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Abstract Valley-ridge inflection points (VRIs) emerge on a potentialenergy surface
of a chemical reaction if the reaction pathway bifurcates. The valley of the reaction
path branches into two valleys, and a ridge in between. It canhappen in uphill, or in
downhill direction. Newton trajectories (NT) are curves for the description of the re-
action path. They are curves where at every point the gradient of the potential energy
surface points into the same direction. Singular Newton trajectories are a special case:
they bifurcate at VRI points. To find a singular Newton trajectory is quasi equivalent
with the determination of the corresponding VRI point wherethis NT bifurcates.

Often the bifurcation of the reaction path is governed by a symmetry of the prob-
lem. Then the symmetry axis is usually the first branch of the singular NT, and so its
determination is easy. In case of an unsymmetric branching,however, such a guiding
line is missing. We name the place of such a bifurcation a skewVRI. We propose a
variational calculation of the singular NT through the VRI of interest by an empiri-
cal, iterative method. Before, the variational theory of possible reaction pathways is
developed, and applied to the intrinsic reaction coordinate (IRC), as well as to NTs.
We have to employ the theory of NTs with its many facets, we useespecially the
Branin equation. The developed method is applied to the calculation of VRI points
on the potential energy surface of HCN, and to a VRI point of alanine dipeptide being
adjacent to the C5 minimum.

Keywords Potential energy surface• Variation of reaction pathways•
Singular Newton trajectory• Skew Valley-Ridge Inflection Point

1 Introduction

The concept of the Newton trajectory (NT) builds a static model of a reaction path
(RP) of an adiabatic potential energy surface (PES) [1–7]. It is a side approach to the
theoretical kinetics of chemical systems [8]. An RP is roughly defined as a line in the
coordinate space, which connects two minimizers by passingthe saddle point (SP),
the transition state (TS) structure or a “mountain pass” of an adiabatic PES following
the valley [9]. The energy of the SP is assumed to be the highest value tracing along
the RP. It is the minimal energy a reaction needs to take place. Reaction theories are
based on the knowledge of the RP either implicitly (transition state theory [10,11]), or
explicitly (variational transition state theory [8,12]).These theories only require local
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information about the PES along the RP. They circumvent the dimension problem: it
is impossible to fully calculate the PES. Because this is thefundamental problem in
handling ann-dimensional hypersurface: it is the large dimension. Molecules with
more thanN=4 atoms would cause an overwhelming number of net points forthe
PES. The RP concept is a promising way out. It reduces the problem of finding an
algorithm for one-dimensional curves – without any knowledge of the whole PES. A
parameterizationt of the RP x(t)=(x1(t), . . . ,xn(t))T is calledreaction coordinate.

The SP and the minimums form stationary points of the PES. Roughly speaking,
it is only of secondary interest, how a reaction path ascendsto the SP. This looseness
makes possible a variety of RP definitions, thus, instead of the usually used steep-
est descent for the minimum energy path (MEP), we may use an NTwhich has to
monotonously connect a minimum and an SP to be an RP [13], thuswe have to ex-
clude NTs which have a turning point with an energy higher than the SP. An NT is
a curve where a selected gradient direction equally comes out at every curve point.
There are NTs, which in most cases pass all stationary points. Thus, NTs are an in-
teresting procedure in order to determine all types of stationary points [1] by way
of trial. Besides the RP-property, NTs can be used to define and find some kinds
of valley-ridge inflection (VRI) points [2,6], because theybifurcate there. The in-
terest in skew VRI points has increased in the last time [14–19] and see references
therein. The mathematical method is the Branin equation, anautonomous system of
differential equations. It is singular at the VRI point. In this paper, we search for that
singularity by an empirical trial and error approach. Branches of NTs can also be de-
fined by a variational integral [20,21]. The ansatz is repeated in this paper, at least for
the theoretical background of the method. Usually, a whole family of NTs connects
minimum and TS of index one. Thus, there is no unique NT between a minimum and
a TS. However, a unique, a so called singular NT connects a VRIpoint with its adja-
cent stationary points. This NT can be found by a variationaltreatment. Nowadays,
variational treatments reach a renovation in RP calculations [20–30]. In this paper,
we will explore the calculus of variations [31] for NTs.

The mathematically simplest RP definition is the steepest descent from an SP,
resulting in the well-known intrinsic reaction coordinate(IRC) of Fukui [32–35].
Its usual use is in mass-weighted Cartesians [34]. This pathway is defined by an
autonomous system of differential equations for a tangent vector along the curve
searched for being the gradient of the PES. Its solution is unique because outside of
stationary points the gradient is not zero. Therefore, no bifurcation can occur before
reaching the next stationary point. Hence, no branching of PES valleys will be truly
described by following the IRC, see the discussion in ref. [36]. The unique character
will also emerge in a variational approach [26].

Gradient extremals (GE) [9,37–41] appear to represent curves which meet spe-
cial VRI points. They form another approach for RP following[42–44]. Special VRIs
are passed by GEs, and can be detected by following the GE. Butto follow a GEs is
much more complicated than the IRC, or than an NT. Nevertheless, GEs are better
fitted to solve the valley branching problem than the IRC, by the determination of a
GE bifurcation itself [40,41]. However, other problems arise due to the occurrence
of pairs of turning points instead of a branching point (BP) of the curve [45]. Such
turning points may interrupt the pathway between minimum and SP. Then the GE
curves often show some kind of avoided crossing [9,36,38,39]. With its many addi-
tional solution curves and turning points [41–43], this concept in its general form is
not suited to be used as a routine program for the calculationof reaction paths and
possible VRIs. In the light of the variational ansatz, GEs donot fit to this idea [20],
in contrast to their name, “extremal”.
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The paper is organized as follows: The Sections 2 and 3 repeatfundamentals of
the theory of variations. That will be applied in Sections 4 and 5 to IRC and NTs as
an RP definition, including conjugate points and the exceptional role of the IRC for
an SP, and the NT for a VRI. In Section 6 of applications we propose an empirical
method to a variational ansatz, and we develop some examples: VRIs on the PES of
HCN and one interesting VRI on the PES of alanine dipeptide. We finally add a short
conclusion.

2 Variational Methods [31,46]

2.1 The Variational Integral

Before we give the go-ahead, here are some basics. Let beF(t,x1, ...,xn,z1, ...,zn)
a function with continuous first and second partial derivatives with respect to all its
arguments. We search an extremum of a functional of the form

I(u,v) =
∫ v

u
F(t,x1(t), ...,xn(t),x

′
1(t), ...,x

′
n(t)) dt (1)

which depends onn continuously differentiable functionsx(t) = (x1(t), ...,xn(t))T

being the components of an RP,x(t), in an n-dimensional configuration space. We
regard all vectors as column vectors. The prime′ is the derivation tot. Note thatI is
a one-dimensional integral. The boundary conditions of theRP are

(x1(u), ...,xn(u))T = U, and (x1(v), ...,xn(v))
T = V .

