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Abstract. We explain the propagating austenite–martensite phase boundary by a Frenkel–Kontorova model
for a chain of meshes along a ledge of the phase transitions. We demonstrate such steps for example chains
of 16 and 47 meshes. We can represent a Langevin solution which describes possible cases of a consecutive
excitation of a higher phase under a low external force.

1 Introduction

Shape memory alloys (SMAs) are interesting for appli-
cations by two properties: the shape memory effect and
the pseudoelasticity. SMAs are able to recover strain
due to their phase transformation between austenite
(Au) and martensite (Ma). One example is the nearly
equiatomic nickel–titanium alloy [1,2]. The wide use
of SMAs in engineering applications requires a deeper
understanding of these materials.

This paper is inspired by the work of Leninpadian
and Vedantam [3] where the propagation of an Au–Ma
phase boundary is explained by the help of a generalized
Frenkel–Kontorova (FK) model [4]. Compare the corre-
sponding Figure 2 in [3]. Though the martensite phase
is connected with a lower temperature, the austenite
phase can ‘relax’ to the higher energy under an external
force. In contrast to Ref. [3] we describe a consecutive
phase transition through the full ledge of meshes. The
model is explained in Sects. 2 and 3.

An FK model was also proposed for crack tip insta-
bilities in [5], and in many other works—sometimes
without to name it so. To look inside the FK chain we
use in this work the potential energy surface (PES) of
a chain of meshes [6–9]. The PES maps possible con-
figurations of the chain to their corresponding energy.
Of special interest is always a low-lying pathway, a val-
ley, which connects different stationary structures. The
neighbourhood of such a pathway is the way where the
FK chain can move under a mild external force, if it
could be depinned before.
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In contrast to the tradition in this field of research,
the periodic substrate potential of the generalized FK
model is assumed to be a sinusoidal curve. Tradition-
ally parabolic approximations [10] of an unsymmetrical
double-well potential are used however only for ana-
lytical studies for one mesh. We avoid the non-differen-
tiable overlaps of the diverse parabola by a continuously
differentiable cosine ansatz with three summands. It is
just better. Additionally it allows the treatment of the
full chain and not only the study of a single part of the
ledge of meshes.

The chain is really assumed of finite length with free
boundaries. We search the form of the movement of the
FK chain on the site-up potential from a lower mini-
mum of Au to an upper minimum of Ma, for N meshes.
We search for a low global valley through the ’moun-
tains’ of the N -dimensional PES for steps of the chain
along a minimum energy path (MEP). The aim is a step
by step movement along the scheme of Fig. 1. However,
with a totally symmetric external force, the displacive
shear transformation mechanism [11], the pathway will
often be somewhere side-up from the MEP. Thus the
totally symmetric excitation will not lead to a conse-
cutive phase transition like it is suggested in Fig. 1.

We use a slightly distorted external force, and the
ansatz of a Langevin equation with a second-order
vibrational part.

In Sect. 2, we introduce the general model of the
phase transition, and in Sect.3, we explain the general-
ized FK model used in this paper with the special case
of N=16 chain length. In a next section, we repeat the
definition of Newton trajectories (NT) and the use of a
Langevin equation (LE). In main Sect. 6, we calculate
and discuss the application of both tools. NTs are used
to explore the PES and find MEPs, or low paths, con-
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Fig. 1 Model of the lattice with phase boundaries [3].
From a to b the ledges go one step further. In panel c a
single mesh is shown at any coordinate xi. The orthorhom-
bic lattice is Ma, the cubic one is Au. Courtesy Springer
Nature

necting minima and SPs of a lower index, like 1 or 2. An
LE is used to describe explicitly the Au–Ma phase tran-
sition. We find an interesting description of the phase
changing process. And it can be got by a simple equa-
tion, at all. Finally, the last sections are devoted to a
discussion and a conclusion.

