) we
see that ∇(x,y)E = (0, 0)T , proving that the normalized axis-control, en = (−0.549,−0.836)T , is the
optimal OEEF. With these results we have proved numerically the analytical expressions derived and
discussed in Section 2.
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(a) V (x, y) original potential energy surface. The blue point
is the oBBP, the orange point is the BBP. The blue vectors
are the normalized tangent of the FDSP curves. The green
vector is the normalized gradient vector, g(x, y), and the
yellow vectors are the projection of H(x, y)g(x, y) onto the
subspace orthogonal to g(x, y)-vector.

(b) Pen (x, y, E) of non-optimal OEEF for E = Emax =
3.97. The blue point is the BBP. The blue vector is the nor-
malized tangent of the FDSP curve. The green vector is the
normalized gradient vector, hen (x, y), and the yellow vec-
tor is the projection of [∇(x,y)∇T

(x,y)
Pen (x, y, EBBP )]hen

(x, y) onto the subspace orthogonal to hen (x, y)-vector.

(c) Pen (x, y, E) of optimal OEEF for E = Emax = 3.77.
The blue point is the oBBP. The blue vector is the nor-
malized tangent of the FDSP curve. The yellow vector is
the projection of [∇(x,y)∇T

(x,y)
Pen (x, y, EoBBP )]hen (x, y)

onto the subspace orthogonal to hen (x, y)-vector.

Fig. 6: Representations of original PES, V (x, y), given in Eq. (19) and perturbation, Pen(x, y, E),
given in Eqs. (20) and (21) for the non-optimal, Figure (6b), and optimal, Figure (6c), OEEFs. The
E-parameter is taken the corresponding Emax value.
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4 Application of the Model to a Real Chemical Example: Trans-to-cis Isomerization of
a [3]cumulene derivative

We now show the application of the model to a real system. The aim of this example is to show how
the optimal external electric field annihilates the energy barrier of a chemical process. We have chosen
the trans-to-cis isomerization of a [3]cumulene derivative because recent experiments have shown that
the OEEFs accelerate isomerizations in this type of systems [54] (see Figure (7) for the molecular
structure of the system under consideration). We have described the isomerization process considering

1

2

3

4

Fig. 7: Molecular geometry of the s-trans isomer with the numbering used to define the central dihedral
angle.

a single variable, namely, the dihedral angle characterized by the C1-C2-C3-C4 atoms, see Figure (7).
The potential energy profile with respect to this dihedral angle was computed by means of constrained
geometry optimizations in which the mentioned dihedral was fixed and the remaining degrees of free-
dom were optimized. We scanned the dihedral from 0◦ to 180◦ with a step of 10◦. By convention
the s-cis isomer is described by a 0◦ dihedral angle, while the s-trans is described by a 180◦ dihedral
angle. The calculations reported in this section, were carried out within the framework of ab initio
single-determinant spin-unrestricted Hartree-Fock (UHF) method [55,56] with the 6-31G* basis set,
[57] employing the ORCA 5.0.3 suite of programs [58–62]. The computational approach relied on the
broken-symmetry formalism, in this case we calculated the set of orbitals associated to the lowest
triplet state and used them as a guess to perform the calculations of the singlet state.

It is now possible to locate the oBBP on the potential energy curve and to compute the optimal
OEEF. Figure (8) shows the potential energy curve and the location of the oBBP. The oBBP is the
point in which the dihedral angle is equal to 140◦. The energy difference between the transition state
and the oBBP is equal to 2.37 kcal/mol, the energy difference between the oBBP and the s-trans
minimun is equal to 1.47 kcal/mol. The optimal OEEF has the direction, en = (−0.806, 0.282, 0.521)T

direction, with an amplitude of EoBBP = 0.0089 a.u = 4.57 · 109 V/m at the oBBP. The molecular
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Fig. 8: Potential energy profile of the s-cis/s-trans isomerization. The values are relative to the energy
minimum. The red dot represents the oBBP point located at dihedral angle 140◦.

structure of the oBBP and the optimal OEEF is reported in Figure (9).

In Figure (10) we report the potential energy profile calculated under the effect of the optimal
OEEF. It nicely shows how the energy barrier is completely removed.

5 Conclusions

With the present study we have proved analytically and numerically that the model presented in [48]
is based on the Catastrophes and Optimal Control Theories. We have proved that the optimality of
the field is due to a type of control-axis that leads to the optimal BBP (oBBP). The oBBP point
has a unique mathematical property: its E parameter or amplitude of electric field coincides with the
quotient q(x), which is stationary in the direction of the tangent of the optimal FDSP curve and also
stationary in the outer subspace. We think that Catastrophes and Optimal Control Theories provides
an important tool to analyse and understand the complexity of chemical process and to seek possible
control of chemical mechanisms.
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Fig. 9: Molecular geometry of oBBP. The purple arrow represents the direction of the optimal OEEF,
en = (−0.806, 0.282, 0.521)T , the orange one the direction of the molecular dipole moment vector.