These are usually the coordinates of minimum and SP, or of twoadjacent minimums,
or of two adjacent SPs, andt ∈ R[u,v] is the curve parameter. BeK ⊂ [u,v]×Rn a
simple connecting region which contains the points

(
u,U

)
and

(
v,V
)
. The set

Γ :=
{

γ : t 7→ x(t) ∈ K | x ∈C1[u,v], x(u) = U, x(v) = V
}

should contain all continuously differentiable paths betweenU andV. Vector x is
the representation of the RPγ : t 7→ x(t). With U andV given, the task is to find
a minimum of eq.(1) overΓ , thus of I(u,v). It is named thesimple fixed endpoint
problem in the calculus of variations. The vectorsx which belong toγ ∈Γ are named
admissible. We define the two norms forx ∈C1[u,v]

‖x‖0 := sup
t∈[u,v]

∣
∣x(t)

∣
∣ ,

and
‖x‖1 := sup

t∈[u,v]

∣
∣x(t)

∣
∣+ sup

t∈[u,v]

∣
∣x′(t)

∣
∣ . (2)

We nameγ∗ ∈ Γ with the corresponding pathwayx∗

( i) weak minimumof (1), if anε > 0 exists, that for all admissiblex with
‖x∗−x‖1 < ε it holdsI(x∗) ≤ I(x).

(ii) strong minimumof (1), if anε > 0 exists, that for all admissiblex with
‖x∗−x‖0 < ε it holdsI(x∗) ≤ I(x).

Remark: strong minimum implicates weak minimum; but vice versa it does not hold,
in general.
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2.2 Necessary Condition for Extremals

The necessary condition for a curvexi = xi(t), i = 1, ...,n, to be an extremal of the
functional (1) is the system of Euler equations where we use subscripts to denote
differentiation

Fxi −
d
dt

Fx′i
= 0 , i = 1, ...,n. (3)

The integral curves of Euler equations are calledextremalsin mathematics in the field
of the variational calculus.

2.3 Sufficient Conditions for a (weak) Minimal Extremal

An important kind of points in variational theory is the following definition [31]:
If a curve is an extremal of Eq.(1), starting at any pointU, and a second “neighbor-
ing” extremal of Eq.(1), also starting atU, intersects the first curve in a next point,
say pointW, then the intersection point is calledconjugate point(CP).

Example
On a sphere the meridians through the poles are the great circles with the shortest
arclength but the poles are CPs because the extremals intersect there.

Besides the condition of the Euler equations, there are two further conditions for a
weak minimum:
(i) The first conditions of a curvex(t) to be an extremal is the Jacobi condition that
the curve does not have to contain CPs.
(ii) The second is the Legendre condition of positive definiteness of the second vari-
ation, of the matrixFx′x′ .

2.4 Sufficient Conditions for a Strong Minimal Extremal

A neighborhood ofγ∗ may beUε = {γ ∈Γ : ‖x∗−x‖0 ≤ ε}. There we define a vector
field

x′ = ψ(t,x) (4)

with ψ ∈ C1(K). We name itfield of extremalsof K, if every solutionx(t) of (4) is
also a solution of the Euler equations (3).
Remark:
(i) A field of extremals∈C1(K) is a family of extremals, where through every point
of K goes exactly one extremal.
(ii) If we have an extremal,γ∗, of eq.(1), which is additionally a trajectory of the field
of definition (4), we sayγ∗ is embedded in the field (4).
The criteria of a weak extremum implicate the embedding of the extremal,x(t). A
condition for a strong minimum is formulated by theWeierstraß E-function

E(t,x,ψ ,w) := F(t,x,w)−F(t,x,ψ)− (w−ψ)TFx′(t,x,ψ) . (5)

If it holds E(t,x,ψ ,w) ≥ 0 for all points(t,x) ∈ K and all finite vectorsw, thenγ∗ is
a strong minimal extremal of the variational problem (1).

3 Variational Analysis of IRC and of NTs

The adiabatic PES of the molecular system of observation, E(x), is the basis of
our treatment. We use the Born-Oppenheimer approximation.We assume the PES
is given by a scalar function of the coordinates of the molecule at every point of
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interest. LetK be the subset ofRn which we use for theconfiguration spaceof
the PES. Letx = (x1, . . . ,xn)

T ∈ K. The configuration space of a molecule is re-
stricted. The functionE(x): K → R is ann−dimensional surface overK. The set
Ec = {x ∈ K,E(x) = c} is namedequipotential hypersurface. We assume at least a
twofold differentiability of the PES for practical reasons. The vector of first deriva-
tivesg : K → Rn with

g(x) =

(
∂E
∂x1

(x), . . . ,
∂E
∂xn

(x)

)T

(6)

is thegradient. The second derivatives ofE form theHessianmatrixH(x) ∈ Rn×n

H(x) =

(
∂ 2E

∂xi∂x j
(x)

)n

i, j=1
. (7)

The Hessian is symmetric. Theadjoint matrixA of the Hessian matrixH is defined
as((−1)i+ jmi j )

T wheremi j is the minor ofH obtained by deletion of theith row and
the jth column fromH, and taking the determinant. The adjoint matrix satisfies the
relation

HA = det(H) In , (8)

det(H) is the determinant ofH, andIn is the unit matrix. Astationary pointis where
the gradient is zero

g(x) = 0 , (9)

like in minimums and SPs of any index. Avalley-ridge inflection point(VRI) is a
point where

A(x)g(x) = 0 , but g(x) 6= 0 (usually) , (10)

see below for a deeper explanation.

3.1 Steepest Descent: IRC

A pathway of wide interest is the IRC [33], cf. also [34]. The steepest descent (SD)
from the SP in (usually mass-weighted) Cartesian coordinates [47] is a simple defini-
tion of a reaction path, which is well-known as the intrinsicreaction coordinate (IRC).
Using t for the curve parameter, a generalsteepest descentcurvex(t) is defined by
the system of vector equations inn dimensions

x′(t) = − g(x(t)) . (11)

The SD system is a system of autonomous differential equations of the first order
allowing an integration constant. Thus, its solution can start at an arbitrary initial
point (where the gradient is not zero). The path (11) is givenby the negative gradient
of the PES for the tangent vector of the curve. But the potential force is the zero
vector at stationary points, see eq.(9). With the exceptionof the stationary points,
the solution of the differential equation of the IRC is unique. Taking the IRC as
a model, we may understand the definition of an RP by a system ofautonomous
differential equations like eq.(11). The Jacobian matrix of g(x) is the Hessian. It is
symmetric. Then there is a simple possibility to transform such an RP definition from
a differential equation into the variational form of Eq.(1). If x(t) is an RP, and the
lengthl(x′(t)) is given by

l(x′(t)) =
√

x′(t)Tx′(t) =

√
n

∑
k=1

x′k(t)
2 , (12)

then its variational formulation works with

F(x,x′) =
√

gT(x(t)) g(x(t)) l(x′(t)) , (13)



6

because thisF immediately fulfills the Euler equations [20]. One has the variational
formula for the steepest descent [26–30,48,49].