2 The model

The model for the Au–Ma phase transition is explained
in Ref. [3]. We reproduce Fig. 2 of this paper in Fig. 1.
Using the free energy per unit volume of the mate-
rial one gets a description for every mesh of a one-
dimensional lattice (named ledge) by an unsymmetrical
double minimum potential [12]. A general explanation
of microstructures in cubic to orthorhombic transitions
can be found in [1,2,13]. Note that the equal length
of the two different meshes for Au and Ma leads to
the assumption of equal distances between the Au–Au
bonds and the Ma–Ma bonds which in reality is some-
what questionable. The lath spacing between different
ledges is also not tractable by our simplification, com-
pare [11,14].

3 The generalized FK model

In general, the vector x = (x1, ..., xN )T represents the
ledge of N meshes for a finite N . It holds that xi < xi+1

for 1 ≤ i ≤ N . A mesh is a 4-particle piece of the

Fig. 2 The site-up potential function which is used for the
first mesh x1. Au is the zero minimum, and Ma is the upper
minimum at 0.77 arbitrary units. Both are depicted by black
bullets, where the SP in between is a red bullet. Its energy
height is 1.23 units. The large peak before the next Au min-
imum at 2π is a special barrier against general sliding of the
ledge

lattice, compare Fig. 1, where we additionally isolate a
single ledge of the 2D lattice, and study the change of
the relation of the phase of the 4 particles of one mesh
from the Au to the Ma structure. The chain has the
parameters ao = as = 2π where ao is the equilibrium
distance of the meshes, xi, and as is the periodicity of
the site-up potential of the remaining ledges of the full
lattice which is assumed in a generalized FK model.
The one ledge of interest is embedded in the full lattice
which is the reason for ao = as leading to a simple FK
model. We use the parameter k for the ‘spring force con-
stant’ between the meshes. The parameter regulates the
relation between the spring force and the site-up poten-
tial. F is the amount of an external force which usually
is equally applied to all meshes xi [3]. (In Fig. 1, it is
depicted by τ .) The application of force F is explained
in Sect. 5. Note that such an ansatz represents the gen-
eral case of a shear force, but it makes it difficult to get
single steps for the consecutive meshes, as it is depicted
by the dark mesh in Fig. 1c.

The meshes xi are the former ‘particles’ of the gen-
eralized FK model. We treat a simple harmonic spring
potential [3]

S(x) =
k

2

N−1∑

i=1

(xi+1 − xi − ao)2, (1)

where k is the spring force constant. The nearest neigh-
bour distance is ao = 2π. The nearest neighbour springs
can, of course, be adapted to a more realistic relation by
a twofold nearest neighbour ansatz, to reflect the Au–
Au bond springs, compare Refs. [15–17]. One can also
put possible other Ma–Ma bond springs, and one can
put the Au–Ma bonds into the overall site-up potential.

The PES for the variable changes of the xi is the
Frenkel–Kontorova model

V (x) = P (x) + S(x), (2)
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where we propose the site-up P with the generalized
potential, compare Fig. 2,

P (x) =
N∑

i=1

[−0.1 cos(xi) − cos(2 xi)

+1.5 cos(xi − 4.5) + 1.66] . (3)

We use the periodicity as = 2π = ao of the cosine func-
tion, here and in the spacing of the spring forces. The
mesh x1 has no ‘bond’ to the left-hand side, and the
mesh x16 = xN has no ‘bond’ to the right hand side,
thus the chain has free boundaries. The factors 0.1 at
the first part, and 1.5 at the third summand regulate
the relation of the two minimum wells. If these factors
depend on temperature, one could change the potential
in a desired direction. In this paper we do not treat
explicitly the temperature. Thus the complicated inter-
play between stress and temperature of shape memory
alloys [14,18] is not directly contained in the model of
this paper. Note that the second barrier height to the
next mesh must be sufficient to prevent the mesh points
to move out of their places. The postulate is essential for
the model to work automatically. Any point, xi, should
move between the Au minimum and the Ma minimum
only. The full chain should be fixed in this region. In
this sense the potential represents a bistable link [19].
To overcome the large barrier would mean the begin-
ning of a crack of the crystal [14,18,20] which is not of
interest in this paper.

