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Abstract Valley-ridge inflection points (VRIS) emerge on a potengiakrgy surface
of a chemical reaction if the reaction pathway bifurcatdse Valley of the reaction
path branches into two valleys, and a ridge in between. lthagpen in uphill, or in
downhill direction. Newton trajectories (NT) are curves fioe description of the re-
action path. They are curves where at every point the gradféhe potential energy
surface points into the same direction. Singular Newtgettaries are a special case:
they bifurcate at VRI points. To find a singular Newton trépeg is quasi equivalent
with the determination of the corresponding VRI point whigiie NT bifurcates.

Often the bifurcation of the reaction path is governed byrarsgtry of the prob-
lem. Then the symmetry axis is usually the first branch of theudar NT, and so its
determination is easy. In case of an unsymmetric branchimgever, such a guiding
line is missing. We name the place of such a bifurcation a SkBlv We propose a
variational calculation of the singular NT through the VRIimterest by an empiri-
cal, iterative method. Before, the variational theory o$gible reaction pathways is
developed, and applied to the intrinsic reaction coor@iflRC), as well as to NTs.
We have to employ the theory of NTs with its many facets, we esgecially the
Branin equation. The developed method is applied to theutzlon of VRI points
on the potential energy surface of HCN, and to a VRI point ahale dipeptide being
adjacent to the C5 minimum.

Keywords Potential energy surfaeeVariation of reaction pathwaye
Singular Newton trajectory Skew Valley-Ridge Inflection Point

1 Introduction

The concept of the Newton trajectory (NT) builds a static elaxf a reaction path
(RP) of an adiabatic potential energy surface (PES) [1+W.d side approach to the
theoretical kinetics of chemical systems [8]. An RP is rdyglefined as a line in the
coordinate space, which connects two minimizers by paskiegaddle point (SP),
the transition state (TS) structure or a “mountain pass’haddiabatic PES following
the valley [9]. The energy of the SP is assumed to be the high&se tracing along
the RP. It is the minimal energy a reaction needs to take pReaction theories are
based on the knowledge of the RP either implicitly (trapsistate theory [10,11]), or
explicitly (variational transition state theory [8, 12]hese theories only require local



information about the PES along the RP. They circumvent timedsion problem: it
is impossible to fully calculate the PES. Because this iftihdamental problem in
handling ann-dimensional hypersurface: it is the large dimension. Moles with
more thanN=4 atoms would cause an overwhelming number of net pointshior
PES. The RP concept is a promising way out. It reduces thdeobf finding an
algorithm for one-dimensional curves — without any knowledf the whole PES. A
parameterizationof the RP x(t)=(x}(t),...,x"(t))T is calledreaction coordinate

The SP and the minimums form stationary points of the PESgRlgispeaking,
it is only of secondary interest, how a reaction path ascemtte SP. This looseness
makes possible a variety of RP definitions, thus, insteath®fusually used steep-
est descent for the minimum energy path (MEP), we may use awiNgh has to
monotonously connect a minimum and an SP to be an RP [13]whusave to ex-
clude NTs which have a turning point with an energy highenttiee SP. An NT is
a curve where a selected gradient direction equally comeatavery curve point.
There are NTs, which in most cases pass all stationary pdihtss, NTs are an in-
teresting procedure in order to determine all types oftatiy points [1] by way
of trial. Besides the RP-property, NTs can be used to definkefiad some kinds
of valley-ridge inflection (VRI) points [2,6], because thiefurcate there. The in-
terest in skew VRI points has increased in the last time [®4ahd see references
therein. The mathematical method is the Branin equatiomuaonomous system of
differential equations. It is singular at the VRI point. id paper, we search for that
singularity by an empirical trial and error approach. Bfaeeof NTs can also be de-
fined by a variational integral [20,21]. The ansatz is repeat this paper, at least for
the theoretical background of the method. Usually, a whateilfy of NTs connects
minimum and TS of index one. Thus, there is no unique NT betveeminimum and
a TS. However, a unique, a so called singular NT connects godgRit with its adja-
cent stationary points. This NT can be found by a variatidresltment. Nowadays,
variational treatments reach a renovation in RP calcuiat[@0—30]. In this paper,
we will explore the calculus of variations [31] for NTs.

The mathematically simplest RP definition is the steepestet@ from an SP,
resulting in the well-known intrinsic reaction coordindt®C) of Fukui [32-35].
Its usual use is in mass-weighted Cartesians [34]. Thiswmtlis defined by an
autonomous system of differential equations for a tangewtor along the curve
searched for being the gradient of the PES. Its solutioniigusbecause outside of
stationary points the gradient is not zero. Therefore, furt@tion can occur before
reaching the next stationary point. Hence, no branching=8 Palleys will be truly
described by following the IRC, see the discussion in ref].[3he unique character
will also emerge in a variational approach [26].

Gradient extremals (GE) [9,37-41] appear to representesunhich meet spe-
cial VRI points. They form another approach for RP follow[dg—44]. Special VRIs
are passed by GEs, and can be detected by following the GEoBeitow a GEs is
much more complicated than the IRC, or than an NT. Neverssel8Es are better
fitted to solve the valley branching problem than the IRC,H®y/determination of a
GE bifurcation itself [40,41]. However, other problemssardue to the occurrence
of pairs of turning points instead of a branching point (BP}h& curve [45]. Such
turning points may interrupt the pathway between minimurd 8®. Then the GE
curves often show some kind of avoided crossing [9, 36, 38\8&h its many addi-
tional solution curves and turning points [41-43], this cgpt in its general form is
not suited to be used as a routine program for the calculafisaaction paths and
possible VRIs. In the light of the variational ansatz, GEsdbfit to this idea [20],
in contrast to their name, “extremal”.



The paper is organized as follows: The Sections 2 and 3 répedamentals of
the theory of variations. That will be applied in Sectiongl & to IRC and NTs as
an RP definition, including conjugate points and the exoeatirole of the IRC for
an SP, and the NT for a VRI. In Section 6 of applications we psgpan empirical
method to a variational ansatz, and we develop some exanyis on the PES of
HCN and one interesting VRI on the PES of alanine dipeptidefikally add a short
conclusion.

2 Variational Methods [31,46]
2.1 The Variational Integral

Before we give the go-ahead, here are some basics. Ldt (bexa, ..., %n, 21, ..., Zn)
a function with continuous first and second partial derixeiwith respect to all its
arguments. We search an extremum of a functional of the form

I(u,v):/UVF(t,xl(t),...,xn(t),x’l(t),...,x’n(t))dt (1)

which depends om continuously differentiable functions(t) = (xy(t),...,x,(t))"
being the components of an RR}), in an n-dimensional configuration space. We
regard all vectors as column vectors. The prineethe derivation td. Note thatl is

a one-dimensional integral. The boundary conditions oRReare

(x1(u),....xa(U)T = U, and (xy(v),....xa(V))T =V .

