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Abstract
Abstract We support a preliminary determination of the catch-bond character of a
mechanical–chemical toy model using a tweezers construction with some modifica-
tions. We discuss a theoretical analysis of the problem using Newton trajectories. We
propose a two-dimensional potential energy surfaces for this model. We discuss the
slip, ideal and catch-bonds for this model using the previous potential parts of Dan-
suk and Keten (Matter 1:911, 2019). Chemical examples of the ansatz are allosteric
reactions, especially FimH proteins. We note again that Newton trajectories provide
the theoretical background of mechanochemistry. Construction of a potential energy
surface and use of Newton trajectories by Wolfram Mathematica. Calculation of real
catch bond behavior. We get for a tweezers model the catch bond behavior.
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Graphical abstract

Two barriers under external force, F. The catch-bond barrier increases.

Keywords Mechanochemistry · Slip bond · Ideal bond · Catch-bond character ·
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Mathematics Subject Classification 35A09 · 35A30 · 35B32 · 53A07 · 70G45

1 Introduction

This paper serves as a positive comment on the preliminary finding of the catch-
bond character of a mechanical–chemical model using a tweezers construction. It was
proposed in Matter 2019 [1]. A statistical analysis of the lifetime curves for a varity of
parameters where reported for a mechanical analog of catch bonds. Here we present
the result of the application of the fundamental theory of Newton trajectories (NT)
for the solution of mechanochemical excitations of molecules [2, 3], especially for
the application to catch-bonds [4]. The prerequisite for any application of NTs is the
construction of a model of the potential energy surface (PES) of the system being
treated. We will do this.

Catch bonds were first discovered 35 years ago [5], and have been observed in
many biochemical molecules [6, 7]. The dissociation rate decreases as a result of
the deformation of the molecule. Some of the aothors have recently reported [4] two
proposed suitable free energy surfaces to model catch-bond behaviour [8, 9], as well
as some other 2Dmodels. Here we discuss the combination of parts of the Dansuk and
Keten model [1]. In contrast to catch-bonds, there are typical bonds that weaken under
a pulling force, called slip bonds. Between these two extremes are the ideal bonds, for
which we are proposing an example for the first time below.

We are convinced that the theory of Newton trajectories (NT) [2, 3] is a tool for
rationalizing the biochemical phenomena of slip- and catch-bonds. We consider that
under an external force, one has to take into account the mechanochemical potential

V f (x) = Vo(x) − F fT · x (1)
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where Vo(.) is the potential energy surface (PES) of a molecular system under con-
sideration, or its free energy surface, under zero external force. f is the unit vector
representing the direction of an external force acting on the molecule and F is the
magnitude of the force. The superscript T indicates the transpose. Note that the force
is a vector quantity, where both direction and magnitude are important. By xwe repre-
sent the corresponding part of the molecule in arbitrary coordinates where curvilinear,
internal coordinates are normally used. Note that they depend on the curvilinear metric
[10] which we will ignore here. Equation (1) is the simplest possible equation, with a
linear external force.

Under this force, the stationary points of the PES move. The new barrier of the
effective PES changes, it is the sum of the differences

�V = Vo(xsp) − Vo(xmin) and − F fT · (xsp − xmin) . (2)

xsp and xmin are the transition state and ground state configurations, correspondingly.
The two parts can play together or act against each other. This complicates the overall
picture. The second part, �x = xsp − xmin in Eq. (2) has been discussed in Refs. 6,
11, for example. We will discuss the first summand below. Its solution curve is usually
curvilinear.

To describe the motion of the stationary points, xc, the gradient of the effective PES
for the stationary points, V f (xc), must be zero. This means that

g(xc) = F f , (3)

where g is the gradient of the original PES. The value F changes as a non-linear
parameter along the solution curve. At a new value, let us say F ′, a new point is found,
x′
c, such that Eq. (3) is satisfied for the new parameter value, F ′. At each point xc the
parameter value, F , coincides with the square root of the gradient norm,

(
gT (xc) g(xc)

)1/2
,

if f is normalised. For the movement of any critical point, xc, we create a differential
equation [2] as

dxc
dt

= Det(H)H−1(xc) g(xc) (4)

whereH−1 is the inverse of the Hessian matrix of the original PES, and Det(H) is the
determinant of this Hessian matrix. Variable t is the curve length parameter. Solutions
of Eqs. (3) and (4) are called Newton trajectories (NTs). Equation (4) was created long
ago by Branin [12] who used the so-called adjunct Hessian. It is the desingularized
matrix A = Det(H)H−1 .Each solution of the Eqs. (3) and (4) to different directions,
f, connects a minimum with a saddle point (SP) of index one, SP1. In chemistry this
is called the transition state (TS). In general, an NT connects stationary points with
an index difference of one [13–15]. A solution curve must pass through a point where
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it holds Det(H) = 0. The factor, Det(H) in Eq. (4) desingularizes the equation [12].
The force in the direction f with the magnitude to reach the Det(H) = 0 point forces
the coalescence of the former minimum and the former saddle SP1. This event is
called the bond breaking point (BBP) [3]. In n dimensions, the Det(H) = 0 manifold
crosses the manifold of the valley-ridge inflection points (VRI) anywhere on the PES
[14, 16–19] which play an important role in the theory of NT. On our 2-dimensional
PES, a singular NT meets the VRI point. The singular NT forms the separatrix for
NTs that may be an indicator of the catch-bond behaviour [4].