We search consecutive ‘jumps’ of the meshes j from
their ‘zero’-minimum Au to the up-minimum well, Ma,
but we will prevent the chain from general sliding. So
to say, the Au phase can only ‘relax uphill’ to the Ma
phase in the right direction if the external force drives
it. This property is realized for moderate forces by the
third part of Eq.(3) making the big peaks of the site-up
potential. Vice versa can an inverse force push the Ma
phase into the downhill direction to the Au phase.

The generalized potential in Eq. (3) is not the often
used parabolic double minimum potential [3,17]. For
such parabolas is not described how the high limit
between the meshes can be defined. Treating only one
mesh with its double minimum [3,21] ‘one at a time’—
is not enough for the study of a consecutive excitation
of neighbouring meshes along the ledge of interest in
the given crystal, the full generalized FK model. The
potential is also not a piece-wise linear function [19].

In history, in times long ago, the use of two parabo-
las was introduced for simplicity only [10,17]. We think
that consecutive parabolas with no differentiable cross-
ing points of their energy curves [21] are not really a
simplification, if one looks for the full ledge. The edge
usually causes an nonphysical behaviour. We guess that
all atoms of the crystal are hold at their places by
chemical bonds. The forming or disruption of bonds is
described by a continuous, differentiable potential with
a usual SP. (Note that the hand drawn Fig. 1 in [21]
does not correctly reflect the used PES by the seem-
ingly differentiable double minimum potential.)

Fig. 3 Two ‘global’ minima of the crystal for N = 16: all
xi at (2π i + δ) are sitting equally along a ledge. Here only
counts the site-up potential. The spring potential, S(x), is
zero. Note that we usually draw the xi sitting on the site-up
potential, beginning with the right panel in this figure, to
lead the eye. In the correct model all xi will be on the axis.
Their distances only can change

In Fig. 3 we represent two known ‘global’ minima of
the chain. Their energies are zero for the Au ledge, and
12.39 units for a full ledge of Ma, correspondingly. Per
mesh, xi, there holds the energy difference of 0.77 units.
A single transition state is at 1.23 units, see Fig. 2.

4 Newton trajectories

NTs are help tools to study a complicated PES.
They explore the pathways between different station-
ary points, see refs. [6–9,22–28]. We use a force

f = F (f1, ..., fN )T = F (1, ..., 1)T (4)

where the last setting is the usual unique case of a
shear force over all meshes of the ledge. Thus all single
components fi are unique. Sometimes we allow slight
deviations from this setting. The superscript T denotes
the transpose. The force forms the effective potential
energy

Veff (x) = V (x) − xT f , (5)

where V (x) is the original PES (2). The external force
will result in a distortion of the original minima and
saddle points (SPs). The new stationary points on the
effective potential satisfy the condition ∇x Veff (x) =
0, which implies

∇x Veff (x) = g(x) − f = 0. (6)

This means that in the new set of stationary points of
Veff (x), the gradient of the original PES, g(x), has to
be equal to the external force, f . For a properly chosen
force direction, the energy of a minimum is increased,
and the energy of a neighboured SP is lowered [29].
Solution points for different amounts of F of Eq. (6)
form a curve which is named Newton trajectory. A gen-
eral direction (f1, ..., fN ) is named the search direction
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of the NT. Every NT describes a connection between
different stationary points of an index difference of one
[30]. Following an NT numerically is a method to search
a next SP if a minimum is given, or vice versa.