These are usually the coordinates of minimum and SP, or o&tljgcent minimums,
or of two adjacent SPs, and: Ru,Vv] is the curve parameter. Bé€ C [u,v] x R" a
simple connecting region which contains the poifitsU) and(v,V). The set

r={y:t—x(t) eK|xeCuv],x(u)=U,x(v)=V}

should contain all continuously differentiable paths besgwU andV. Vectorx is
the representation of the RP: t — x(t). With U andV given, the task is to find
a minimum of eq.(1) ovef, thus ofl(u,v). It is named thesimple fixed endpoint
problem in the calculus of variation$he vector which belong toy € I are named
admissible. We define the two norms foe C1[u, V]

[xllo:= sup|x(t)],
te(uy]
and
[X|l1 == sup|x(t)|+ sup|X'(t)] . 2)
tefu,v] tefu,v]

We namey* € I with the corresponding pathway

(i) weak minimunof (1), if ane > 0 exists, that for all admissibbewith
[IX* —x|l1 < € it holds1 (x*) <1(x).

(i) strong minimunof (1), if ane > 0 exists, that for all admissibbewith
IX* —X]lo < € it holds | (x*) < 1(x).

Remark: strong minimum implicates weak minimum; but vicesagt does not hold,
in general.



2.2 Necessary Condition for Extremals

The necessary condition for a curde= x;(t), i = 1,...,n, to be an extremal of the
functional (1) is the system of Euler equations where we ussgipts to denote
differentiation d

in_apxi,ZO, i=1..n (3

The integral curves of Euler equations are cadigttemalsn mathematics in the field
of the variational calculus.

2.3 Sufficient Conditions for a (weak) Minimal Extremal

An important kind of points in variational theory is the fmNing definition [31]:

If a curve is an extremal of Eq.(1), starting at any paintand a second “neighbor-
ing” extremal of Eq.(1), also starting &k, intersects the first curve in a next point,
say pointw, then the intersection point is callednjugate poin{CP).

Example
On a sphere the meridians through the poles are the grelscinith the shortest
arclength but the poles are CPs because the extremalseiciténsre.

Besides the condition of the Euler equations, there are tsthiér conditions for a
weak minimum:

(i) The first conditions of a curve(t) to be an extremal is the Jacobi condition that
the curve does not have to contain CPs.

(ii) The second is the Legendre condition of positive dedinéss of the second vari-
ation, of the matrixry .

2.4 Sufficient Conditions for a Strong Minimal Extremal

A neighborhood of/* may bed; = {y eI : ||[x*—X||p < €}. There we define a vector
field

X' = Y(t,x) (4)

with ¢ € CY(K). We name iffield of extremal®f K, if every solutionx(t) of (4) is
also a solution of the Euler equations (3).

Remark:

(i) A field of extremalsc C'(K) is a family of extremals, where through every point
of K goes exactly one extremal.

(ii) If we have an extremaly*, of eq.(1), which is additionally a trajectory of the field
of definition (4), we say* is embedded in the field (4).

The criteria of a weak extremum implicate the embedding efektremalx(t). A
condition for a strong minimum is formulated by tWéierstrald E-function

E(t,x, g, W) := F(t,x, W) — F(t,%, ) — (W — () TFe (t,X, ) . (5)

If it holds E(t,x, @,w) > O for all points(t,x) € K and all finite vectorsv, theny* is
a strong minimal extremal of the variational problem (1).

3 Variational Analysis of IRC and of NTs
The adiabatic PES of the molecular system of observatiox), i the basis of

our treatment. We use the Born-Oppenheimer approximaénassume the PES
is given by a scalar function of the coordinates of the mdkeet every point of
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interest. Letk be the subset oR" which we use for theconfiguration spacef
the PES. Letx = (x1,...,%)' € K. The configuration space of a molecule is re-
stricted. The functiorE(x): K — R is ann—dimensional surface ové¢. The set
E:. = {x € K,E(x) = ¢} is namedequipotential hypersurfaceWe assume at least a
twofold differentiability of the PES for practical reasoi$e vector of first deriva-

tivesg : K — R" with
9E 9E  \'
0 = (o0 52 ) ©

is thegradient The second derivatives & form theHessianmatrix H(x) € R™"

0°E "
1= (™). )

The Hessian is symmetric. Tlaeljoint matrixA of the Hessian matriki is defined
as((—1)"Im;)T wherem; is the minor ofH obtained by deletion of thi&" row and
the j'" column fromH, and taking the determinant. The adjoint matrix satisfies th
relation

HA = det(H) I, 8)

detM) is the determinant dfi, andl, is the unit matrix. Astationary poinis where
the gradient is zero

g(x) =0, C)
like in minimums and SPs of any index. valley-ridge inflection poin{VRI) is a

point where
A(X)g(x) =0, but g(x)#0 (usually, (10)

see below for a deeper explanation.

3.1 Steepest Descent: IRC

A pathway of wide interest is the IRC [33], cf. also [34]. THeepest descent (SD)
from the SP in (usually mass-weighted) Cartesian coord#d7] is a simple defini-
tion of a reaction path, which is well-known as the intringaction coordinate (IRC).
Usingt for the curve parameter, a genest&gepest descentirvex(t) is defined by
the system of vector equationsnrdimensions

X'(t) =—g(x(t)) - (11)

The SD system is a system of autonomous differential equatdd the first order

allowing an integration constant. Thus, its solution cartsat an arbitrary initial

point (where the gradient is not zero). The path (11) is glwethe negative gradient
of the PES for the tangent vector of the curve. But the patkifitirce is the zero

vector at stationary points, see eq.(9). With the exceptibthe stationary points,
the solution of the differential equation of the IRC is uréqdiaking the IRC as
a model, we may understand the definition of an RP by a systeautohomous
differential equations like eq.(11). The Jacobian matfigx) is the Hessian. It is
symmetric. Then there is a simple possibility to transfouthsan RP definition from
a differential equation into the variational form of Eq.(ff)x(t) is an RP, and the
lengthl (X'(t)) is given by

(1)) = XTI = kﬁlx@av, (12)

then its variational formulation works with

F(x,x') = /gT(x(1)) g(x()) 1(X'(1)) , (13)



because this immediately fulfills the Euler equations [20]. One has thgat&onal
formula for the steepest descent [26—30,48,49].

is0= [ /a7 (x(0) 9x(0) X OT X (W) dt (14)

The extremal ofsp = min!, for U = minandV =T S is the IRC. For integrants like
Eq.(13), the matri¥,, ,, has a zero determinant. The matrix is not positively definite
The second sufficient condition for a minimum is not fulfill&kcause the integrant
of the task (14) has a positive first part, however, the exatéma minimal curve
[50].

