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Abstract
Valley-ridge inflection (VRI) points play an important role in organic chemistry, especially in post-TS bifurcations. We 
explain a new discovery of a special structure of the region with another, weaker type of a valley bifurcation (VB) without a 
ridge in between. We apply the theory of Newton trajectories (NTs) and gradient extremals (GEs) to cases of two-dimensional 
potential energy surfaces. We define an indicator of the valley bifurcation where the gradient of the potential energy surface 
is the eigenvector of the Hessian matrix at eigenvalue zero. The new type of bifurcation point is connected with a ‘dead’ 
valley of the PES. The example is a nice demonstration that the index theorem for NTs holds, nevertheless. NTs and GEs 
are important tools to explore the region of the bifurcation point.

Keywords Potential energy surface · Transition state · Valley-ridge inflection point · Valley bifurcation · Regular and 
singular Newton trajectory · Gradient extremal

1 Introduction

Bifurcations are omnipresent in natural sciences [1, 2], 
including valleys on a potential energy surface (PES). They 
are a long studied subject [3–8]. The bifurcation can take 
place before the transition state (TS) of a dissociation [9, 
10], as it is demonstrated by an internal vibrational redis-
tribution [11]. It also can happen at the TS [12, 13]. Or in 
contrast, the study of organic chemical reactions shows often 
bifurcations after the first TS. The theoretical understanding 

of the underlying mechanisms that govern selectivity, i.e., 
product distributions, is of central interest [14–19]. And 
finally, the bifurcation can coalesce with a TS [6, 20]. Bifur-
cations can also take place in radiationless deactivation of 
organic dyes on the lower PES [21].

Understanding in particular asymmetric post-transition 
state bifurcations is essential for predicting reaction selec-
tivity in complex chemical systems [22, 23]. Of course, 
here the reaction pathways inherently require at least a two-
dimensional (2D) description, as long as a pathway over a 
single transition state bifurcates into two distinct product 
pathways. The PES has two consecutive saddles of index 
1 with no intervening energy minimum. Between the two 
index 1 saddles, one of which has higher energy than the 
other, there must be a valley ridge inflection (VRI) point 
[6, 24–28].

The reaction is initiated when a trajectory crosses the 
area of the higher saddle (forming the entrance channel) 
and may approach the lower energy saddle. On either side 
of the lower energy saddle, there are two minimum wells. 
The question of interest is which well does the trajectory 
enter (predicting the product selectivity)? It could leave the 
standard intrinsic reaction path, the IRC [29–32].

One can assume that the VRI plays a role in selectiv-
ity. Certainly the VRI is a geometrical feature of the PES. 
Two conditions are fulfilled there: The curvature of the PES 
is zero, which implies that the Hessian matrix has a zero 
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eigenvalue, and the gradient of the potential is perpendicular 
to the eigenvector corresponding to the zero eigenvalue. This 
means that the landscape of the PES in the neighborhood 
of the VRI changes its shape from a valley to a ridge which 
gave the region the name VRI.

In synthetic chemistry, identifying the key functional 
groups that influence reaction pathways is crucial for design-
ing efficient synthesis strategies, especially when dealing 
with large molecules containing multiple functional groups. 
If the dominant degrees of freedom are known, especially 
the VRI region, chemists can target these features to stream-
line synthesis.

In this paper, we analyze cases where a valley bifurca-
tion occurs without an intervening ridge. We call this event 
valley bifurcation (VB). In the next section, we repeat the 
definition of the reaction path models of interest: Newton 
trajectories (NTs) and gradient extremals (GEs). In Section 
III, we discuss different relations of a VRI region to the 
singular NT traversing it, and of cases of onyl VB, for dif-
ferent 2D test PES. In Section VI, we add a discussion. A 
conclusion is given in Section V. Appendix 1–3 reports on 
the index theorem of NTs, the avoided crossing of GEs, and 
the 2D representation of NTs or GEs.