ISD =

∫ v

u

√

gT(x(t)) g(x(t))
√

x′(t)T x′(t) dt . (14)

The extremal ofISD = min!, for U = minandV = TS, is the IRC. For integrants like
Eq.(13), the matrixFx′i x′i

has a zero determinant. The matrix is not positively definite.
The second sufficient condition for a minimum is not fulfilled. Because the integrant
of the task (14) has a positive first part, however, the extremal is a minimal curve
[50].

3.2 Newton Trajectory (NT) or Reduced Gradient [51]

A quarter of a century ago it was proposed to chose a driving coordinate along the
valley of the minimum, to go a step in this direction, and to perform an energy opti-
mization of the residual coordinates [52]. A combination ofthe distinguished coor-
dinate method starting at the SP and steepest descent was also used [53]. Ten years
ago, the method was transformed into a new mathematical form[1]. The chemically
most important features of the PES are the reactant and the product minimum and
the SP lain in between. These stationary points of the PES arecharacterized by the
conditiong(x) = 0. It is valid at extremizers of the PES, but single componentsof the
gradient can also vanish in other regions of the PES. Using this property, a curve of
pointsx can be followed which fulfills then−1 equations

gi = 0, i = 1, ...,k−1, k+1, ...,n (15)

omitting thek−th equation [1,54]. This produces the (n−1)-dimensional zero vector
of the reduced gradient; the method was subsequently called reduced gradient fol-
lowing. Eq. (15) means that the gradient points into the direction of the singlexk

coordinate. The concept may be generalized by the challengethat any selected gra-
dient direction is fixed

g(x)/|g(x)|= r (16)

wherer is the selected unit vector of the search direction; and the corresponding
curve is namedNewton trajectory. The search direction may correspond to the start
direction of a chemical reaction. The “reduction” of Eq.(16) is realized by a projection
of the gradient onto the(n− 1)-dimensional subspace which is orthogonal to the
one-dimensional subspace spanned by the search directionr . A curve belongs to the
search directionr , if the gradient of the PES always remains parallel to the direction
of r at every point along the curvex(t)

Pr g(x(t)) = 0 (17)

wherePr projects with the search directionr . This meansPr r=0. A possibility to
definePr is [2,55]

Pr = In − r r T (18)

whereIn is the unit matrix. ThisPr is an n×n matrix of rankn− 1, becauser is
a column vector,rT is a row vector, and their dyadic product is a matrix of rank
1. In Fig.1 we show some NTs on a toy model. The surfacex2(x2 − 2)+ y2 with a
double minimum at (±1,0) is used, being the ideal case: it is found to occur in many
systems. Additionally, the field of directions of the NT, Eq.(19), of A g is shown by
arrow heads. For two dimensions, the equipotential hypersurfaces, Ec, are only level
lines.

NTs also have a definition by the Branin differential equation. The adjoint matrix
A has to be used [56–58] to define an autonomous system of differential equations,
similar to eq.(11). For an NT curvex(t), wheret is again the curve parameter

x′(t) = ±A(x(t)) g(x(t)) , (19)
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Fig. 1 Five NTs (dashed curves) of the family of NTs between minimumat (1,0) and SP at (0,0). Vector
field A g. Level lines (thin) Ec.

see also refs. [13,45]. With the symmetric Hessian, the adjoint matrixA is also sym-
metric. However, the Jacobian matrix of the right hand side of eq.(19) is non-symmetric,
in general. A similar formula to (13) cannot be used. For an NTvariational calcula-
tion, one may use a different variational functional by the general ansatz

F(x,x′) =
(
x′ ∓ A(x) g(x)

)T (x′ ∓ A(x) g(x)
)

. (20)

Of course, it is the differential equation (19) put into a variational functional. If the
minimum of a variational integral with this integrant exists, it should be zero.

For an NT to a given direction,r , there is a further functional recently given by
Bofill [21]

F(t,x,x′) = t
√

gT g
(
rTx′

)
+E(x) , (21)

whereg = g(x(t)),E(x) = E(x(t)), andx′ = x′(t).

4 Valley-Ridge Inflection Points

If a valley pathway goes along the valley uphill, there are positive eigenvalues of the
eigenvectors of the Hessian being orthogonal to the path, but usually some of the
eigenvalues become smaller. Reaching a ridge, at least one corresponding eigenvalue
is negative. Thus, we get for a VRI-point the
Definition:
Be xvri ∈ K with g

(
xvri
)
6= 0, and be the eigenvalue zero, of the eigenvector of

H(xvri ), which is orthogonal tog(xvri ). Then we namexvri Valley-Ridge Inflection
Point (VRI).
Be uzero the eigenvector of the Hessian with eigenvalue zero. At the VRI point holds

gT uzero = 0, (22)

because,g(xvri ) is orthogonal touzero. The gradient is not in the kernel of the Hessian,
and it holds [59]

rank
(
H(xvri )

∣
∣g(xvri )

)
=
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rank







∂ 2E(xvri )
∂x1∂x1

· · · ∂ 2E(xvri )
∂x1∂xn

∂E(xvri )
∂x1

...
. . .

...
...

∂ 2E(xvri )
∂xn∂x1

· · ·
∂ 2E(xvri )

∂xn∂xn

∂E(xvri )
∂xn







< n. (23)

From the definition we immediately obtain, that for VRI pointsxvri it holds

A
(
xvri )g

(
xvri )= 0 . (24)

To prove this [2] we use the eigenvectors,ui , of H and theλi the corresponding eigen-
values. With the equation of the eigenvaluesλiui = Hu i follows after a multiplication
with A from the left hand side:

λiAu i = AHu i = det(H)ui =

(
n

∏
j=1

λ j

)

ui . (25)

Consequently,A has forλi 6= 0 the eigenvectorui to eigenvalue
(

∏n
j=1 λ j

)
/λi . How-

ever, one eigenvalue atxvri is equal to zero per definition, it may beλ1 = 0. Then
the eigenvectorsu2, . . . ,un of A also have the eigenvalue zero. We writeg as a linear
combination of theui , thus,g = ∑n

j=1 ξ ju j . Because the gradientg is orthogonal to

u1 in xvri , it is ξ1 = 0, and we get the relation.