3.2 Newton Trajectory (NT) or Reduced Gradient [51]

A quarter of a century ago it was proposed to chose a drivimgdinate along the
valley of the minimum, to go a step in this direction, and tofpen an energy opti-
mization of the residual coordinates [52]. A combinatiortied distinguished coor-
dinate method starting at the SP and steepest descent wassal$ [53]. Ten years
ago, the method was transformed into a new mathematical [fojirithe chemically
most important features of the PES are the reactant and duzigr minimum and
the SP lain in between. These stationary points of the PEShamacterized by the
conditiong(x) = 0. It is valid at extremizers of the PES, but single componefiise
gradient can also vanish in other regions of the PES. Usiisgptioperty, a curve of
pointsx can be followed which fulfills th@ — 1 equations

=0, i=1...k-1k+1,..,n (15)

omitting thek—th equation [1,54]. This produces the{ 1)-dimensional zero vector
of thereduced gradientthe method was subsequently called reduced gradient fol-
lowing. Eq. (15) means that the gradient points into thedtioa of the singlex
coordinate. The concept may be generalized by the challdragany selected gra-
dient direction is fixed

g(x)/Ig()=r (16)
wherer is the selected unit vector of the search direction; and treesponding
curve is namedNewton trajectoryThe search direction may correspond to the start
direction of a chemical reaction. The “reduction” of Eq.&realized by a projection
of the gradient onto thén — 1)-dimensional subspace which is orthogonal to the
one-dimensional subspace spanned by the search directtoourve belongs to the
search direction, if the gradient of the PES always remains parallel to thedation
of r at every point along the curvet)

Prg(x(t) =0 (17)

whereP; projects with the search direction This meand; r=0. A possibility to
defineP; is [2,55]
Pr=1In—rr’ (18)

wherel,, is the unit matrix. ThisP, is annxn matrix of rankn— 1, because is
a column vectorrT is a row vector, and their dyadic product is a matrix of rank
1. In Fig.1 we show some NTs on a toy model. The surfe¢g’ — 2) + y? with a
double minimum at+£1,0) is used, being the ideal case: it is found to occur in many
systems. Additionally, the field of directions of the NT, Ed), of Ag is shown by
arrow heads. For two dimensions, the equipotential hyptrses, E, are only level
lines.

NTs also have a definition by the Branin differential equatibhe adjoint matrix
A has to be used [56-58] to define an autonomous system ofatitfal equations,
similar to eq.(11). For an NT curvet), wheret is again the curve parameter

X'(t) = £A(X(1)) g(x(1)) , (19)



Fig. 1 Five NTs (dashed curves) of the family of NTs between minimair(iL,0) and SP at (0,0). Vector
field Ag. Level lines (thin) E.

see also refs. [13,45]. With the symmetric Hessian, theiajoatrix A is also sym-
metric. However, the Jacobian matrix of the right hand sfae19) is non-symmetric,
in general. A similar formula to (13) cannot be used. For anvdiational calcula-
tion, one may use a different variational functional by teagral ansatz

Fx.X) = (X F AX) gx)" (X' F AX) g(x)) - (20)

Of course, it is the differential equation (19) put into aigdonal functional. If the
minimum of a variational integral with this integrant exsisit should be zero.

For an NT to a given directiom, there is a further functional recently given by
Bofill [21]
F(t,x,X)=t\/gT g (r'x) +E(x), (21)

whereg = g(x(t)),E(x) = E(x(t)), andx’ = x'(t).

4 Valley-Ridge Inflection Points

If a valley pathway goes along the valley uphill, there arsifie eigenvalues of the
eigenvectors of the Hessian being orthogonal to the pathusually some of the
eigenvalues become smaller. Reaching a ridge, at leasiooresponding eigenvalue

is negative. Thus, we get for a VRI-point the

Definition:

Be x'" € K with g(x"”) # 0, and be the eigenvalue zero, of the eigenvector of
H(x¥"), which is orthogonal t@(x"). Then we name"" Valley-Ridge Inflection
Point (VRI).

Be u?®™ the eigenvector of the Hessian with eigenvalue zero. At tReépoint holds

gT uZero — O, (22)

becauseg(x"") is orthogonal ta?®™. The gradient is not in the kernel of the Hessian,

and it holds [59] , )
rank(H (erl )‘g(xvrl )) —



(32E(eri) o BZE(X‘"i) (3E(X‘"i)
0X10%1 0%10%n 0x1
rank oo : <n. (23)
(32E(eri) . BZE(X‘"i) (3E(X‘"i)
O%n0X1 0%n0X%n 0%n

From the definition we immediately obtain, that for VRI pairt" it holds
A(eri )g( vn) —-0. (24)

To prove this [2] we use the eigenvectars,of H and theA; the corresponding eigen-
values. With the equation of the eigenvaldas = Hu' follows after a multiplication
with A from the left hand side:

AiAU = AHU' = detH)u' = < - /\-> u'. (25)
,Il j

ConsequentlyA has forA; # 0 the eigenvectan' to eigenvalue{ﬂT:lAj)/Ai. How-

ever, one eigenvalue at" is equal to zero per definition, it may ke = 0. Then
the eigenvectorg?, . ..,u" of A also have the eigenvalue zero. We wgtas a linear
combination of thal!', thus,g = ZT:l &jul. Because the gradiegtis orthogonal to

ulinx¥ itis & = 0, and we get the relation.

A (eri )g (eri ) _

& (JIEL/\J'> ut(x") + Z [E. (M) (er.)] _0

which is eq.(24). Every NT is a solution of eq.(19)glf 0 different NTs can cross,
or can confluent together. This is the case for all kinds dfatary points. There
all different NTs with their different tangent directionarcmeet, because the gradi-
ent itself disappears there. A vector of zero length canrifionto every direction.
However, if the gradient is not zero, different NTs cannaisst This is the reason
that only stationary points can be conjugate points of NTmdke difficult situation
emerges, if in eq.(19) hold&g = 0. It is the condition of a VRI point. There more
than one branch of a special NT can cross, of a so called sinddl. This NT then
bifurcates in the VRI point. The property is the fundamentlffiss paper: we use it to
calculate skew VRI points. We additionally assume that tless of branches of the
singular NT lies in a 2-dimensional plane, at least near tRépbint. Being with an
approximating regular NT in that plan, or near to it, we cagntisearch the VRI by
an empirical procedure.