2  Models of the reaction path

2.1  Newton trajectory

This work concerns a mathematical excursion which dis-
cusses the use of NTs for the exploration of a special PES, 
V(x) given in reference [33], and in particular its VRI or VB 
points. An NT is a curve x(t) where the gradient, g, of the 
PES is parallel to a given direction, f , at every point

t is a curve length parameter. Curves that solve Eq.(1) are of 
particular interest in mechanochemistry, where the direction 
f is the direction of an external force [34–36]. A possibility 
to follow a curve fulfilling this property (1) is the definition 
of a projector matrix. If r = f∕| f| is the normalized direc-
tion then

projects on direction r . Eq.(1) looks then

Its derivation can be used to develop a predictor-corrector 
method [6].

Alternatively, the approach of Eq.(1) was formulated in a 
differential equation by Branin [6, 37, 38]

(1)g(x(t)) || f

P = (I − rrT )

��(�(t)) = 0 .

H is the Hessian of the second derivatives of the PES. It is 
important that the matrix

is desingularized when the Hessian becomes singular. It is 
called the adjoint matrix for H . The full Hessian matrix can 
be computationally expensive at each step of the positions 
x(t) . However, it can be updated [39–41]. A first numerical 
step starts from a stationary point in direction f . The follow-
ing steps then ensure that the gradient maintains this direc-
tion [6]. The plus + sign in Eq. (2) is used for an NT from a 
minimum to an SP of index one, but the minus - vice versa. 
If the energy increases monotonically along an NT, then it 
can serve for a reaction path variable.

Note that NTs have the nice property that they connect 
stationary points with an index difference of one [6, 38, 42], 
compare appendix 1. The index here counts the number of 
negative eigenvalues of the Hessian matrix at the stationary 
point. If we start at a minimum with index zero, we obtain 
a next saddle point (SP) with index one. A special case is a 
singular NT that crosses a valley ridge inflection (VRI) point 
[6]. The characterization of the VRI is the zero point of the 
right-hand side of the Branin Eq. (2)

but where the gradient is not zero, g(x) ≠ 0 . We call it VRI 
point. A singular NT has four branches through the VRI 
point. It typically connects a minimum with a saddle of 
index two and two SPs of index one via the VRI. A VRI 
represents the branching of a valley into two valleys and an 
intermediate ridge, or complementarily, the branching of a 
ridge into two ridges and a valley in between. Mathemati-
cally, the Hessian has a zero eigenvector orthogonal to the 
gradient [6, 8, 31, 43, 44].

We can follow a one-dimensional curve by Eq. (2) in 
any dimension. For a PES with more than two dimensions, 
manifolds of VRI points arise [45, 46]. There is an illustra-
tive introduction to the higher dimensional case [47]. The 
following of an NT is included in the COLUMBUS program 
system [48] (under the name reduced gradient following, 
RGF). There are some links to different programs [49, 50]. If 
the PES is symmetric, the VRI manifold often forms a sym-
metry hypersurface. However, asymmetric VRI manifolds 
can also be computed [45, 49, 51, 52]. Recently, the role 
of VRI points in dynamical processes has been discussed 
[53]. The Newton trajectory method has been established in 
chemistry since 1998, see refs. [36, 54–59] and further refer-
ences therein. We report that NTs are calculated for medium 
molecules with up to dimension 486 [60].

(2)
dx(t)

dt
= ±Det(�(�(t))) �−�(�(t)) �(�(t))

(3)A = Det(H) H−1

(4)Ag = 0
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2.2  Gradient extremal

A second kind of curves which also can serve for the 
description of reaction valleys are gradient extremals (GE) 
[6, 61–64] where holds

thus on a GE the gradient, g , is an eigenvector of the Hes-
sian, H , with (varying) eigenvalue � . GEs are represented in 
the following figures by black dashed curves. A VRI point 
is crossed by a GE if the pseudo-convexity index � [65, 66] 
changes its sign

Below we explain a new type of a valley bifurcation (VB) 
region by the crossing of a GE with an index boundary line, 
Eq. (7). Then the condition (6) does not apply.