A
(
xvri )g

(
xvri )=

ξ1

(
n

∏
j=2

λ j

)

u1(xvri )+
n

∑
i=2

[

ξi

(
∏n

j=1λ j

λi

)

ui(xvri )
]

= 0

which is eq.(24). Every NT is a solution of eq.(19). Ifg = 0 different NTs can cross,
or can confluent together. This is the case for all kinds of stationary points. There
all different NTs with their different tangent directions can meet, because the gradi-
ent itself disappears there. A vector of zero length can “point” into every direction.
However, if the gradient is not zero, different NTs cannot cross. This is the reason
that only stationary points can be conjugate points of NTs. Amore difficult situation
emerges, if in eq.(19) holdsAg = 0. It is the condition of a VRI point. There more
than one branch of a special NT can cross, of a so called singular NT. This NT then
bifurcates in the VRI point. The property is the fundament for this paper: we use it to
calculate skew VRI points. We additionally assume that the cross of branches of the
singular NT lies in a 2-dimensional plane, at least near the VRI point. Being with an
approximating regular NT in that plan, or near to it, we can then search the VRI by
an empirical procedure.

Note that an IRC from an SP downhill (accidentally) meets an VRI point only
in very special cases, mostly dictated by symmetries [19]. Thus, we cannot employ
the steepest descent to determine VRI points, in general [36]. There is the border line
between ridge and valley behavior [60] of the PES

g(x)T A(x)g(x) = 0. (26)

This line is sometimes crossed by the IRC, for example, if twoadjacent SPs of first
order lie on a PES, and we start the IRC at the upper SP. But the crossing point is
generally not the VRI point. Of course, because of eq.(24), the VRI point is always
on this border line.



9

5 Conjugate Points of Extremals

5.1 IRC

To understand the deeper meaning of the CPs, we treat the catchment region of a min-
imum of the PES [61]. Catchment regions generate a partitionof then-dimensional
configuration space K. Using the concept of SD curves, a catchment region KU of
the PES in K is defined as the collection of all those nuclear configurationsV from
where an infinitely slow, vibrationless relaxation path, asexpressed by the SD, leads
to a given critical pointU. The index ofU is connected with the index of the critical
point (the number of negative eigenvalues of the local Hessian matrix of the PES) at
U. The concept of catchment regions is closely related to ridges of the PES. Usually,
an (n-1)-dimensional ridge system separates the catchmentregions of two adjacent
minimums, and every ridge ends below at an SP, cf. the 3D example of HCN [60]. An
SP of index one is the TS which connects two adjacent minimumsby the IRC.

A basic point in the theory of variational extremals [26] is the possibility of em-
bedding the extremal curve under consideration in a family of neighboring curves
which is fit to a field of directions. If the endpointV of the extremal curve is in the
catchment region of start pointU, then the original extremal can be embedded in a
field. A field of curves is defined by the set of extremal curves cutting the hypersur-
facesEc transversally [26]. But still more explicitely, the cutting of SD curves toEc

is orthogonal. The set of extremal curves emerging from a central pointU will con-
stitute a field up to its conjugate points to the central point. In the present problem of
SD curves flowing together into the pointU, which is a minimum, other SD curves
may intersect this SD for the first time at the stationary points of the PES of a charac-
ter saddle point, or maximum. These types of stationary points are the possible CPs
with respect to central pointU because there the gradient becomes zero again. Other
points are not possible, because in other points the vector Eqs.(11) for SD curves are
unique. Thus, a CP can be a stationary point of a character saddle point of any index,
or maximum on the PES. However, for saddle points with one negative eigenvalue,
saddle points of index one, only one SD curve emerging form the central pointU ar-
rives at this type of stationary points. As a consequence, the first-order saddle points
are not conjugate points with respect to the central point. This result is proved from a
rigorous mathematical point of view in ref. [26], using the Jacobi equation associated
to the variational problem under consideration.

For the IRC no CP can exist. Different SD curves can only crossor confluent
at saddle points. At maximums, as well as minimums, the field of SD curves starts,
or confluents, at all [40,62]. For a saddle of index 1 there is the IRC trough the SP,
and the (n-1) corresponding ridge lines along the orthogonal directions do cross the
curve. However, those ridge lines can never start at the minimum. All other neigh-
boring curves do circumvent the SP in a hyperbolic kind. Thisis the reason why a
variational minimization of the IRC works, if we fix the two startpoints to two min-
imums. From another point of view, seeing the SD curves from the two minimums,
there are infinitely many SD curves which confluent there. However, only the IRC
comes from the SP, and it is this single curve which connects the two minimums. So
to say, the IRC is asingularSD curve.
If an IRC is a “broken” extremal, like an IRC between two adjacent SPs of index
one and a minimum, where the IRC first runs down between the twoadjacent SPs,
and then turns to the final minimum, the discussed relations are also in order, see
ref. citeaguir08. The case concerns ramified reaction valleys. Of course, an IRC con-
nection between two SPs is only possible in special, symmetric cases of the PES [60].
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SPs of an index higher than one, on the other side, are CPs of anadjacent mini-
mum. It starts with SPs of index two which often are of chemical interest, too, cf. [63–
67] Consequently, an SD between an SP of index two and a minimum is not unique.

5.2 NTs

For NTs Eq.(19) is also unique in nonstationary points, if additionally Det(A) of the
adjoint matrix is not zero. But ifDet(A) = 0, we have a bifurcation point (BP) of an
NT. The corresponding singular NT divides different families of NTs which connect
different stationary points [13]. However, for NTs the structure of the CP relation is
quite more complicated than for SD curves. The reason is, adjacent stationary points
like minimum and TS, are conjugate points of NTs, see Fig.1. Any NT without a BP
connects stationary points with an index difference of one.Figure 1 shows a family
of NTs between minimum and SP. It is to observe that the minimum is a repulsive
stationary point, but the SP of index one is an attractive stationary point. The NTs
fit the directions of theA g field. Figure 1 shows that a minimization of a variational
functional with integrant Eq.(20) between a minimumU=(1,0) and a TSV=(0,0) is
not useful, because the solution is not unique. (Of course, that NT with the shortest
pathlength, L(u,v), can be used for an MEP [20]. It is here theline between 0 and 1
on the x-axis, the IRC.) Only pointsV in the “NT-catchment region” ofU being no
stationary points are possibly to be uniquely calculated (at least theoretically) by the
ansatz (20).

-2 -1 0 1 2
-2

-1

0

1

2

VRI

SP

SP

Fig. 2 Example of anA g field around a VRI at zero, and some regular NTs (gray lines). The four branches
of the singular NT through the VRI point are bold curves. Level lines are thin.

In contrast to the determination of stationary points beingnot possible by a varia-
tional calculation, NTs open the possibility for a new method to calculate all kinds of
valley-ridge inflection (VRI) points. (The symmetric case has already been discussed
[2,6,60].) The pattern of NTs around a VRI is the same like thepattern of SD curves
around an SP, see Fig.2. The analogy is: like the IRC is spanned over the SP of index
one which is not a CP, because the IRC is the single curve whichis going through the
SP, a singular NT is going through a VRI which is not a CP either. A VRI point is the
location which is crossed by the one, single NT which connects a minimum and an
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SP of index two, or which connects two SPs of index one. Every branch of the single
NT separates families of hyperbolic NTs which connect different stationary points.
So to say, the branch of a single NT is the border of catchment regions of different
TSs. The corresponding regions of the PES are also named “reaction channels” to
TSs [13]. In Fig.2 we show the situation at a VRI point in a 2-dimensional example.
The surface

E(x,y) =
1
2
(xy2−x2y−2x+2y)+

1
30

(x4 +y4)

is used. The zero is the VRI point.