Note that an IRC from an SP downhill (accidentally) meets &1 Woint only
in very special cases, mostly dictated by symmetries [1BUST we cannot employ
the steepest descent to determine VRI points, in generhlTBére is the border line
between ridge and valley behavior [60] of the PES

g(x)T A(x)g(x) = 0. (26)

This line is sometimes crossed by the IRC, for example, if 4gf@acent SPs of first
order lie on a PES, and we start the IRC at the upper SP. Butrtissing point is
generally not the VRI point. Of course, because of eq.(24) MRI point is always
on this border line.



5 Conjugate Points of Extremals
5.1 IRC

To understand the deeper meaning of the CPs, we treat tHewannt region of a min-
imum of the PES [61]. Catchment regions generate a partitidhe n-dimensional
configuration space K. Using the concept of SD curves, a oaal region K of
the PES in K is defined as the collection of all those nucleafigarationsV from
where an infinitely slow, vibrationless relaxation patheapressed by the SD, leads
to a given critical pointJ. The index ofU is connected with the index of the critical
point (the number of negative eigenvalues of the local Hessiatrix of the PES) at
U. The concept of catchment regions is closely related tcesdy the PES. Usually,
an (n-1)-dimensional ridge system separates the catchmegioins of two adjacent
minimums, and every ridge ends below at an SP, cf. the 3D ebeamfipiCN [60]. An
SP of index one is the TS which connects two adjacent minimunike IRC.

A basic point in the theory of variational extremals [26]he fpossibility of em-
bedding the extremal curve under consideration in a fanfilgeagghboring curves
which is fit to a field of directions. If the endpoikt of the extremal curve is in the
catchment region of start poikt, then the original extremal can be embedded in a
field. A field of curves is defined by the set of extremal curuetsing the hypersur-
facesE. transversally [26]. But still more explicitely, the cuttjrof SD curves td=;
is orthogonal. The set of extremal curves emerging from &akpointU will con-
stitute a field up to its conjugate points to the central pdmthe present problem of
SD curves flowing together into the poidt which is a minimum, other SD curves
may intersect this SD for the first time at the stationary @i the PES of a charac-
ter saddle point, or maximum. These types of stationarytpaire the possible CPs
with respect to central poirtd because there the gradient becomes zero again. Other
points are not possible, because in other points the vec®XEL) for SD curves are
unigue. Thus, a CP can be a stationary point of a charactdlespdint of any index,
or maximum on the PES. However, for saddle points with onetingeigenvalue,
saddle points of index one, only one SD curve emerging foercédntral pointJ ar-
rives at this type of stationary points. As a consequenesfjitst-order saddle points
are not conjugate points with respect to the central poinis flesult is proved from a
rigorous mathematical point of view in ref. [26], using tleedbi equation associated
to the variational problem under consideration.

For the IRC no CP can exist. Different SD curves can only cayssonfluent
at saddle points. At maximums, as well as minimums, the fiél8» curves starts,
or confluents, at all [40,62]. For a saddle of index 1 theréésIRC trough the SP,
and the (n-1) corresponding ridge lines along the orthobgdinactions do cross the
curve. However, those ridge lines can never start at thenmimi. All other neigh-
boring curves do circumvent the SP in a hyperbolic kind. Téithe reason why a
variational minimization of the IRC works, if we fix the twoestpoints to two min-
imums. From another point of view, seeing the SD curves frioentivo minimums,
there are infinitely many SD curves which confluent there. iy, only the IRC
comes from the SP, and it is this single curve which connéet$vto minimums. So
to say, the IRC is aingularSD curve.

If an IRC is a “broken” extremal, like an IRC between two adjacSPs of index
one and a minimum, where the IRC first runs down between theatlj@cent SPs,
and then turns to the final minimum, the discussed relatioesakso in order, see
ref. citeaguir08. The case concerns ramified reactionyal®f course, an IRC con-
nection between two SPs is only possible in special, symoeses of the PES [60].
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SPs of an index higher than one, on the other side, are CPsaifjacent mini-
mum. It starts with SPs of index two which often are of chetiidarest, too, cf. [63—
67] Consequently, an SD between an SP of index two and a mimiimaot unique.

5.2 NTs

For NTs Eq.(19) is also unique in nonstationary points, didnally Det(A) of the
adjoint matrix is not zero. But iDet(A) = 0, we have a bifurcation point (BP) of an
NT. The corresponding singular NT divides different famsliof NTs which connect
different stationary points [13]. However, for NTs the sture of the CP relation is
guite more complicated than for SD curves. The reason iacadi stationary points
like minimum and TS, are conjugate points of NTs, see Figrly NT without a BP
connects stationary points with an index difference of détigure 1 shows a family
of NTs between minimum and SP. It is to observe that the mininsia repulsive
stationary point, but the SP of index one is an attractivéostary point. The NTs
fit the directions of thé\ g field. Figure 1 shows that a minimization of a variational
functional with integrant Eq.(20) between a minimws(1,0) and a TS/=(0,0) is
not useful, because the solution is not unique. (Of couhsd,NT with the shortest
pathlength, L(u,v), can be used for an MEP [20]. It is herelithee between 0 and 1
on the x-axis, the IRC.) Only poinig in the “NT-catchment region” o) being no
stationary points are possibly to be uniquely calculatétegst theoretically) by the
ansatz (20).

1 2

Fig. 2 Example of arA g field around a VRI at zero, and some regular NTs (gray lingsg.féur branches
of the singular NT through the VRI point are bold curves. Léwves are thin.

In contrast to the determination of stationary points be&iagpossible by a varia-
tional calculation, NTs open the possibility for a new methw calculate all kinds of
valley-ridge inflection (VRI) points. (The symmetric cassstalready been discussed
[2,6,60].) The pattern of NTs around a VRI is the same likeghiern of SD curves
around an SP, see Fig.2. The analogy is: like the IRC is spbower the SP of index
one which is not a CP, because the IRC is the single curve vidighing through the
SP, a singular NT is going through a VRI which is not a CP eith&rRI point is the
location which is crossed by the one, single NT which cormaaninimum and an
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SP of index two, or which connects two SPs of index one. Eveagith of the single
NT separates families of hyperbolic NTs which connect défe: stationary points.
So to say, the branch of a single NT is the border of catchnegions of different
TSs. The corresponding regions of the PES are also namedtitreahannels” to
TSs [13]. In Fig.2 we show the situation at a VRI point in a Brdhsional example.
The surface

E(xy) = 5007 Py~ 2+ ) + 3¢+ y)

is used. The zero is the VRI point.