5 Dissipative Langevin equation (LE)

We assume an external force to form an effective poten-
tial by Eq. (5). In many shape memory alloys one has a
stress induced Ma [11]. We search this transition here
along a trajectory x(t). We use the spring force with
k = 1. The usual vibrations of the meshes have to
be taken into account. We introduce for the calcula-
tion of the second-order equation the vector function
v(x) = x′ for the velocity of the meshes. Nodes on an
LE trajectory are calculated numerically. Starting at
an original Au minimum of V (x), we put the numer-
ical solution forward by the steps along the system of
dimension 2N

Δxi(J + 1) = εvi(J) , (7)

Δvi(J + 1) = − ε

m
(η vi(J) + gradi(J) − F fi) (8)

for i = 1, ..., N . The counter J stays for the ‘nodes’
of the trajectory, ε is the scaling of the step length of
the LE, thus a time step, m is the mass of a mesh,
here used with m = 1, and gradi is the derivation of
the potential (2) to coordinate xi at node J . The com-
ponent F fi remains of the effective potential (5) after
differentiation. By the constant η we can regulate the
degree of damping. We use the value of η = 0.05 for a
small friction.

The components of the gradient of the effective PES
are

gradeff i = gradi − F fi

= k (xi+1 + xi−1 − 2xi) + Pxi
− F fi

(9)

for i = 2, ..., N − 1. For i = 1 and i = N emerge the
boundary components

gradeff 1 = grad1 − F f1

= −k (x2 − x1 − ao) + Px1 − F f1 , (10)
gradeff N = gradN − F fN

= k (xN − xN−1 − ao) + PxN
− F fN .

(11)

The system of Eqs. (7)/(8) is a coupled nonlinear sys-
tem because of the coupled gradient parts, and the
nonlinear part of the derivatives, Pxi

. Numerically we
approximate solutions of Eqs. (7)/(8) with ε-steps of
length 0.0025. In the representation we depict the J-
axis by ‘Node’.

If one starts the LE at a minimum of V (x) with a
small force, f , then the chain will stay in its bowl. Any

Fig. 4 Energy profile over the ‘trivial’ NT starting in the
zero minimum of the Au ledge and going uphill totally sym-
metrically over all SPs at the same time—the trivial solu-
tion. The inset is an SP of index 9. The up-minimum is the
full Ma-structure of all meshes. Black bullets are minima,
the red bullet is the ‘global’ SP. Its energy is N times the
energy of the single SP of Fig. 2

vibration will take place here. But if one chooses F >
Fc, a critical force, then the Langevin equation with
external force will lead to a possible change of the chain
over an SP. By a stronger force an Au minimum will
be depinned and the mesh slides ‘downhill’ the effective
PES to an Ma minimum.

The movement under the unique excitation F (1, .., 1)T
usually leaves the chain structure unchanged. The full
chain moves like a fixed body along the side-up poten-
tial. This pathway is named ’trivial’ and it is quite sta-
ble for an overdamped LE with a large η.

For other applications of a Langevin equation see refs.
[9,31,32].

6 Results

6.1 Results for Newton trajectories

We present different cases for NTs for an uphill pathway
from the global Au minimum to the full Ma minimum.
The search direction for the NT is the vector of units
of the form (1, ..., 1)T , in the fully symmetric case, in
Fig. 4, named the trivial solution. To find a nontrivial
solution, we use a slight asymmetric push: we set the
first component to f1 = 1.05, and all other fj = 1, see
Fig. 5. In contrast, for a slight asymmetric pull we set
the last component to fN = 1.05, where the energy pro-
file looks equally to the former case, and for a combined
kink and antikink starting in the centre of the meshes,
we set the 8th component f8 = 1.05, see Fig. 6.