GEs can bifurcate itself [62, 63, 67]. This happens when 
the two eigenvalues, � in Eq. (5), of the two intersecting 
branches become equal. Normally, however, these two equal 
eigenvalues are not zero. Therefor, no VRI point is indi-
cated by such a crossing. But the GE crossing can indicate 
the change of a valley ground into a circle [67]. Then the 
bifurcation of the GE can be an indication on a nearby VB 
or VRI event. A pitch fork GE is, in a sense, a preview to 
a VB or a VRI point. On an asymmetric PES, however, the 
normal case is the avoided crossing of the GEs. We report 
an example in appendix 2.

Typically, N GEs emanate from a stationary point, if N 
is the dimension of the PES. Then the GE to the smallest 
eigenvalue �min describes the baseline of the reaction val-
ley. This GE can be considered a static representation of a 
reaction path.

(5)H(x(t))g(x(t)) = � g(x(t))

(6)� =
gT Ag

gT g

2.3  Index boundary

Another interesting type of curves is the boundary between 
regions of a different index of the Hessian of the PES. For 
the case of 2D surfaces V(x, y) , they are given by

and these index boundaries (IB) are represented by thin 
green curves in the following figures.

3  2D example PES

A series of PES is used of Ref. [33]

as shown in the following figures. The constant c is a param-
eter that varies here between 1 and 2.

3.1  PES for c=1.5

First, we discuss a ‘normal’ case for parameter c=1.5 of PES 
(8). One can observe in Fig. 1 that the right valley from M 1 
to M2 bifurcates to the SPtop . There are only stationary points 
of index zero, minima, and of index one, transition states 
(TS). By different curves, we can determine the exact VRI 
point. This is demonstrated in Fig. 1B. Here the 4 branches 
of the singular red NT intersect at the VRI. The search direc-
tion of the singular NT is fred=(−1.3, 0.33). It is the gradient 
at the solution of Eq. (4). The VRI is at (x, y)=(0.47, 0.23) 
with

g =
(−1.32

0.34

)
 , H =

(−1.13 0.29

0.29 −0.07

)
 and A =

(−0.07 −0.29

−0.29 −1.13

)
.

The vector with Eq. (4) is Ag = 0 ; thus, the gradient 
is the zero eigenvector of A, and the second eigenvalue is 

(7)Det(H) = Vxx Vyy − V2

xy
= 0

(8)V(x, y) = x4 − 2x2 + y4 + y2 − 1.5x2y2 + x2y − c y3

Fig. 1  A: Level lines of PES 
(8) for c=1.5. The axis x=0 is 
an axis of symmetry. M 1 is a 
minimum, SPlow is the transi-
tion state to the minimum M 2 . 
The global SPtop lies central on 
the y axis at point (0, 0). B: A 
VRI point is located between 
SPtop and the stationary points 
in the valley on the right-hand 
side. Three types of curves are 
shown: Bold red is the singular 
NT through the right VRI point, 
GE curves are dashed black, and 
the IB lines are thin green
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� = −1.204 being the eigenvalue of the matrix H for the 
eigenvector g . The vector

v =
(
0.34

1.32

)

is then the zero eigenvector of the Hessian orthogonally 
to the gradient. It is the characteristic of the VRI point. Note 
that Hessian and adjoint Hessian have the same eigenvectors, 
but for the eigenvalues �i of the Hessian and �i of the adjoint 
the following applies for every i [68, 69]

For N = 2 it means �1 = �2, �2 = �1.
A thin green border line of Det(H) crosses a GE there. 

Thus, all three curves cross at the VRI point. (The calcula-
tion of these curves is described in appendix 3.) The bounda-
ries of the different Det(H) regions are given by the condi-
tion of Eq. (7). Normally they are curvilinear, so that the 
points of a molecule on a higher dimensional PES with the 
IB condition Det(H) = 0 form curved hypersurfaces.

The VRI is intersected by its own singular NT which is 
represented by the bold red lines. The four branches form an 
almost orthogonal cross at the VRI point. This is the long 
known type of a valley bifurcation. Singular NTs are the 
boundaries of families of NTs that connect the minimums, 
Mi , to different SPs. Any two neighboring branches of the 
singular NT form a corridor for all NTs connecting a given 
minimum, M, with the same SPi [70]. The stationary points 
are also crossed by the NT and by the various branches of 
the GEs.