Finally in this section we prove the extremal character o6NJsing functional
(20), we get the Euler equations

0
Fo =2(X FAQ)' [a—)q (x’:FAg)} =0,

dFy d / 9
o= g {2twag) {ﬁ (X 7Ag)| } ~o.

Every NT is embedded in a field given by eq.(19). To show thas B also strong
extremals, we treat the Weierstrald condition (5). We firktudateF,.. It is with (20)

Fe =& 30 (X + (Ag);)?)
=257, ([ ¥ (Ag)i] - & [ ¥ (Ag) ] )
=257, ([4 ¥ (A)i]a;) =2(¢ ¥ (Ag)]
We getFy = 2(X' F Ag). In relation (4) a field of extremals is given by
W(tx) = £AX)g(x) -

It then holds
E(t,x, ¢, w)
:F(taX,W)_F(taX,‘l’)_(W_"U)TFx’(taX,QU) (27)
=W FAg2— |yFAgP-2w— )T (WFAQ)
=0 =0
=W FAgf >0

for finite vectorsv. NTs between a minimurd and a variable end poiit are strong
minimums of (1). Especially, between a stationbhand an adjacent VRI point is
only one NT; and it is a strong minimal.

6 Empirical Calculation of VRIs by NTs

In the past, the method of Allgower and Georg [68] was the oebf choice for
following an NT [2,43,69]. From the simple definition eq.j1& tangent was deter-
mined, by differentiation to a curve parameter. A predistep was done along the
tangent, and a corrector step by the Newton method was ambdéd back to the true
NT. Along the arguments of ref. [68] the venerable path feltay should also work
for a curve with a bifurcation point (BP), but the convergenegion of the corrector
step could become smaller near the BP. There should be a topawergence with
a tip at the BP. For 2-dimensional toy surfaces, the metha@tsyindeed [70]. There
are VRI points only, of “dimension” zero. However, for mohah two-dimensional
problems, the usual case in theoretical chemistry, therng enzerge manifolds of
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VRI points [2,6,60]. It is expected that different “conescohvergence” of different
neighbor NTs to different VRIs will overlay each other. Therector to the current
NT may diverge (long before the VRI) because the Hessian®PES has a zero
eigenvalue, or a very small eigenvalue, in a larger tube ightmrhood of the VRI of
interest. In test calculations we observed this behavioer@ can be a region around
a VRI point where the corrector step could not convergeidstio converge, but from
step to step it hops through a larger region, and it finds at kehranch of the NT far
behind the VRI, not the VRI itself. On the next branch it camtoaue with conver-
gent steps. The problem concerns the traditional predaimector method [2,69],
as well as any chain method, where the initial “predictorint®are usually farther
away from the searched NT [7,71].

The way out is the direct use of eq.(19) without a correctep StVe can discretize
the differential equation (19) to a difference equatiomn ean do an Euler-Branin step
along the direction oA g which is also the tangent of an NT

step = =+ P A(Xi) 9(xi) / [A (Xic) 9 (x| (28)

wherep; is the step length.

Note that the differential geometry (cf. [34,51,72,73]s0kh a step in curvilin-
ear, internal coordinates is especially simgés a covariant vectokl is a two-fold
covariant matrix, its quasi-invergeis a two-fold contravariant matrix, and the prod-
uct A g has the contravariant form of the tangent step. (We uséifbere only the
direct second partial derivatives, but not the full covarfarm with Christoffel sym-
bols [51,74,75]. Nevertheless, this simplification woyks.

Usually, a regular NT turns aside with a strong curvatureteethe VRI point,
see Fig.2. If we initially do not have met the singular NT whexactly leads to the
VRI point, we may follow a regular NT with predictor steps pnby steps along
eq.(28). But the NT is curved and predictor steps may divéa it. However, if
the regular NT is already near the 2-dimensional plane osihgular NT, then the
“errors” of the predictor will point nearer to the VRI poirfitan a truly corrected NT.
To even leave out the corrector is a positive action heréyarcase of the search for
the VRI point, or its singular NT.

We follow the strategy SkewVRI”:

(i) Choose chain length, step lengthp, start pointxo, start directiord; = £1 in
eq.(28), start indek= 0, and initial guess of the VRI poiwn.
(i) Determine the nodeg; with k=1,...,n of a quasi-NT beginning i ; = x; by

Y41, = Yk, + Steg (29)

using eq.(28) with step length andd;.

(iii) Determinen-long straight further test chains of nodgg; with I=1,...,n between
every nodey; of (ii) and the VRI guess;.

(iv) Determine on every test chain of (iii) the nodg; where|Ag| is minimal.
Select the most minimal node of all chains ovandk to be the new; ., ;.

(v) Prove by any convergence criterion the convergeneg,af or the smallness of
|Ag| atvi,1, to iterate further, or to stop the procedure.

(vi) Use the last nodg; of (i) for a new start poink,1, reverse the start direction
by di.1 = —di, and go to (i) withi =i + 1.

The code is broken up into a number of FORTRAN programs, whmmmuni-
cate with external data files. We use program parts whictvelethe input data to
GAMESS-US, and other program parts which read out gradidessian, and B-
matrix for the internal metric from the GAMESS output file. TBBAMESS-US is
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activated by a system call, correspondingly. Of course we a¢ed programs for the
following of a quasi-NT (step ii) and the minimum search |¢sii§. The programs
are downlodable from the web page [76].

Remarks:

In step (ii) we may also use the traditional predictor-cotwemethod [2] for an NT,
if the corrector works well. In this case, we additionallyedea search direction: the
gradient at;.

Itis a good choice if the first guessed VRI is behind the true 8&&n from the nodes
of the start chain.

In step (iii) we often only used the last 4 or 6 nodes beforegihessed VRI, thus
{Zn-6xi,---»Znk; }, to €CONOMize computing time. Of course, the number of notles
the chains in steps (ii) and (iii) can also be different.

If one had a good choice of initial values and of the guesset] ¥ method may
converge to the VRI point.

CN

VRI

@/90
0.5

HNC Min
0 QZ%SCH

Fig. 3 Singular NT (dots) which meets the VRI point of an N-disstioia from HCN saddle in the 3-
dimensional configuration space of internal coordinatdge Singular NT connects SP and VRI point.
There are also regular NTs (dots also) turning off the VRiaegThe full line (left and below) is the
valley line of the isomerization.