Finally in this section we prove the extremal character of NTs. Using functional
(20), we get the Euler equations

Fxi = 2
(
x′∓Ag

)T
[

∂
∂xi

(
x′∓Ag

)
]

= 0 ,

dFx′i

dt
=

d
dt

{

2
(
x′∓Ag

)T
[

∂
∂x′i

(
x′∓Ag

)
]}

= 0 .

Every NT is embedded in a field given by eq.(19). To show that NTs are also strong
extremals, we treat the Weierstraß condition (5). We first calculateFx′ . It is with (20)

Fx′i
= ∂

∂x′i
∑n

j=1

([
x′j ∓ (Ag) j

]2
)

= 2∑n
j=1

([
x′j ∓ (Ag) j

]
· ∂

∂x′i

[
x′j ∓ (Ag) j

])

= 2∑n
j=1

([
x′j ∓ (Ag) j

]
δi j

)

= 2
[
x′i ∓ (Ag)i

]
.

We getFx′ = 2(x′∓Ag). In relation (4) a field of extremals is given by

ψ(t,x) = ±A(x)g(x) .

It then holds
E(t,x,ψ ,w)

= F(t,x,w)−F(t,x,ψ)− (w−ψ)TFx′(t,x,ψ) (27)

= |w′∓Ag|2−|ψ ∓Ag|2
︸ ︷︷ ︸

=0

−2(w−ψ)T (ψ ∓Ag)
︸ ︷︷ ︸

=0

= |w′∓Ag|2 ≥ 0

for finite vectorsw. NTs between a minimumU and a variable end pointV are strong
minimums of (1). Especially, between a stationaryU and an adjacent VRI point is
only one NT; and it is a strong minimal.

6 Empirical Calculation of VRIs by NTs

In the past, the method of Allgower and Georg [68] was the method of choice for
following an NT [2,43,69]. From the simple definition eq.(17), a tangent was deter-
mined, by differentiation to a curve parameter. A predictorstep was done along the
tangent, and a corrector step by the Newton method was added,to find back to the true
NT. Along the arguments of ref. [68] the venerable path following should also work
for a curve with a bifurcation point (BP), but the convergence region of the corrector
step could become smaller near the BP. There should be a cone of convergence with
a tip at the BP. For 2-dimensional toy surfaces, the method works, indeed [70]. There
are VRI points only, of “dimension” zero. However, for more than two-dimensional
problems, the usual case in theoretical chemistry, there may emerge manifolds of
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VRI points [2,6,60]. It is expected that different “cones ofconvergence” of different
neighbor NTs to different VRIs will overlay each other. The corrector to the current
NT may diverge (long before the VRI) because the Hessian of the PES has a zero
eigenvalue, or a very small eigenvalue, in a larger tube of neighborhood of the VRI of
interest. In test calculations we observed this behavior. There can be a region around
a VRI point where the corrector step could not converge. It tries to converge, but from
step to step it hops through a larger region, and it finds at least a branch of the NT far
behind the VRI, not the VRI itself. On the next branch it can continue with conver-
gent steps. The problem concerns the traditional predictor-corrector method [2,69],
as well as any chain method, where the initial “predictor” points are usually farther
away from the searched NT [7,71].

The way out is the direct use of eq.(19) without a corrector step. We can discretize
the differential equation (19) to a difference equation, and can do an Euler-Branin step
along the direction ofAg which is also the tangent of an NT

stepk = ± pl A(xk)g(xk)/|A(xk)g(xk)| (28)

wherepl is the step length.

Note that the differential geometry (cf. [34,51,72,73]) ofsuch a step in curvilin-
ear, internal coordinates is especially simple:g is a covariant vector,H is a two-fold
covariant matrix, its quasi-inverseA is a two-fold contravariant matrix, and the prod-
uct A g has the contravariant form of the tangent step. (We use forH here only the
direct second partial derivatives, but not the full covariant form with Christoffel sym-
bols [51,74,75]. Nevertheless, this simplification works.)

Usually, a regular NT turns aside with a strong curvature before the VRI point,
see Fig.2. If we initially do not have met the singular NT which exactly leads to the
VRI point, we may follow a regular NT with predictor steps only, by steps along
eq.(28). But the NT is curved and predictor steps may divergefrom it. However, if
the regular NT is already near the 2-dimensional plane of thesingular NT, then the
“errors” of the predictor will point nearer to the VRI point than a truly corrected NT.
To even leave out the corrector is a positive action here, in the case of the search for
the VRI point, or its singular NT.

We follow the strategy “SkewVRI”:

( i) Choose chain length,n, step length,pl , start pointx0, start directiondi = ±1 in
eq.(28), start indexi = 0, and initial guess of the VRI pointv0.

( ii) Determine the nodesyk,i with k=1,...,n of a quasi-NT beginning iny1,i = xi by

yk+1,i = yk,i +stepk (29)

using eq.(28) with step lengthpl anddi .
(iii) Determinen-long straight further test chains of nodeszl ,k,i with l=1,...,n between

every nodeyk,i of (ii) and the VRI guessvi .
( iv) Determine on every test chain of (iii) the nodezl ,k,i where |Ag| is minimal.

Select the most minimal node of all chains overl andk to be the newvi+1.
( v) Prove by any convergence criterion the convergence ofvi+1, or the smallness of

|Ag| at vi+1, to iterate further, or to stop the procedure.
( vi) Use the last nodeyn,i of (ii) for a new start pointxi+1, reverse the start direction

by di+1 = −di, and go to (ii) withi = i +1.

The code is broken up into a number of FORTRAN programs, whichcommuni-
cate with external data files. We use program parts which deliver the input data to
GAMESS-US, and other program parts which read out gradient,Hessian, and B-
matrix for the internal metric from the GAMESS output file. The GAMESS-US is
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activated by a system call, correspondingly. Of course we also need programs for the
following of a quasi-NT (step ii) and the minimum search (step iii). The programs
are downlodable from the web page [76].
Remarks:
In step (ii) we may also use the traditional predictor-corrector method [2] for an NT,
if the corrector works well. In this case, we additionally need a search direction: the
gradient atvi.
It is a good choice if the first guessed VRI is behind the true VRI seen from the nodes
of the start chain.
In step (iii) we often only used the last 4 or 6 nodes before theguessed VRI, thus
{zn−6,k,i, ...,zn,k,i}, to economize computing time. Of course, the number of nodesof
the chains in steps (ii) and (iii) can also be different.
If one had a good choice of initial values and of the guessed VRI, the method may
converge to the VRI point.
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Fig. 3 Singular NT (dots) which meets the VRI point of an N-dissociation from HCN saddle in the 3-
dimensional configuration space of internal coordinates. The singular NT connects SP and VRI point.
There are also regular NTs (dots also) turning off the VRI region. The full line (left and below) is the
valley line of the isomerization.