The figures are drawn over the steps of the NTs,
named nodes. The step length in the 16-dimensional
coordinate space of the meshes is 0.05. In Fig. 4 all parts
of the chain move equally pushed by the unique forces
for all meshes. Here no deformation of the ledge takes
place, see the Appendix. All distances will be fixed by
2π. The chain thus is going over a ‘global’ fully sym-
metric ridge uphill to the ‘global’ SP of index 9 with an
energy of 19.65 units where all meshes are on their own
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Fig. 5 Energy profile over an NT starting in the zero
minimum and going uphill slightly unsymmetrically, with
f1 = 1.05 but all other fj = 1. It ‘pushes’ the left part of
the chain a little bit more. After a symmetric start, it finds
back to the single SPs of the Ma meshes in a consecutive
kind, and passes the single minima of the single Ma wells.
The inlet shows the SP of the 9th mesh. At the end, the
up-minimum is again the full Ma-structure of all meshes,
see the right structure in Fig. 3

Fig. 6 Energy profile over an NT starting in the zero
minimum and going uphill slightly unsymmetrically, with
f8 = 1.05. It ‘pulls and pushes’ the centre of the chain a
little bit more. After a symmetric start, it comes back to
the single SPs of the Ma meshes from the centre, and goes
in a twofold kind to the boundaries. It finds consecutively
two single minima of two single Ma wells. At the end, the
up-minimum is again the full Ma-structure of all meshes

single SP, compare the red bullets of Figs. 2 and 4. The
‘global’ SP is the combination of all single SPs of all
meshes in their corresponding dimensions [33–35]. The
index 9 includes one (maximally negative) eigenvalue
to the eigenvector of a unique direction of all meshes,
and asymmetric vibrations. The ‘trivial’ NT follows the
first eigenvector.

There are animation files of Figs. 5 and 6 in the SI
part.

Figure 5 shows the energy profile of the PES (2) over
an NT. It starts for ≈ 50 nodes with a symmetric
excitation of all meshes, so to say it starts with the
beginning of the trivial solution. However, then the NT
turns down and forms a sketch of the MEP over all
single SPs of index 1 between the two ‘global’ minima
of Fig. 3. The search direction for the NT is the vector
(1.05, 1, , ..., 1)T . The fully symmetric NT of Fig. 4 has a
bifurcation point on the ridge. The small distortion by
f1 here causes a near neighbouring NT which deviates

from the symmetry before the bifurcation point [22,23].
Because NTs connect stationary points, this NT then
finds the SP of index 1 of the next single mesh transi-
tion. And so on. One can observe the corresponding sin-
gle SPi and the next intermediate minima, iMini of con-
secutive meshes, compare the inset of Fig. 5. The struc-
ture of the minima of all xi up to N − 1 is a shock. (In
the FK community it is named antikink, a compressed
structure.) Compare Fig. 1: all left points already are
near the Ma minimum, then one has a shorter Ma–
Au distance, a shock, and all remaining points are still
below near the Au minima.

The step-like pathway has its ground in the mutual
springs of the meshes by Eq. (1) where we used k = 1.
Not only the site-up potential counts, but also the
‘springs’ between the meshes. The consecutive steps
from i to i + 1 look like a travelling wave [6–9], see the
SI animations. The pathway of Fig. 5 after node ≈ 100
corresponds to the imagination of Fig. 1c.

In Fig. 6, the energy profile for an NT is depicted
where the mesh x8 is a little bit more excited by f8 =
1.05, instead of 1 only, like the other force components.
It is known that an ultra low load at an intender of Au
can trigger a Ma transition [36,37]. Here the ‘wave’ of
excitations starts at the centre of the chain, at x8, and
a kink goes to the left, but an antikink goes to the right
hand side. Consequently, only 16/2 combined SPs are
to overcome, because always two single SPs are crossed
at the same NT step.

Note that NTs are only artificial curves to explore
the PES of a problem. The trajectories are usually not
mechanical trajectories of a moving system. Thus we
discuss a more physical ansatz in the next subsection.