6.1 Example: HCN, cf.[60]

Calculations of gradient, Hessian, aRdnatrix for the metric have been carried out
with the Gamess-US [77,78] suite of programs for a PC emptpifie standard 6-
31G** basis set. We use in the route section of the input file:

$CONTRL SCFTYP=rhf EXETYP=binv COORD=zmt
NZVAR=3 RUNTYP=optimize $END
$BASIS GBASIS=n31 NGAUSS=6 NDFUNC=1 $END
$STATPT HESS=calc NSTEP=1 NPUN=3
NPRT=-2 DXMAX=0.00001 $END
$FORCE METHOD=analytic PRTIFC=.true. $END
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It should be noted that the aim of the example was to demdadtia VRI calcu-
lations and not to determine quantitative results. In thisec the calculations would
have to be repeated with higher-level quantum mechanisé bats. The RHF calcu-
lations used here deliver gradient and Hessian in internaizix coordinates which
we directly use in our program. (The Christoffel symbols iiuldy correct covariant
description of the Hessian are ignored.)

Fig. 4 A start NT (from SP), a regular NT around, and 4 branches ofthgular NT through the VRI
point, which emerges if the H-atom dips into thesR bond. In the rear is the valley line between SP and
HNC minimum (full line). CN and CH axes are in the ground plathe o axis points up.

The first example is the dissociation of the N-atom from thes8&cture. Fig-
ure 3 shows the VRI point in the configuration space of HCNhv@iN-distance
and CH-distance i\, and anglea between H-C-N in degree. (In the Figures,
is divided by 90.) Gradient and Hessian are used from GAMESS-U&uinthus
distances in Bohr, angles in Radian. The branch betweenRhen8 the VRI point
is a ridge, its continuation to dissociation is a valley. Tie bifurcating branches
are the valley lines to the SP of a linear C-H-N (which is ndlyfaalculated), or to
the HCN minimum which is above the Figure (not shown). Ineldich Fig. 3 is the
valley line from HNC minimum to the SP, the full line. For thalculation of the VRI
point, we only need two runs of the program “SkewVRI”". We staith a guessed
VRI from ref. [60], there it is calculated by following graatit extremals. (For the
triatomic HCN, gradient extremals are easy to calculateldrger molecules, it be-
comes very difficult.) A first run with the written “SkewVRI” athod results in the
two left and lower branches, a second run results in the tgid ind upper branches
of the singular NT through the VRI point at (CN=1.469, CH=2610=87.543). The
reached minimum ofAg| is 2.8 e ®au. The predictor steplengtpy used is 0.08,
and 0.014. Additionally shown are four regular NTs, calculated by tinaditional
predictor-corrector method [2]. They are started at a pafittte singular NT near the
SP, however, the search direction is disturbeddfy0lau, of the CH-component, or
of the a-component, correspondingly, against the search directicthe VRI point.
Thus, the four NTs start on a “tube” around the singular NT.

The calculation of the VRI point is very easy, here. We thimkttit is a more or less
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singular point, not included in a one-dimensional maniftiy Rl points. One could
also use a (more correct) predictor-corrector method éasté pure predictor steps.
If the N-atom leaves the SP structure, the H-atom distan€eisaquasi fixed, as well
as the H-angle. Only the N-distance determines the VRI gmirthe PES.

The meaning of the VRI point may be the decision for an incanNratom (in Fig. 3
from the right hand side at ~ 9(°) feeling an isolated CH diatom: goes it along a
valley to the linear HC-N minimum, or goes it along a valleyatbypothetical N-HC
linear SP of index 2 structure, or goes it before along a riddeetween to the SP?
Compare Fig. 10 of ref.[60]. (From point of view of NTs, theseno direct regular
NT to the HNC minimum.) A similar decision has a dissociatihgtom from the TS
of HCN: it can leave the ridge from SP and dissociate, or itgarmack along the
other two valleys. Of course here is a free way to HNC minimtitne bifurcation
of the NTs from TS to HNC or to C-H-N is the next example. (Nd:s are not
dynamical trajectories.)

CN

1.4 1.45 1.5 1.55

0.55
/90

0.5

I 112{55
0.45 14 CH
1.35

Fig. 5 Some regular NTs, as well as the singular NT through a futtiirpoint near the one of Fig. 4,
which is here a little right below of the central VRI point. @NTs are calculated by predictor steps only.

The second example is the pathway where the H-atom is comamg the SP
structure and directly dips into the energy mountains ofGheN triple bond. We
find a whole region where the corrector does not work. Howehefiore discussing
that, we describe in Fig. 4 a VRI point at the “border” of th#idult region. It can be
(by stock of luck) found with usual predictor-correctonsg?], starting near the SP.
Again, a guess of the VRI point of ref. [60] is used, at (CNEBACH=1.351q=47.894),
together with the search directian the gradient direction at the guessed VRI. After
the initial NT, a new guess of the VRI and its gradient is usattlie next, regular
NR. Using the regular NT which turns aside before the VRI pdime next search
for the |Ag| minimum already results in a very good approximation. It éndn-
strated by four branches of the singular NT which meet at tRé point. It is at
(CN=1.475, CH=1.35Q=47.380) with arjAg| minimum of 8.8 e°au. The branch
in front of the Figure is a ridge of an incoming triple of thedh single atoms H,C,
and N. It leads downhill to the VRI point. Here, the branchizges place. The branch
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behind the VRI in the center is the valley NT leading from VRiahhill to the HNC
minimum at (CN=1.154, CH=2.13&=0). (It is not fully calculated.)

The usual situation in the region a little above of that VRihiat corrector steps
do not converge. We have to use the “SkewVRI" method propbsed, by using
+Ag predictor steps only. An often well working choice is to statrthe guessed
VRI, calculate the first branch nodes with a small steplenagtidl do the further it-
erations with the double steplength. It makes that regules Bmoothly go around
before the VRI point, or that the singular NT jumps over thel VRhe system of
NTs shown in Fig. 5 is determind in this kind. It iterates irtdurther VRI point
at (CN=1.461, CH=1.373=47.662) with a minimum of 3.8€au. Not shown is a
further VRI point found in another calculation at (CN=1.468=1.371a=47.644)
with an|Ag| minimum of 6.1 e®au. It is to guess that there is a “line” of VRIs. The
four branches of the singular NT starting at the VRI are: Tphpas branch in Fig. 5
is the ridge line going from VRI downhill to the SP. The leftabch is the valley
line going downhill to the HNC minimum, (to the two branchediere no gradient
extremal exists which could correspond to the NTs, see6@f)[The lower branch
is the ridge line going uphill to the threefold dissociatiofiH,C, and N. The right
branch is a ridge line (of index two) uphill in the directiamthe linear N-H-C SP
structure. It is at (CN=2.111,CH=1.00 ), at very high energy, and the index is
also two. Of course, always the beginning of the branchdwatRI is calculated.