Spanish Structures of Excellence Maŕıa de Maeztu program, through Grant No. MDM- 2017-0767. We
acknowledge the CINECA award under the ISCRA initiative, for the availability of high performance
computing resources and support.

7 Appendix

In this Appendix we report the gradient vector and the Hessian matrix with respect to the x and
y variables of the function V (x, y) given in the Eq. (19) and the function Pen

(x, y, E) given in the
Eqs. (20) and (21).

7.1 Gradient vector and Hessian matrix of V (x, y) function defined in Eq. (19).

The gradient vector with respect to x and y variables of the function V (x, y) given in Eq. (19) is,

∇(x,y)V (x, y) = g(x, y) =

(
gx(x, y)
gy(x, y)

)
=

(
9.0 exp[−x+ 1.0](1.0− exp[−x+ 1.0])

(3.5− 0.4y2)y

)
(27)

while the Hessian matrix is,

H(x, y) = ∇(x,y)∇T
(x,y)V (x, y) = ∇(x,y)

(
gx(x, y) gy(x, y)

)
=(

9.0 exp[−x+ 1.0](2.0 exp[−x+ 1.0]− 1.0) 0
0 (3.5− 1.2y2)

)
.

(28)

Thus, either the gradient vector and the Hessian matrix is independent of the normalized axis control(
ex ey

)
and the E-parameter.
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Fig. 10: Potential energy curve of the s-cis/s-trans isomerization. In blue the original potential energy
profile that it is calculated without the effect of the external electric field, e = Een = 0. In orange the
potential energy profile calculated with the effect of the optimal OEEF. The values are relative to the
energy minimum without the external electric field. The red dot represents the oBBP point located
at dihedral angle 140◦.

7.2 Gradient vector and Hessian matrix of Pen
(x, y, E) function defined in Eqs. (20) and (21).

The gradient vector with respect to x and y variables of the function Pen
(x, y, E) given in Eqs. (20)

and (21) is,

∇(x,y)Pen
(x, y, E) = −Ehen

(x, y) = −E
(
hen,x(x, y)
hen,y(x, y)

)
(29)

where

hen(x, y) =

(
hen,x(x, y)
hen,y(x, y)

)
= ex∇(x,y)dx(x, y) + ey∇(x,y)dy(x, y)

= −ex0.5 sin[0.5(x+ y)]

(
1
1

)
+ ey0.3

(
−x
0.5

)
.

(30)

Finally, substituting Eq. (30) into Eq. (29) we obtain the final expression,

∇(x,y)Pen(x, y, E) = E

(
ex0.5 sin[0.5(x+ y)]

(
1
1

)
− ey0.3

(
−x
0.5

))
. (31)
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On the other hand the Hessian matrix is

∇(x,y)∇T
(x,y)Pen

(x, y, E) = [−E 〈N(x, y)en〉] = −E∇(x,y)h
T
en

(x, y)

= −E
(
∇(x,y)hen,x(x, y) ∇(x,y)hen,y(x, y)

) (32)

where

∇(x,y)h
T
en

(x, y) = ex∇(x,y)∇T
(x,y)dx(x, y) + ey∇(x,y)∇T

(x,y)dy(x, y)

= −ex0.5{∇(x,y)(sin[0.5(x+ y)])}
(
1 1
)
− ey0.3

(
1 0
0 0

)
= −

{
ex0.25 cos[0.5(x+ y)]

(
1 1
1 1

)
+ ey0.3

(
1 0
0 0

)}
.

(33)

Finally, substituting Eq. (33) into Eq. (32) we have the Hessian matrix of Pen(x, y, E),

∇(x,y)∇T
(x,y)Pen

(x, y, E) = E

{
ex0.25 cos[0.5(x+ y)]

(
1 1
1 1

)
+ ey0.3

(
1 0
0 0

)}
. (34)

Thus, ∇(x,y)∇T
(x,y)Pen

(x, y, E) is a function of the variables x and y, the control parameter E and the

normalized axis control en =
(
ex ey

)T
, as expected. Eq. (34) is a two-dimensional case of the general

forme given in Eq. (8).
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Nature 531, 88 (2016)
7. L. Zhang, E. Laborda, N. Darwish, B.B. Noble, J.H. Tyrell, S. Pluczyk, A.P. Le Brun, G.G. Wallace, J. Gonzalez,

M.L. Coote, S. Ciampi, J. Am. Chem. Soc. 140(2), 766 (2018)
8. X. Huang, C. Tang, J. Li, L.C. Chen, J. Zheng, P. Zhang, J. Le, R. Li, X. Li, J. Liu, Y. Yang, J. Shi, Z. Chen,

M. Bai, H.L. Zhang, H. Xia, J. Cheng, Z. Tian, W. Hong, Sci. Adv. 5(6) (2019)
9. S. Ciampi, N. Darwish, H.M. Aitken, I. Dı́ez-Pérez, M.L. Coote, Chem. Soc. Rev. 47, 5146 (2018)
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