In Fig. 2, the vector field of the right-hand side of the Bra-
nin Eq. (2) is included on the PES with c=1.5. The hyper-
bolic touching of the corresponding NTs before and after the 
VRI point is a characterization of this region.

(9)�i �i = Det(H) =

N∏

k=1

�k

3.2  PES for c=1

A 3D representation of this PES is shown in Fig. 3. Here we 
develop the case of interest for a VB with a nonsingular NT, 
because a singular NT is missing, but a GE is included again.

One can observe in Fig. 4 that the right valley from 
M 1 =M uphill to the right-hand side bifurcates again to a 
valley to the SPtop = SP , the only SP which remains. There is 
also a thin green border line, as well as a GE which crosses 
it. The gradient is the eigenvector of the Hessian; this is the 
general definition along the GE curves. Here for an intersec-
tion with the IB line, the corresponding eigenvalue is zero. 
We take this crossing as the indicator for the VB point of 
a new type. It shows additionally the property that the zero 
eigenvector, the gradient, is nearly orthogonal to the direc-
tion of the GE. So the GE touches a level line. The first 
condition is

It is in contrast to a VRI point where the zero eigenvector is 
orthogonal to the gradient, Eq. (4). We find a fairly regular 
NT connection the SP with the minimum M over this VB 
point. It is at (x, y)=(0.56, 0.3) with

g =
(−1.35

0.47

)
 , H =

(
0.04 0.13

0.13 0.35

)
 and A =

(
0.35 −0.13

−0.13 0.04

)
.

The search direction of the nonsingular NT is g=fred=(−
1.3533, 0.468). The Hessian matrix has the zero eigenvector 
being the gradient, and

A zero eigenvector of the Hessian is retained by the gradi-
ent, in this case. But 0.39 is the second eigenvalue of the 
direction orthogonal to the gradient. The value of the Bra-
nin vector is not zero which really shows that there is no 

(10)Hg = 0

Ag =

(
−0.53

0.18

)
= 0.39 g ≠

(
0

0

)
.

Fig. 2  Vector field of the Branin Eq. (2) with plus sign on a section of 
the PES of Fig. 1. The VRI point is characterized by the hyperbolic 
touching of the corresponding regular NTs

Fig. 3  3D representation of PES (8) for c=1. Only two uphill valleys 
remain. There are still two minima at the bottom, and the central SP 
also remains
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’normal’ VRI point from the point of view of NTs. This is 
also an indication that such cases cannot be determined by 
the VRI finding method using the condition A g=0 [51, 52]. 
Additionally, also � of definition (6) does not change its sign; 
thus, it does not indicate the VRI point. Nevertheless, the 
GE crosses the IB line and has there the special eigenvalue 
� = 0 . We name this VB point for its crossing only by a GE. 
No bifurcation of a reaction trajectory takes place here. The 
condition Hg = 0 , at the other hand, is the criterion for an 
optimal barrier breakdown point (oBBP) in mechanochem-
istry [34–36]. But that is another story. The neighboring GE 
going uphill in the right valley ground intersects two times 
an IB line. However, the gradient there points in direction 
of the GE, not orthogonal to it. For the given VB point, it 
is more appropriate to use the GE being between the two 
bifurcating valleys.

With the blue NT in Fig. 4a we add a regular NT begin-
ning at minimum M and initially following the valley uphill. 
It shows a turning point (TP) high in the PES mountains 
where the energy reaches a maximum, and it returns as a 
regular connection to the only remaining SP at point (0, 0). 
Its search direction is fblue=(−0.53, 1.11). The blue NT is an 
indication of the reason why this special VB point is useless 
for chemistry: The valley at the right-hand side is a ‘dead’ 
valley without a further TS and minimum. There cannot be 
a stable chemical structure. On the right sight of the PES, 
only one minimum and one SP exist. Every NT starting in 
the right minimum has to find its way to the central SP. 
There are no other stationary points, so the NT through the 
VB point must also be ‘regular.’ There is no target for it 
to bifurcate to. The entire right half-plane is one reaction 

channel [70]. The VB point exists but the index theorem 
acts that the VB does not disturb the channel of regular NTs.