The paper is organised as follows. In the next Sect. 2 we report the chemical
backgroundof themodel of thePESof the proposed tweezersmodel. Section3 presents
the mechanical model and first results with catch-bonds. We describe the catch-bond
character of two quite different excitation directions based on NT theory, in particular,
we find an example of so-called ideal bonds in Sect. 3.2. Finally we discuss the results
in Sect. 4, and report conclusions based on the present model in Sect. 5. In an appendix
we describe the calculation of NTs on a 2D PES.

2 The chemical background

Ligand-receptor interactions that are reinforced by mechanical stress, catch-bonds,
play a major role in cell-cell adhesion [20]. The motivation for the tweezers design of
Dansuk andKeten [1] is based on analyses andobservations on the bacterial catch-bond
proteinFimH, a two-domain protein comprising a pilin domain and a lectin domain [21,
22]. The pattern is that of an allosteric reaction, compare Fig. 2 ofReferences [6]. FimH
proteins exist in an open conformation (PDB: 4XOD) and a closed conformation (PDB:
4XOB) of the ligand binding pocket, which are located on the lectin subunit [20]. The
pilin domain connects FimH to bacterial appendages, while the lectin domain contains
a binding pocket that facilitates the attachment of the adhesin to cell surface ligands [6,
23]. This two-domain structure is essential for allosteric reactions including the catch-
bond formation, as the interactions between the lectin and pilin domains determine the
conformational state and the ligand-binding properties of the lectin domain. The lectin
binding pocket, along with its ligand-enclosing clamp loop segment, mediates the
ligand affinity shown in Fig. 1. In the open conformation of the FimH-ligand complex,
the loop segment interacts minimally with the ligand (Fig. 1A). Conversely, allosteric
changes cause the loop to close around the ligand in the closed conformation, forming
additional interactions (Fig. 1B). These allosteric changes result from mechanical
tensile stress, which promotes domain separation and releases the lectin domain from
the pilin domain (Fig. 1C, D). Although both conformations can bind to the ligand,
the ligand remains bound longer in the closed conformation due to newly formed
interactions [24]. It should be noted that the binding site and loop regions constitute
a very small part of the whole protein. They are two 8-amino-acid residues on the
158-residue lectin domain.

The tweezers design mimics the essential characteristics of FimH which features
two distinct conformational states; an open state with low affinity for its ligand, and
a closed state with higher ligand affinity. The transition between these states is force-
regulated by a switch, and increased ligand affinity in the closed state is achieved
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Fig. 1 FimH and tweezer design. A, B Lectin domain of FimH: the mannose ligand (orange) is bound to
the ligand binding site in both the open and the closed conformations. B During the transition of FimH
from its open to the closed conformation, the clamp loop segment (highlighted in cyan) closes on the ligand
forming new interactions. C, D Open and closed conformations of the FimH protein with lectin (cyan)
and pilin (red) domains, together with their schematic representation: Mechanical tensile stress promotes
domain separation, leading to the release of the lectin domain from the pilin domain, consequently inducing
allosteric changes in the binding sites. E, F The tweezer design, inspired by FimH, features primary and
secondary binding sites (cyan) and a switch (red). In the open conformation (E), the ligand (orange bead)
interacts with the tweezers, and the switch members are angled, held together by a pairwise interaction. In
the closed conformation (F), the ligand forms three interactions with the tweezers, and the switch members
align straight. Close-up views of the ligand binding site and the switch are provided on the right side of (E,
F). Interactions and applied external forces are indicated by pink dashed lines and black arrows, respectively
(Colour figure online)

through the formation of new interactions between the ligand and the tweezers. In
the open conformation (Fig. 1E), the tweezers’s arms are widely spaced, allowing the
ligand (orange bead) easy access to the main binding site (MBS) at the centre of the
binding pocket (central cyan bead). Secondary binding sites (SBS) are located on the
arms of the tweezers (lateral cyan beads). SBS perform a function similar to that of
the ligand-enclosing clamp loop segment found in the FimH protein. When the ligand
is attached to the MBS (represented by the pink line in Fig. 1E) and the tweezers are
in their open conformation, the ligand does not interact with the SBS, because they
are positioned much farther apart. Conversely, in the closed conformation (Fig. 1F),
the arms of the tweezers rotate towards the centre, enabling interactions between the
ligand and the SBS. These new interactions (Fig. 1F, pink lines) stabilise the ligand
and increase the adhesion energy, resulting in a higher ligand affinity in the closed
conformation.