6.2 Results for a Langevin equation (LE)

We get a (somewhat smeared) consecutive excitation of
the Au phase transition along a ledge, to the Ma phase.
Using a small value for the damping η = 0.05, we excite
the chain by a moderate external force

f = 4 (1.1, 1, ..., 1, 1.1)T . (12)

At the left and the right border we use a slightly higher
excitation to avoid a fully symmetric excitation of the
chain. We approximate solutions of Eqs.(7) / (8) numer-
ically with ε-steps of length 0.0025. Figures 7 and 8 show
a result. The energy profile on the original PES (with-
out the external force) first shows a vibration of the
chain in its Au bowl, up to node 33 000. Then it nicely
climbs up to Ma under vibrations. This is illustrated by
the structures of Fig. 8. The right structure of Fig. 8 is
a quasi perfect Ma chain though the chain executes fur-
ther vibrations. The structures at the left-hand side of
Fig. 8, and in the centre show how the meshes from the
left and the right hand sides climb step by step uphill
over their single SPs. At the end, at node 82 800, the
central meshes are also lifted to Ma.

In a second example we treat a chain of 47 meshes,
thus we use 47× the potential of Fig. 2. Again we start
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Fig. 7 Energy profile over the original PES of a solu-
tion for the LE with vibration term, between global low-
minimum and up-minimum. The force is given in Eq. (12)
by ‘pushes’. After a vibration of the chain in its bowl, we get
a successive increase up to the Ma level. The black bullets
are shown in Fig. 8

Fig. 8 Structure of the chain for the three black bullets
in Fig. 7. Successively the chain claims uphill to the Ma
structure, but under some symmetric vibrations of different
parts

with an unsymmetry at the left-hand side by force com-
ponent f1 = 1.1, but all other components equal to one.
The amount of the force is balanced to F = 6.75 units.
The force is far below the trivial symmetric SP, but still
enough to depinn one mesh after the other of the chain
from the Au minimum. In Fig. 9 we show an energy
profile of a Langevin solution (only every 25th node is
shown). The four first, or so, peaks are vibrations of
the full chain in the site-up minima of Au. However,
then starts the successive rise to single Ma minima.
Vibrations of the single meshes around their equilib-
rium minima take place in the last region of the profile.
In Fig. 10 we show the final structure of the chain in
this calculation at node 65 000. In SI we also represent
an animation of the solution.

7 Discussion

We propose a continuously differentiable potential of
the Au to Ma transformation problem, in contrast to
many former workers. The ansatz by a Frenkel–Konto-

Fig. 9 Energy profile of the 47-dimensional PES only of a
solution for the LE, between global low-minimum and up-
minimum. The force pushes the chain to Ma. After a vibra-
tion of the chain in their bowl, we get a successive increase
up to the Ma level

Fig. 10 Structure of the final chain of a Langevin calcu-
lation in the 47D case. The chain has claimed uphill to the
Ma structure. Some (nonsymmetric) vibrations of different
parts still happen

rova model allows a complete treatment of a full ledge
of meshes in one calculation for a Langevin equation.
Of course, every calculation of a ledge needs a finite
chain with given fixed or free boundaries, in contrast to
refs. [15–17].

There are many former papers which treat only one
mesh of the ledge. To calculate for one index i the move-
ment only, so to say alone for the single potential of
Fig. 2, is not enough. One needs the view over all the
meshes of a ledge in Fig. 1, in one common system of
equations. The springs, S, of the FK model, Eq. (1),
realize the connection. By the gradients, Eqs. (10), this
system is a coupled system. And as recently as the cou-
pling represents the problem of the treated transition
from Au to Ma in an alloy.