6.1 Example: HCN, cf. [60]

Calculations of gradient, Hessian, andB matrix for the metric have been carried out
with the Gamess-US [77,78] suite of programs for a PC employing the standard 6-
31G** basis set. We use in the route section of the input file:

$CONTRL SCFTYP=rhf EXETYP=binv COORD=zmt

NZVAR=3 RUNTYP=optimize $END

$BASIS GBASIS=n31 NGAUSS=6 NDFUNC=1 $END

$STATPT HESS=calc NSTEP=1 NPUN=3

NPRT=-2 DXMAX=0.00001 $END

$FORCE METHOD=analytic PRTIFC=.true. $END
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It should be noted that the aim of the example was to demonstrate the VRI calcu-
lations and not to determine quantitative results. In this case, the calculations would
have to be repeated with higher-level quantum mechanical basis sets. The RHF calcu-
lations used here deliver gradient and Hessian in internal z-matrix coordinates which
we directly use in our program. (The Christoffel symbols in afully correct covariant
description of the Hessian are ignored.)
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Fig. 4 A start NT (from SP), a regular NT around, and 4 branches of thesingular NT through the VRI
point, which emerges if the H-atom dips into the C≡N bond. In the rear is the valley line between SP and
HNC minimum (full line). CN and CH axes are in the ground plane, theα axis points up.

The first example is the dissociation of the N-atom from the SPstructure. Fig-
ure 3 shows the VRI point in the configuration space of HCN, with CN-distance
and CH-distance in̊A , and angleα between H-C-N in degree. (In the Figures,α
is divided by 90o.) Gradient and Hessian are used from GAMESS-US inau, thus
distances in Bohr, angles in Radian. The branch between the SP and the VRI point
is a ridge, its continuation to dissociation is a valley. Thetwo bifurcating branches
are the valley lines to the SP of a linear C-H-N (which is not fully calculated), or to
the HCN minimum which is above the Figure (not shown). Included in Fig. 3 is the
valley line from HNC minimum to the SP, the full line. For the calculation of the VRI
point, we only need two runs of the program “SkewVRI”. We start with a guessed
VRI from ref. [60], there it is calculated by following gradient extremals. (For the
triatomic HCN, gradient extremals are easy to calculate. For larger molecules, it be-
comes very difficult.) A first run with the written “SkewVRI” method results in the
two left and lower branches, a second run results in the two right and upper branches
of the singular NT through the VRI point at (CN=1.469,CH=1.126,α=87.543). The
reached minimum of|Ag| is 2.8 e−6au. The predictor steplengthpl used is 0.02̊A,
and 0.014̊A. Additionally shown are four regular NTs, calculated by the traditional
predictor-corrector method [2]. They are started at a pointof the singular NT near the
SP, however, the search direction is disturbed by±0.01au, of the CH-component, or
of theα-component, correspondingly, against the search direction of the VRI point.
Thus, the four NTs start on a “tube” around the singular NT.
The calculation of the VRI point is very easy, here. We think that it is a more or less
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singular point, not included in a one-dimensional manifoldof VRI points. One could
also use a (more correct) predictor-corrector method instead of pure predictor steps.
If the N-atom leaves the SP structure, the H-atom distance toC is quasi fixed, as well
as the H-angle. Only the N-distance determines the VRI pointon the PES.
The meaning of the VRI point may be the decision for an incoming N atom (in Fig. 3
from the right hand side atα ≈ 90o) feeling an isolated CH diatom: goes it along a
valley to the linear HC-N minimum, or goes it along a valley toa hypothetical N-HC
linear SP of index 2 structure, or goes it before along a ridgein between to the SP?
Compare Fig. 10 of ref.[60]. (From point of view of NTs, thereis no direct regular
NT to the HNC minimum.) A similar decision has a dissociatingN atom from the TS
of HCN: it can leave the ridge from SP and dissociate, or it cango back along the
other two valleys. Of course here is a free way to HNC minimum.The bifurcation
of the NTs from TS to HNC or to C-H-N is the next example. (Note:NTs are not
dynamical trajectories.)
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Fig. 5 Some regular NTs, as well as the singular NT through a furtherVRI point near the one of Fig. 4,
which is here a little right below of the central VRI point. The NTs are calculated by predictor steps only.

The second example is the pathway where the H-atom is coming from the SP
structure and directly dips into the energy mountains of theC≡N triple bond. We
find a whole region where the corrector does not work. However, before discussing
that, we describe in Fig. 4 a VRI point at the “border” of the difficult region. It can be
(by stock of luck) found with usual predictor-corrector steps [2], starting near the SP.
Again, a guess of the VRI point of ref. [60] is used, at (CN=1.455, CH=1.351,α=47.894),
together with the search direction,r , the gradient direction at the guessed VRI. After
the initial NT, a new guess of the VRI and its gradient is used for the next, regular
NR. Using the regular NT which turns aside before the VRI point, the next search
for the |Ag| minimum already results in a very good approximation. It is demon-
strated by four branches of the singular NT which meet at the VRI point. It is at
(CN=1.475,CH=1.359,α=47.380) with an|Ag| minimum of 8.8 e−5au. The branch
in front of the Figure is a ridge of an incoming triple of the three single atoms H,C,
and N. It leads downhill to the VRI point. Here, the branchingtakes place. The branch
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behind the VRI in the center is the valley NT leading from VRI downhill to the HNC
minimum at (CN=1.154, CH=2.139,α=0). (It is not fully calculated.)

The usual situation in the region a little above of that VRI isthat corrector steps
do not converge. We have to use the “SkewVRI” method proposedhere, by using
±Ag predictor steps only. An often well working choice is to start at the guessed
VRI, calculate the first branch nodes with a small steplength, and do the further it-
erations with the double steplength. It makes that regular NTs smoothly go around
before the VRI point, or that the singular NT jumps over the VRI. The system of
NTs shown in Fig. 5 is determind in this kind. It iterates intoa further VRI point
at (CN=1.461, CH=1.373,α=47.662) with a minimum of 3.8e−7au. Not shown is a
further VRI point found in another calculation at (CN=1.463, CH=1.371,α=47.644)
with an|Ag| minimum of 6.1 e−6au. It is to guess that there is a “line” of VRIs. The
four branches of the singular NT starting at the VRI are: The upper branch in Fig. 5
is the ridge line going from VRI downhill to the SP. The left branch is the valley
line going downhill to the HNC minimum, (to the two branches,where no gradient
extremal exists which could correspond to the NTs, see ref. [60]). The lower branch
is the ridge line going uphill to the threefold dissociationof H,C, and N. The right
branch is a ridge line (of index two) uphill in the direction to the linear N-H-C SP
structure. It is at (CN=2.111, CH=1.0,α=0 ), at very high energy, and the index is
also two. Of course, always the beginning of the branches at the VRI is calculated.
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Fig. 6 HCN: some regular quasi-NTs (dots) which surround quasi-VRI points (empty circles) of an H-
dissociation from the SP structure. The full line is the valley line from SP to HNC minimum. The NTs are
calculated by predictor steps only, see text.