Note that the NT through the VB crosses nearby the IB 
line a second time in the vicinity. We do not select the spe-
cial NT with a single, tangential touch of the IB line for the 
definition of this new type of VB points.

In Fig. 4b the vector field of the right-hand side of the 
Branin Eq. (2) is again included. The NTs flow around the 
VB point. Their hyperbolic contact at the VB point is lost.

3.3  Action of the index theorem for singular NTs

Index Theorem for NTs
Regular NTs connect stationary points with an index dif-

ference of one [6, 38, 42]. This will be violated by a singular 
NT.

Proof: see appendix 1.
Figure  5A represents a quasi-shoulder region of the 

former SPlow and the former minimum M2 for parameter 
c = 1.125 . The two branches of the singular NT to SPlow 
and to the minimum M2 come close together. They form 
quasi-parallel branches. After the two stationary points, they 
continue and end in a TP. The four branches intersect at a 
small angle at the VRI point. However, the index theorem 
also applies here in its usual form. Stationary points are con-
nected by regular NTs (not shown) and the singular NT con-
nects with two branches the two SPs of index one, and with 
two other branches the two minima with index 0.

The situation changes further in panel B of Fig. 5 where 
we obtain a real shoulder point. We insert the pseudo-con-
vexity index (6) � = 0 by black lines. Here the former SPlow 

Fig. 4  A: Three kinds of curves 
are drawn on the PES for c=1. 
Red is the remainder of the 
former singular NT through the 
VB point, black dashed are the 
GE curves, and green are the 
IB lines. The blue curve is an 
ordinary regular NT. B: Vector 
field of Branin Eq. (2). The VB 
point is embedded in a nice flow 
of regular NTs
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and the former minimum M2 have merged. The remaining 
point is a stationary point with a zero gradient and a zero 
eigenvector along the valley line. The PES is obtained by 
parameter c = 1.11 . The shoulder is demonstrated by the 
GEs there, which do not cross as in stationary points but 
avoid a crossing near the former SPlow . Quasi-three branches 
of the singular NT remain from the VRI. It is the limiting 
case. The next step is then the case of Fig. 4 with c=1, where 
the character of the singular NT is lost, and where the con-
nection to the former shoulder region also is finally lost.

Fig.6A shows an enlargement of the VRI region from 
Fig.5B. The black lines are the boundary of the pseudo-
convexity (6) � = 0 . In addition to the standard VRI point 
with a singular NT in red color through the dot symbol, a 
VB point also appears, at the cross, × , where again the gra-
dient is orthogonal to the GE direction. In contrast, at the 
plus + symbol, we find a crossing of GE and IB line with 
no orthogonal gradient direction to the GE. The point × is 
crossed by an ordinary NT in brown color. In contrast, three 
special curves meet at the + symbol: a GE, an IB, and the 
� = 0-line.

Here we have a loop of the singular NT, the former 
quasi-parallel branches to the shoulder. The point + , inside 
the loop, is the center of a family of compact NTs, called 
center NTs [38, 70]. One of these NTs is drawn in magenta 
color. NTs without stationary points are possible [68, 70]. 
We assume that they are not of deeper interest for chemi-
cal reasons. The VRIs are the most important definition, 
the first level in a hierarchy of valley bifurcations, so to 
speak. The VB of species × forms the second level, which 
we should use if no VRI is there.

For comparison, we include still two neighboring NTs 
to the singular one, in Fig. 6b, in blue color. The dashed 
NT follows the search direction (-1, 0.36), it bypasses the 
VRI region on the right. The pure blue NT follows the 
(-1, 0.3) direction and runs to the SP at the left-hand side 
of the VRI.

Note that there is a parameter c nearby at ≈1.10697 
where the VRI point and the point at the + symbol merge. 
Such a special singularity is called a cusp type [70]. For 
smaller values of c, the VB point lefts over only.