0.25

0 &ﬁz
1

1.5 2
CN

Fig. 6 HCN: some regular quasi-NTs (dots) which surround quasi-pints (empty circles) of an H-
dissociation from the SP structure. The full line is theesline from SP to HNC minimum. The NTs are
calculated by predictor steps only, see text.

A next, very strange case is the dissociation of the H-atemfthe SP structure.
In the region with a CH distance larger thanA.ghere it is totally unpromising to
use the corrector of the traditional method. OAlg-predictor steps work. We have
consequently used the method “SkewVRI” proposed aboveinigaguess of the
VRI point of ref.[60] is used, at (CN=1.186,CH=3.328570.994). There we find
|Ag|=8.4 e >au. The result of some calculations is depicted in Fig.6. Défe quasi-
VRIs are shown by empty circles, because we find a “developrating Fig. 6 from
left to right. An NT crosses the first, most left, guessed VBhp, it may be a regu-
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lar NT. From there the next VRI guess is iterated; the systesinown regular NTs
surrounds that second VRI point. It is at (CN=1.189, CH=9,6470.125). There
we find a smallefAg|=3.8 e ®au. There are regular NTs, but there is also an NT
which in good approximation can be considered as a singakrtbrough the point.
By other calculations we find the other circles of Fig.6. witH distances of 4.25,
4.66, and 4.7K. There the|Ag| minimum further decreases along 1.P8.7 e,
and to 7.9 e’au. The (theoretical) question emerges: what is the VRI pdinito
guess that there is a “long cloud” of quasi-VRIs. It is cléwattthe functioAg| de-
creases very slowly over a very large region of increasingd@thnces. The decision
for a VRI may strongly depend on the convergence criterioanfa practical point
of view, we may localize the VRI situation around CH=R&.51owever, long before,
near CH=1.8, a normal calculation of NTs by predictor-corrector stbpsaks down
by a very small determinant of the K-matrix, see refs.[2,43]

6.2 A higher dimensional example: alanine dipeptide

Alanine is one of the most common proteinogenic amino adksapply the VRI
search to alanine dipeptide (AcetyAla-NHMe),

CH3CO-NHCHCH;CO-NHCH;.
Alanine dipeptide is our second example for a VRI point sedtds chosen because
here the “SkewSearch” comes to its borderline. The molesudready a little too
large. In this section we describe a problem which emerges fmolecule of 22
atoms. We use the same non-redundant internal coordinadesaaameters like in
ref.[7], as well as study the region between the two confosn@b and C7ax. We
use the same metric calculation described in ref. [7]. Tadattee difficulties with
the two outer CH-groups of the molecule which sometimes do an enormous inter
nal rotation, reported in ref.[7], we fix them. Then we havéémdle 58 remaining
degrees of freedom. The fixing concerns dih4, the torsiongleabetween atoms
(04,C3,C2,H1), and dih22 of (H22,C18,N17,C9), in the Clesd. numbering [79].
(See Fig. 2 of ref. [7].) The fixing of two coordinates is a ditibn, however, its gain
is more than the problems which the two outer@&jtoups would cause.

Calculations of gradient and Hessian have again been dauiavith the Gamess-
US [77,78] suite of programs for a PC employing the standaBd® basis set. We
use for the method:

$CONTRL SCFTYP=rhf NZVAR=60 EXETYP=ginvr
RUNTYP=optimize COORD=zmt
NPRINT=1 $END
$BASIS GBASIS=n31 NGAUSS=6 NDFUNC=0 $END
$STATPT HESS=calc DXMAX=0.00001
NPRT=-2 NPUN=3  NSTEP=1 $END
$FORCE METHOD=analytic PRTIFC=.true. $END

The z-matrix option is used to avoid redundant coordinateisiwvould disturb
the corrector step. NSTEP is set to one to get gradient andidiesf the current
point without an optimization. On the other hand, we haves®the optimize option
to get these values, at all. Two coordinates, no. 6 bdihg and no. 60 beindih22,
are fixed in the z-matrix, however, the Gamess-US uses thelifukension, n=60,
for the internal calculations. From the Gamess-US outpey file grasp the figures
which we need in the SkewVRI procedure: (energy), gradidessian matrix, anB
matrix. In the output of gradient, Hessian matrix, and neetratrixg' we delete the
lines and columns, 6 and 6@ ( is built from the fullB matrix of 60x 66 dimension.)
The inverse metrigj is calculated with an SVD procedure [80] from metric matrix
g in 58 dimensions. The coordinates for the input ar iand degree, but gradient
and Hessian are calculated in the (Bohr,Radian) systenecisly in Hartry/Bohr,
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Hartry/Radian (gradient), or Hartry/BohrHartry/Bohr*Radian, or Hartry/Radidn
(Hessian), correspondingly.

To search and find the one singular NT to the VRI, we have tg traé the right
metric. Itis a stronger condition than the search of an Sfirsggin a minimum: there
a full family of NTs leads to the SP. It is not important, rgalvhich special regular
NT we follow. However, for the singular NT, we have to exaathget the search
direction: the covariant gradient at the VRI point. In th@ewle, we search for the
VRI point between the C5 minimum, and the SP of index 2, thersitin Fig. 7. The
underlying PES is optimized over a raster of pointsq@fyf). All NTs are projected
into the 2-dimensional plane op(y), the torsional angledihl3, anddihl17 [79].

6— 316
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Fig. 7 Alanine dipeptide: some NTs (connected dots) which sumidhe VRI point between minimum
C5 and the SP of index 2, and between two SPs of index one. NTsadzulated by predictor-corrector
steps.

A problem emerges in the calculation of the adjoint ma#&iXJsually the exact-
ness to zero of the reduction projector applied to the ptediangent isz 10~1°. On
the other hand, the Hessian has only two eigenvalues ldrgardne, near the VRI,
in the used (Bohr,Radian) system: so to say good values. &duse many more
values (56) are smaller than one, the determinart afi the 58 dimensions used
becomes arouns 10-35, A similar value has the determinant of tkematrix of the
corrector. Nevertheless, the procedlinsolveworks well for corrector and predic-
tor of a usual NT following. However, the calculation of thdj@nt matrix A from
the Hessian by minors ¢ does not result in useful values by (probably) numerical
cancellation of significant digits. Here numerical probte@merge: resulting entries
of A are between= 1038 and~ 10 4°, and the values of the vectérg and of its
norm become, more or less, erratical. Especially, the spoeding vectorAg, is
not parallel to the tangent from the predictor. We find a (feagd-ready) way out
of this numerical problem. Fok only, we multiply the entries of the Hessian by a
factor 4 (because®d ~ 10%°, H=4H, and this compensates the smallness of the de-
terminant). Then the determinant of the shifted Hessiarea,ror a little less than
1, in a neighborhood of the minimum C5. The operation resnlts shifted adjoint
matrix A calculated fronf. The task |Ag| — min! is the same as before, but now
the numerical handling is possible. We use the minimum ferdicision in step (iv)
of the “SkewVRI” strategy.
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Fig. 8 Alanine dipeptide: Four branches of the singular NT (coteekclots) in different runs. They are
started at the VRI point (empty circle). All four branchestloé singular NT are found. Coordinates are
the two torsional anglesy( ) like in Fig. 7 measured in degree. All chains are projected this plane.