A next, very strange case is the dissociation of the H-atom from the SP structure.
In the region with a CH distance larger than 1.8Å there it is totally unpromising to
use the corrector of the traditional method. OnlyAg-predictor steps work. We have
consequently used the method “SkewVRI” proposed above. Again, a guess of the
VRI point of ref. [60] is used, at (CN=1.186,CH=3.329,α=70.994). There we find
|Ag|=8.4 e−5au. The result of some calculations is depicted in Fig.6. Different quasi-
VRIs are shown by empty circles, because we find a “development” along Fig. 6 from
left to right. An NT crosses the first, most left, guessed VRI point, it may be a regu-
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lar NT. From there the next VRI guess is iterated; the system of shown regular NTs
surrounds that second VRI point. It is at (CN=1.189,CH=3.619,α=70.125). There
we find a smaller|Ag|=3.8 e−5au. There are regular NTs, but there is also an NT
which in good approximation can be considered as a singular one, through the point.
By other calculations we find the other circles of Fig.6. withCH distances of 4.25,
4.66, and 4.77̊A. There the|Ag| minimum further decreases along 1.1 e−5, 8.7 e−6,
and to 7.9 e−7au. The (theoretical) question emerges: what is the VRI point?It is to
guess that there is a “long cloud” of quasi-VRIs. It is clear that the function|Ag| de-
creases very slowly over a very large region of increasing CH-distances. The decision
for a VRI may strongly depend on the convergence criterion. From a practical point
of view, we may localize the VRI situation around CH=3.5Å. However, long before,
near CH=1.8̊A, a normal calculation of NTs by predictor-corrector stepsbreaks down
by a very small determinant of the K-matrix, see refs.[2,43].

6.2 A higher dimensional example: alanine dipeptide

Alanine is one of the most common proteinogenic amino acids.We apply the VRI
search to alanine dipeptide (Acetyl-L-Ala-NHMe),

CH3CO-NHCHCH3CO-NHCH3.
Alanine dipeptide is our second example for a VRI point search. It is chosen because
here the “SkewSearch” comes to its borderline. The moleculeis already a little too
large. In this section we describe a problem which emerges for a molecule of 22
atoms. We use the same non-redundant internal coordinates and parameters like in
ref. [7], as well as study the region between the two conformers C5 and C7ax. We
use the same metric calculation described in ref. [7]. To avoid the difficulties with
the two outer CH3-groups of the molecule which sometimes do an enormous inter-
nal rotation, reported in ref. [7], we fix them. Then we have tohandle 58 remaining
degrees of freedom. The fixing concerns dih4, the torsional angle between atoms
(O4,C3,C2,H1), and dih22 of (H22,C18,N17,C9), in the Chasset al. numbering [79].
(See Fig. 2 of ref. [7].) The fixing of two coordinates is a distortion, however, its gain
is more than the problems which the two outer CH3-groups would cause.

Calculations of gradient and Hessian have again been carried out with the Gamess-
US [77,78] suite of programs for a PC employing the standard 6-31G basis set. We
use for the method:

$CONTRL SCFTYP=rhf NZVAR=60 EXETYP=ginvr

RUNTYP=optimize COORD=zmt

NPRINT=1 $END

$BASIS GBASIS=n31 NGAUSS=6 NDFUNC=0 $END

$STATPT HESS=calc DXMAX=0.00001

NPRT=-2 NPUN=3 NSTEP=1 $END

$FORCE METHOD=analytic PRTIFC=.true. $END

The z-matrix option is used to avoid redundant coordinates which would disturb
the corrector step. NSTEP is set to one to get gradient and Hessian of the current
point without an optimization. On the other hand, we have to use the optimize option
to get these values, at all. Two coordinates, no. 6 beingdih4 and no. 60 beingdih22,
are fixed in the z-matrix, however, the Gamess-US uses the full dimension, n=60,
for the internal calculations. From the Gamess-US output file, we grasp the figures
which we need in the SkewVRI procedure: (energy), gradient,Hessian matrix, andB
matrix. In the output of gradient, Hessian matrix, and metric matrixgi j we delete the
lines and columns, 6 and 60. (gi j is built from the fullB matrix of 60×66 dimension.)
The inverse metricgi j is calculated with an SVD procedure [80] from metric matrix
gi j in 58 dimensions. The coordinates for the input are inÅ and degree, but gradient
and Hessian are calculated in the (Bohr,Radian) system, especially in Hartry/Bohr,
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Hartry/Radian (gradient), or Hartry/Bohr2, Hartry/Bohr*Radian, or Hartry/Radian2

(Hessian), correspondingly.
To search and find the one singular NT to the VRI, we have to truly use the right

metric. It is a stronger condition than the search of an SP starting in a minimum: there
a full family of NTs leads to the SP. It is not important, really, which special regular
NT we follow. However, for the singular NT, we have to exactlymeet the search
direction: the covariant gradient at the VRI point. In the example, we search for the
VRI point between the C5 minimum, and the SP of index 2, the summit in Fig. 7. The
underlying PES is optimized over a raster of points of (φ ,ψ). All NTs are projected
into the 2-dimensional plane of (φ ,ψ), the torsional anglesdih13, anddih17 [79].
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Fig. 7 Alanine dipeptide: some NTs (connected dots) which surround the VRI point between minimum
C5 and the SP of index 2, and between two SPs of index one. NTs are calculated by predictor-corrector
steps.