The usually given external force is a vector of equal
components for all meshes. However, one has to leave
the full symmetry, at least by a small perturbation. For
our ‘toy’-problem with N = 16 meshes, the symmetric
TS is only a little bit higher than consecutive single
SPs. This will not hold for a larger alloy. The symmetric
barrier height goes with N ∗( barrier of one SP1), which
we should avoid. Thus, some small deviations in the
force vector, f , can lead to much lower barrier heights
if one excites the chain of meshes one after the other. A
nice result for such a case is shown in Fig. 8. Note that
qualitatively are the cases equal, the small case with
N = 16 and the medium case with N = 47 meshes.
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8 Conclusion

Doing some simple numerical experiments, we find a
mixed picture of excitations of one or more meshes
of the ledge which forms the proposed generalized FK
model. Usually unique stress by a shear force over the
full ledge does not lead to consecutive transformations
of single meshes, like Fig. 1 suggests it; however, this is
possible in special cases. Nice consecutive excitations to
Ma states can start at the boundaries of the ledge, or
anywhere inside the chain, if a slightly distorted shear
force is assumed.

If in a practical case the alloy of interest is much
larger than the toy cases of N = 16 or 47 meshes, as
they are used here for our explanations, then we can
assume that small perturbations of any kind destroy a
given symmetry of a unique shear force. Then a path-
way much lower than the trivial, the symmetric ridge
path over all N meshes will emerge simultaneously.
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A Appendix

A translation symmetric force does not change the spring
potential. We use 1 = (11, . . . , 1N )T . Multiplying the deriva-
tive of the spring potential from the left by 1T we obtain
the sum of the scalar product 1T ∇xS(x). The set of par-
tial derivatives of S(x) (see Eq. (1)) with respect to xi for
i = 1, . . . , N is

∂S(x)
∂x1

= −k(x2 − x1 − a0) = −k(Δx1 − a0)

∂S(x)
∂x2

= k(x2 − x1 − a0) − k(x3 − x2 − a0)

= −k(Δx2 − Δx1)

∂S(x)
∂x3

= k(x3 − x2 − a0) − k(x4 − x3 − a0)

= −k(Δx3 − Δx2)
...
∂S(x)

∂xN−1
= k(xN−1 − xN−2 − a0) − k(xN − xN−1 − a0)

= −k(ΔxN−1 − ΔxN−2)

∂S(x)
∂xN

= k(xN − xN−1 − a0) = k(ΔxN−1 − a0),

where Δxi = xi+1 − xi , i = 1, . . . , N − 1. Summing all
these expressions we have that 1T ∇xS(x) = 0. This means
that ∇xS(x) is orthogonal to f = F1.

Supplementary Information (SI)

We add some movies as it is described in the text above.
They can be studied by the programme ‘gwenview’ under
Linux. The movies are made by the Mathematica program.

– Excitation of the chain more left by f1=1.05 (push) by
FKmAnimMeshPush.gif
– Excitation more right by f16=1.05 (pull) which is not

shown here by a figure
FKmAnimMeshPull.gif
– Excitation more at the centre by a push-pull for f8=1.05
FKmAnimMeshcenterNT.gif
– Dynamical Langevin 16 meshes
FKmAnimMeshLangIIvib.gif
– Dynamical Langevin 47 meshes
FKmAnimMeshD47.gif

References

1. J.A. Shaw, S. Kyriakides, Acta Mater. 45, 683 (1997)
2. N.J. Bechle, S. Kyriakides, Int. J. Solids Struct. 51, 967

(2014)
3. P. Leninpandian, S. Vedantam, Ann. Solid Struct. Mech.

12, 89 (2020)
4. T.A. Kontorova, Y.I. Frenkel, Zh. Eksp, Teor. Fis. 8, 89

(1938)
5. M. Marder, S. Gross, J. Mech. Phys. Solids 43, 1 (1995)
6. W. Quapp, J.M. Bofill, Mol. Phys. 117, 1541 (2019)
7. W. Quapp, J.M. Bofill, Eur. Phys. J. B 92, 95 (2019)
8. W. Quapp, J.M. Bofill, Eur. Phys. J. B 92, 193 (2019)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


   87 Page 8 of 8 Eur. Phys. J. B           (2022) 95:87 

9. W. Quapp, J.Y. Lin, J.M. Bofill, Eur. Phys. J. B 93,
227 (2020)

10. W. Atkinson, N. Caberra, Phys. Rev. 138, 763 (1965)
11. J.F. Xiao, X.K. Shang, J.H. Hou, Y. Li, B.B. He, J.

Plast. 146, 103103 (2021)
12. B.L. Sharma, J. Mech. Phys. Solids 96, 88 (2016)
13. K.F. Hane, T.W. Shield, J. Elast. 59, 267 (2000)
14. P. Shayanfard, E. Alarcon, M. Barati, M.J. Mahtabi, M.