In our previous work [7] we could present some NTs which catbtiee mini-
mums C5 and C7ax over the SP. There we guessed that there bppiR because
there takes place a bifurcation of some regular NTs. OneeoBtPs we try to obtain
exactly in this work. We start with nodes of NTs coming neathe guessed VRI
point. The initial search direction is the gradient of theegged VRI. A start in C5
with a very mild threshold for the corrector delivers a chafimodes, from which the
SkewVRI method can begin to search the VRI minimum alongittesslof procedures
(iii) and (iv). We use chains of 12 nodes for the NTs, and ferithinimum search in
procedure (iv) we also take 12 nodes of every connectingdé@te/een nodes of the
NT-chain, and the guessed VRI. However, we only take thesiagpoints of every
connecting line for th$&g| minimum search. The found VRI is again used for a new
run, to get a better one, and so on. The valuggf] along regular NTs is around 0.5
units, the reached minimum in the third test run alreadyhrea®.000 23 units, thus
a reduction of the test value of 1 to 1/2 000. If one startg @tein at the new VRI,
and calculates NTs forward and backward, one gets the cfagste good branches
of the singular NT. The final adapted VRI point is given by Eablin the appendix.
The corresponding VRI direction is the gradient directiotha VRI given in Table
2. Comparing with the used search directions of ref. [7]ehrot only the five active
torsional angles are involved (of the C5 to C7ax transitiesatibed there), but, more
or less, the full 58 dimensions are exhausted. In nine furtherdinate directions,
besides thed, i), are contributions larger than 0.1 units. At least, we fimel ‘tsin-
gular” NT through a VRI point of alanine dipeptide, see FigT&e NTs rely on the
first predictor step (a) towards uphill, (b) towards dowhkd) to the left, or (d) to the
right hand side. The threshold for the VRI minimum, 0.000 88s is not used at the
beginning of every run, to do some more iterations. At lest thains, forward and
backward and backward again, are attempted in every runfifBhehain uses a pre-
dictor step length of 0.2 units (Bohr,Radian), but everyifar chain uses 0.35 units.
Usually the minimum reached in the second iteration can ecbtme lower than that
of the first iteration. Then the calculation stops after tegtiNT chain. Run (a), for
example, has tested three chains. It needs 22 hours on a R&ntédanine dipeptide,
we use the full predictor-corrector procedure in step {ie used threshold for the
corrector along an NT chain is the small value of 0.0001 uisitshe norm of the
reduced gradient (thus Bohr,Radian). Along an NT, the neetisually makes one,
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sometimes two corrector steps, sometimes it does not neatbthector, at all. This
demonstrates that the following of the NTs works well. Thedictor takes a good
direction, and the corrector does the appropriate steps, th

An inspection of the found singular NT of Fig.8 will open theywto describe the
2-dimensional plane where the VRI point is located. The @ldevelops in any kind
"skew” in the full 58 dimensions of all use degrees of freed¢ig.8 is only a pro-
jection of the bifurcating NT in the known scheme of tlge ) coordinates.) If one
has such a plane through the VRI point, one may define two "abomordinates”
of the bifurcational event represented by the VRI point: ooerdinate of the reac-
tion direction which will bifurcate there, and one of thetargjonal direction of the
bifurcation itself. Like usual normal coordinates are @#incombination of the coor-
dinates used, also the two bifurcational coordinates withtinear combination of all
coordinates. We guess that an ansatz to "know” this planerédiie calculation will
be a speculation. May be it can be supported a little by chadrimituition, c.f. another
example [81]. The theory of NTs allows us to search quasi titiol’ for the VRI
plane in the full dimension of the molecules degrees of foeed Of course, we need
a guess of the region of the configuration space where the ¥iRtibe.)

7 Conclusion

We use singular NTs to explore skew VRI points for HCN and ialadipeptide. We
find the singular NTs with an empirical variational schen&arks.
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Appendix

Table 1 VRI point of alanine dipeptide near C5 minimum. The z-matdordinates (iri\ and degree) are
in the order of Chass et al. [79)p(y) are bold. Variables 6 and 60 are fixed.

1.0823533 1.5076906 109.0854125
1.2297386  120.6150737 64.0
1.0815013 108.6200117 -52.7854714
1.0807919 113.3276565 -174.0747806
1.3551050 115.4819160 -116.3800443
1.4681739  127.5004933 179.0925717
15309121 103.5669621 1615368811
1.2337026  118.5015250 69.2084861
1.0839450 109.0386273 -86.3556218
0.9942629 117.5701266 10.9150013
15270619 114.4009734 35.5621857
1.0760130 110.2704005 -67.6612961
1.0842233  109.4652807 -187.3460581
1.0831225 112.0328517 51.2159897
1.3438684  118.4260894 -1068333517
1.4548965 123.1346690 176.5693575
1.0823606  110.5592725 120.5810590
0.9900383  119.1582596 -1.4098970
1.0769551 108.6527121 0.9249162
1.0835450 110.5444637 -119.0

Table 2 Search direction (in Bohr and Radian) at the VRI point of €ahbl (p, ) are bold. Components
6 and 60 are not used.

-0.00054  0.00549 0.00157
-0.01351 0.01918 -
0.0054 0.01328 -0.01765
0.01903  -0.02566 0.06135
-0.00144  -0.02998 -0.1122
-0.02567 0.1195 0.12004
-0.00466 -0.29166 -0.2468
0.00652  -0.04949 0.09877
0.00696 -0.07526 0.06663
0.00885 0.02561 0.01321
-0.04086 0.12001 -0.18274
0.01831  -0.0247 -0.01146
0.00332  -0.00721 0.04852
-0.02682 0.03109 -0.01739
0.07269 -0.27212 0.54095
0.01168 0.17525 -0.1179
-0.00625 -0.00695 0.06133
0.00363 -0.00076 0.08296
0.01316  -0.01758 0.04853
0.07244  -0.00505 -
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