A problem emerges in the calculation of the adjoint matrixA. Usually the exact-
ness to zero of the reduction projector applied to the predictor tangent is≈ 10−19. On
the other hand, the Hessian has only two eigenvalues larger than one, near the VRI,
in the used (Bohr,Radian) system: so to say good values. But because many more
values (56) are smaller than one, the determinant ofH in the 58 dimensions used
becomes around≈ 10−35. A similar value has the determinant of theK matrix of the
corrector. Nevertheless, the procedurelinsolveworks well for corrector and predic-
tor of a usual NT following. However, the calculation of the adjoint matrixA from
the Hessian by minors ofH does not result in useful values by (probably) numerical
cancellation of significant digits. Here numerical problems emerge: resulting entries
of A are between≈ 10−38 and≈ 10−40, and the values of the vectorA g and of its
norm become, more or less, erratical. Especially, the corresponding vector,A g, is
not parallel to the tangent from the predictor. We find a (rough-and-ready) way out
of this numerical problem. ForA only, we multiply the entries of the Hessian by a
factor 4 (because 458 ≈ 1035, H̃=4H, and this compensates the smallness of the de-
terminant). Then the determinant of the shifted Hessian is near, or a little less than
1, in a neighborhood of the minimum C5. The operation resultsin a shifted adjoint
matrix Ã calculated fromH̃. The task |Ãg| → min! is the same as before, but now
the numerical handling is possible. We use the minimum for the decision in step (iv)
of the “SkewVRI” strategy.
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Fig. 8 Alanine dipeptide: Four branches of the singular NT (connected dots) in different runs. They are
started at the VRI point (empty circle). All four branches ofthe singular NT are found. Coordinates are
the two torsional angles (φ ,ψ) like in Fig. 7 measured in degree. All chains are projected into this plane.

In our previous work [7] we could present some NTs which connect the mini-
mums C5 and C7ax over the SP. There we guessed that there are VRI points because
there takes place a bifurcation of some regular NTs. One of the BPs we try to obtain
exactly in this work. We start with nodes of NTs coming near tothe guessed VRI
point. The initial search direction is the gradient of the guessed VRI. A start in C5
with a very mild threshold for the corrector delivers a chainof nodes, from which the
SkewVRI method can begin to search the VRI minimum along the lines of procedures
(iii) and (iv). We use chains of 12 nodes for the NTs, and for the minimum search in
procedure (iv) we also take 12 nodes of every connecting linebetween nodes of the
NT-chain, and the guessed VRI. However, we only take the lastsix points of every
connecting line for the|Ãg| minimum search. The found VRI is again used for a new
run, to get a better one, and so on. The value of|Ãg| along regular NTs is around 0.5
units, the reached minimum in the third test run already reaches 0.000 23 units, thus
a reduction of the test value of 1 to 1/2 000. If one starts after a run at the new VRI,
and calculates NTs forward and backward, one gets the cross of quite good branches
of the singular NT. The final adapted VRI point is given by Table 1 in the appendix.
The corresponding VRI direction is the gradient direction at the VRI given in Table
2. Comparing with the used search directions of ref. [7], here, not only the five active
torsional angles are involved (of the C5 to C7ax transition described there), but, more
or less, the full 58 dimensions are exhausted. In nine further coordinate directions,
besides the (φ ,ψ), are contributions larger than 0.1 units. At least, we find the “sin-
gular” NT through a VRI point of alanine dipeptide, see Fig. 8. The NTs rely on the
first predictor step (a) towards uphill, (b) towards downhill, (c) to the left, or (d) to the
right hand side. The threshold for the VRI minimum, 0.000 23 units, is not used at the
beginning of every run, to do some more iterations. At least tree chains, forward and
backward and backward again, are attempted in every run. Thefirst chain uses a pre-
dictor step length of 0.2 units (Bohr,Radian), but every further chain uses 0.35 units.
Usually the minimum reached in the second iteration can not become lower than that
of the first iteration. Then the calculation stops after the next NT chain. Run (a), for
example, has tested three chains. It needs 22 hours on a PC. Here in alanine dipeptide,
we use the full predictor-corrector procedure in step (ii).The used threshold for the
corrector along an NT chain is the small value of 0.000 1 unitsfor the norm of the
reduced gradient (thus Bohr,Radian). Along an NT, the method usually makes one,
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sometimes two corrector steps, sometimes it does not need the corrector, at all. This
demonstrates that the following of the NTs works well. The predictor takes a good
direction, and the corrector does the appropriate steps, then.
An inspection of the found singular NT of Fig.8 will open the way to describe the
2-dimensional plane where the VRI point is located. The plane develops in any kind
”skew” in the full 58 dimensions of all use degrees of freedom. (Fig.8 is only a pro-
jection of the bifurcating NT in the known scheme of the (φ ,ψ) coordinates.) If one
has such a plane through the VRI point, one may define two ”normal coordinates”
of the bifurcational event represented by the VRI point: onecoordinate of the reac-
tion direction which will bifurcate there, and one of the orthogonal direction of the
bifurcation itself. Like usual normal coordinates are a linear combination of the coor-
dinates used, also the two bifurcational coordinates will be a linear combination of all
coordinates. We guess that an ansatz to ”know” this plane before the calculation will
be a speculation. May be it can be supported a little by chemical intuition, c.f. another
example [81]. The theory of NTs allows us to search quasi ”ab initio” for the VRI
plane in the full dimension of the molecules degrees of freedom. (Of course, we need
a guess of the region of the configuration space where the VRI could be.)

7 Conclusion

We use singular NTs to explore skew VRI points for HCN and alanine dipeptide. We
find the singular NTs with an empirical variational scheme. It works.
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Appendix

Table 1 VRI point of alanine dipeptide near C5 minimum. The z-matrixcoordinates (in̊A and degree) are
in the order of Chass et al. [79]. (φ ,ψ) are bold. Variables 6 and 60 are fixed.

1.0823533 1.5076906 109.0854125
1.2297386 120.6150737 64.0
1.0815013 108.6200117 -52.7854714
1.0807919 113.3276565 -174.0747806
1.3551050 115.4819160 -116.3800443
1.4681739 127.5004933 179.0925717
1.5309121 103.5669621 161.5368811
1.2337026 118.5015250 69.2084861
1.0839450 109.0386273 -86.3556218
0.9942629 117.5701266 10.9150013
1.5270619 114.4009734 35.5621857
1.0760130 110.2704005 -67.6612961
1.0842233 109.4652807 -187.3460581
1.0831225 112.0328517 51.2159897
1.3438684 118.4260894 -106.8333517
1.4548965 123.1346690 176.5693575
1.0823606 110.5592725 120.5810590
0.9900383 119.1582596 -1.4098970
1.0769551 108.6527121 0.9249162
1.0835450 110.5444637 -119.0

Table 2 Search direction (in Bohr and Radian) at the VRI point of Table 1. (φ ,ψ) are bold. Components
6 and 60 are not used.

-0.00054 0.00549 0.00157
-0.01351 0.01918 -
0.0054 0.01328 -0.01765
0.01903 -0.02566 0.06135

-0.00144 -0.02998 -0.1122
-0.02567 0.1195 0.12004
-0.00466 -0.29166 -0.2468
0.00652 -0.04949 0.09877
0.00696 -0.07526 0.06663
0.00885 0.02561 0.01321

-0.04086 0.12001 -0.18274
0.01831 -0.0247 -0.01146
0.00332 -0.00721 0.04852

-0.02682 0.03109 -0.01739
0.07269 -0.27212 0.54095
0.01168 0.17525 -0.1179

-0.00625 -0.00695 0.06133
0.00363 -0.00076 0.08296
0.01316 -0.01758 0.04853
0.07244 -0.00505 -
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