Kadkhodaei, S.A. Chirani, P. Sandera, Crit. Rev. Solid
State Mat. Sci (2021)

15. L. Truskinovsky, A. Vainchtein, Phys. Rev. B 67, 172103
(2003)

16. L. Truskinovsky, A. Vainchtein, SIAM J. Appl. Math.
66, 533 (2005)

17. E. Trofimov, A. Vainchtein, Contin. Mech. Thermodyn.
22, 317 (2010)

18. E. Sgambitterra, P. Magaro, F. Niccoli, F. Furgiuele, C.
Maletta, Shape Mem. Superelast. 7, 250 (2021)

19. A. Cherkaev, E. Cherkaev, L. Slepyan, J. Mech. Phys.
Solids 53, 407 (2005)

20. N. Shafaghi, B. Haghgouyan, C.C.C. Aydiner, G. Anlas,
Mater. Today Proc. 2, 763 (2015)

21. L. Wang, R. Abeyaratne, J. Mech. Phys. Solids 116, 334
(2018)

22. W. Quapp, M. Hirsch, O. Imig, D. Heidrich, J. Comput.
Chem. 19, 1087 (1998)

23. W. Quapp, M. Hirsch, D. Heidrich, Theor. Chem. Acc.
100, 285 (1998)

24. J.M. Bofill, J.M. Anglada, Theor. Chem. Acc. 105, 463
(2001)

25. R. Crehuet, J.M. Bofill, J.M. Anglada, Theor. Chem.
Acc. 107, 130 (2002)

26. W. Quapp, J. Theoret. Comput. Chem. 2, 385 (2003)
27. W. Quapp, J.M. Bofill, Theoret. Chem. Acc. 135, 113

(2016)
28. W. Quapp, J.M. Bofill, J. Ribas-Ariño, J. Phys. Chem.

A 121, 2820 (2017)
29. L. Pauling, Chem. Eng. News 24, 1375 (1946)
30. M. Hirsch, W. Quapp, J. Mol. Struct. THEOCHEM

683, 1 (2004)
31. W. Quapp, J.M. Bofill, Eur. Phys. J. B 94, 66 (2021)
32. W. Quapp, J.M. Bofill, Eur. Phys. J. B 94, 64 (2021)
33. D. Heidrich, W. Quapp, Theor. Chim. Acta 70, 89

(1986)
34. R.M. Minyaev, I.V. Getmanskii, W. Quapp, Russ. J.

Phys. Chem. 78, 1494 (2004)
35. P. Collins, G.S. Ezra, S. Wiggins, J. Chem. Phys 134,

244105 (2011)
36. B.B. He, M.X. Huang, Z.Y. Liang, A.H.W. Ngan, H.W.

Luo, J. Shi, W.Q. Cao, H. Dong, Scr. Mater. 69, 215
(2013)

37. B.B. He, X.K. Shang, Philos. Mag. Lett. 101, 417 (2021)

123


	A generalized Frenkel–Kontorova model for a propagating austenite–martensite phase boundary: revisited numerically
	1 Introduction
	2 The model
	3 The generalized FK model
	4 Newton trajectories
	5 Dissipative Langevin equation (LE)
	6 Results
	6.1 Results for Newton trajectories
	6.2 Results for a Langevin equation (LE)

	7 Discussion
	8 Conclusion
	Author contributions
	A Appendix
	References
	References