Fig. 5  A: PES (8) for c=1.125. 
The former low SP and the 
former minimum M2 nearly 
merge and almost form a flat 
shoulder. The minimum M1 is 
still at the bottom, and the cen-
tral SP also remains. B: PES for 
c=1.11 which forms a PES with 
a shoulder point. Red is the rest 
of the singular NT through the 
VRI point, black dashed are GE 
curves, the pseudo-convexity 
index � = 0 are black lines, and 
green are the IB lines

Fig. 6  A: Enlargement of 
Fig.5B with a VB point, x, 
and a VRI point, ∙ , see text. B: 
Two regular NTs in blue are 
additionally included in Fig. 5b, 
see text
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4  Discussion

An important model for a reaction coordinate in chemistry 
is the steepest descent from SP, the intrinsic reaction coordi-
nate (IRC) [29, 30]. In case of a symmetric PES and a totally 
symmetric axis through the SP [71–73], the IRC can cross a 
possible VRI point on this downhill path [31, 74–76]. How-
ever, on an asymmetric PES, the VRI is usually not located 
on the steepest descent from the SP [9, 77, 78]. There, any 
other reaction trajectory could bifurcate off from the IRC 
[79]. It is incorrect that the IRC splits itself at the VRI point 
[80, 81]. The IRC can split only at stationary points, where 
the gradient is zero, and where different directions for the 
further travel downhill can open. SPs are the singular points 
of the steepest descent trajectories. Analogous to NTs near 
VRI points, these trajectories follow hyperbolic curves 
around SPs.

One way out is a dynamical approach by many trajecto-
ries over the entrance SP region [19, 82–89]. This method 
contrasts with static models of a reaction pathway for IRC, 
NT, or GE. Localization through two sets of dynamical 
trajectories bifurcating near the VRI point is one way of a 
certain determination of the VRI point and product selectiv-
ity. Although dynamic trajectories can theoretically identify 
the VRI, this approach is unrealistic and hardly feasible in 
a real system. According to the ergodic hypothesis [90], a 
single trajectory could explore the entire configuration space 
if it moves forever in phase space, including the VRI. How-
ever, this is a multidimensional problem, and the growth of 
dimensions is proportional to the number of atoms involved. 
Finding a specific outcome amidst such complexity is highly 
unrealistic.

The other possibility is the calculation of GEs and a sin-
gular NT to precisely locate the VRI. Of course, this excep-
tional VB point of case c = 1 of Fig. 4 cannot be detected 
using dynamical trajectories or a singular NT.

One can speculate that such VB points also exist on other, 
older known PES. Because ’dead’ valleys often exist. For 
example the well-known Müller-Brown PES [91] has such 
a valley on the left-hand side, and no singular NT crosses 
it [68, 69]. In contrast, here also crosses a GE the IB line 
at point (x, y)=(−1.09771, 0.6487) and the gradient is also 
nearly orthogonal to the GE direction, compare Fig. 7. This 
point we propose for a VB indicator. The most left GE of 
the left valley ground intersects also the IB line. There the 
gradient points in direction of the valley ground, which also 
the GE follows. For the VB point, it is more appropriate to 
use the GE being more between the two bifurcating valleys.

5  Conclusion

We use Newton trajectories (NT), gradient extremals (GE) 
and lines of the boundaries of the Hessian index (IB) with 
Det(H)=0 to explore the region of a VRI or a VB point. 
Long known are VRI points where a singular NT bifurcates. 
Its side branches form static models of a reaction path bifur-
cation. They can serve for models of trajectories to two dif-
ferent products.

By changing the parameter c of the PES of Ref.  [33] we 
obtain a VB region with the special case of no singular NT. 
In the special situation of the VB point of this PES (8) with 
parameter c=1, the usual criteria for a VRI point, Eqs. (4) for 
NTs and (6) for GEs do not work appropriately. In contrast, 
a GE only crosses an IB line and the gradient is orthogonal 
to the GE direction. This point we can accentuate for a VB 
point. One eigenvalue of the Hessian is zero, and the corre-
sponding eigenvector is the gradient. Thus, it holds Eq. (10). 
The nature of the PES of this case is that the one bifurcating 
valley is a ‘dead’ valley with no further stationary points. A 
‘dead’ valley may be uninteresting for a chemical reaction, 
but it can be the basis for a vibration mode. The branching 
takes place without a ridge forming between the two new 
valleys. The ‘next ridge’ is the ridge that crosses the SP of 
the new side valley.

VRI and VB points form a hierarchy. The usual VRI 
points have been known for a long time. The VB points 
form a weaker level, which we should assign if a usual VRI 
is missing.

Fig. 7  MB surface with proposed VB at the branching of the left 
global valley. Red is a regular NT, green are the IB lines
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Appendix 1: Proof of the Index Theorem

We follow references [68, 92, 93]. The Branin Eq. (2) is 
the desingularized continuous Newton equation. For the 
minus sign, it converges to a stationary point with an even 
index, i.e., a minimum with index zero as in the New-
ton–Raphson method. For plus sign, however, it converges 
to a stationary point with an odd index, compare Figs.2 
and 4b. It can be developed with a Taylor approach for 
the gradient

and for zero gradient at �� it is

Eq. (2) looks then

and this is attractive for even index, but repulsive for odd 
index of H(��).

For illustration, Fig. 8 shows a test surface with three 
types of stationary points. Regular NTs from the maxi-
mum at (0, 0.5) only lead to SPs of index one, and so on. 
Thus starting near of one of the two kinds of stationary 
points, an NT (with corresponding ± change) will lead to 
the other kind, by an index difference of one. This rule can 
only be violated by a VRI point on a singular NT.

g(x) ≈ g(��) +
�g

�x
(��) (x − ��)

= H(��) (x − ��) .

dx

dt
≈ − A(x)H(��) (x − ��) ≈ −Det( H(��)) (x − ��) ,

Appendix 2: Discussion of GE bifurcations

On a symmetric PES, a valley GE can bifurcate and indicate 
the branching of the PES [67]. Which criterion we apply 
may depend on the problem to be solved.

Now we study the avoided crossing of GEs, which is the 
usual behavior of GEs on an asymmetric PES, see Fig. 9. An 
artificial 2D PES [63] is

Doted curves represent three GEs, the two red lines are the 
singular NT, and the green elliptic curve is the IB line. In 
the center is the intersection of the GE from left to right and 
the red singular NT. It is a common VRI point. The GEs 
themselves only cross at the SPs. The aim of recognizing 
a VB by the crossing of the GEs would therefore fail here.

However, a valley bifurcation before the VRI can be 
assumed, below the level of the SPs, which is indicated by 
an additional VB point shown. It is the intersection of the 
left GE with the IB line where the gradient is orthogonal to 
the GE.

Appendix 3: Representation of NTs 
and of GEs

2D PES with NTs  [68]
In 2D toy examples, NTs can easily be represented by a 

graphical rule. It applies in two dimensions that the orthogo-
nal direction to the force direction

f=
(
f1

f2

)
 is unique the direction f⟂ = (−f2, f1) .

Then condition (1) that � || g is the zero of the scalar 
product

V(x, y) = x y (y − x) + 1.15 x2 + 2 y − 3 .

Fig. 8  PES (8) with c=2 now with an SP of index two, a maximum. 
Red points are stationary points with even indices, the minimum and 
the maximum, while blue points are three SPs of index one, three 
TSs. Two singular NTs cross two VRI points (black), one NT is red 
colored, and one NT is in magenta

Fig. 9  PES with avoided crossings of GEs (black dashes). Blue points 
are SPs. Two branches of the singular NT (red) cross at the VRI point 
a GE. An additional VB point is included, see text



Theoretical Chemistry Accounts          (2025) 144:67  Page 9 of 11    67 

In Mathematica, one can represent the corresponding NT by
ContourPlot[-g1[x,y]  f2[x,y] + g 2[x,y]  f1[x,y],{x,-

2,2},{y,-2,2}, ContourShading→False, Contours→{0.0}]
2D PES with GEs
In analogy to NTs, also GEs can easily be represented by 

a graphical rule in 2D examples. It applies in two dimen-
sions that the orthogonal direction to the gradient direction

g=
(
g1

g2

)
 is unique the direction g⟂ = (−g2, g1) .

Then condition (5) means that ��|| g , and this is again 
the zero of the scalar product

One can display the corresponding GE in a graphic program 
analogously to above.
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