In order to facilitate force-dependent transitions between the two conformations, we
incorporate a switch into the tweezers. This switch consists of a two-membered hinge
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with a pairwise interaction between its two free ends (red beads in Fig. 1E, F). In the
open conformation, the members are angled; however, when the pairwise interaction
between the red beads is disrupted by external forces, the members straighten. A rigid
member connects the switch to the MBS. Straightening the switch moves the MBS
upward and drives the tweezers’s arms inwards, leading to the closed conformation.
Thus, the breaking and reforming of switch interactions control the transition between
the conformations. This switch functions in a similar way to the interface between the
lectin and pilin domains of FimH. Like the linkers in the domain interface, the tensile
force promotes the separation and elongation of the protein, thus facilitating allosteric
changes. Note that the masses of the MBS and the arms are kept small. The switch
and the rigid linker loosely represent the larger mass of the rest of the protein.

One of the most prominent catch-bond behaviour has been reported for this pro-
tein FimH [25–27]. Although the tweezers are modelled after FimH, the design of
the tweezers mirrors similar biphasic mechanisms observed in P-selectin and integrin
proteins. Selectins, which are crucial for the binding of the white blood cells, exhibit
two conformational states: a compact, inactive state with fewer accessible ligand-
binding sites, and an elongated, active state with fully exposed and optimally oriented
binding sites, which enhances interactions with ligands such as PSGL-1 [28]. Simi-
larly, the α5β1-integrin binding to fibronectin transitions from a bent to an extended
conformation under force, revealing synergistic sites that stabilise the interaction [29].

The tweezer design offers a fundamental structural explanation for catch bond
behavior. However, by analyzing our design through the lens of allostery, we can
derive broader design principles that are applicable to other geometries. At first glance,
the simplicity of the serial two-degree-of-freedom system, used below, with just two
vibrationmodes, may not appear highly relevant to proteins. However, it can be argued
that the "switch" functions similarly to a soft vibrational mode linked to low-frequency
conformational dynamics, driven by large modal masses and low stiffness, while lig-
and interactions correspond to a high-frequency vibrational mode associated with a
lightweight molecule tightly bound to a binding site. In fact, elastic networks exhibit-
ing allostery typically have a soft region constrained by more rigid regions.

Another tweezer model is under discussion by the buckybowl buckycatcher model
for fullerenes and other host-guest complexes [30–37]. These are more functional
molecular capsules, cages and containers. None of these pincer studies test the
behaviour of catch bonds. A slightly weaker model has been discussed by the ‘lever-
arm-effect’ of a mechanical transformation in the diarylethenes [38–40].

3 Themechanical model

The model of Dansuk and Keten [1] and its coordinates are shown in Fig. 2. h is the
length of the axis of the tweezermodel, which starts at 16.25Å and its final extension is
21.75Å and y is the dissociation coordinate of the dark yellow particle; its equilibrium
number is σMBS =2Å and its direction is given by the coordinate y in Figs. 2 and 4.

The MBS is the main bound state, whereas the SBS is a side bound state. They can
be collective coordinates of the protein [27].
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Fig. 2 AMechanical tweezer model.BCoordinates used in the formulas.C Scheme of an allosteric tweezer
model, see Ref. [6]

The used figures are: a = 15, b = 7.5, c = 7.5, d = 2, ho = 16.25, all in Å, and
β =114.5◦. The maximum length of hmax = 22.5. The model starts from the angle of
the tweezers, see the supplementary material in Ref. [1].

θ(h) = arcsin
[a2 − b2 + h2

2 a h

]
= arcsin

[168.75 + h2

30 h

]
(5)

It is shown in Fig. 3.
The distances in (x, y) system (see Fig. 2B) of the tweezer arm from the dark

yellow atom are coordinates xs and ys .

xs(h) = (a + c) cos θ(h) − d cos(β − θ(h)) = 22.5 cos θ − 2 cos(1.997 − θ)

(6)

ys(h) = (a + c) sin θ(h) + d sin(β − θ(h)) = 22.5 sin θ + 2 sin(1.997 − θ)

(7)
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Fig. 3 Graph of angle θ in rad
units

Fig. 4 Coordinates (xs , ys ) of the arm of the tweezers describe the distance from dark yellow atom which
is at h + y (Colour figure online)

(β =114.5◦ corresponds to 1.997 rad.) They are shown in Fig. 4.
With the two Cartesian distances, one obtains the distance σSBS of Fig. 2 of the

dark yellow atom from the tweezers, where

σ(h, y) =
√

(y + h − ys(h))2 + xs(h)2 .

The index SBS is omitted in the following. The 2D form of the distance from the tip
of the tweezers to the dark yellow atom is shown in Fig. 5A. The σ distance is used
below in pc2.

The following Morse potential curves (pc) have been adopted from Dansuk and
Keten [1]. with the parameters D1 = 5, α1 = 5 and σ1 = 2

pc1(y) = D1(1 + Exp[−2α1(y − σ1)) − 2Exp[−α1(y − σ1)]) (8)

D1 is the dissociation energy of the bond in energy units kcal/mol, α1 is the inverse
width of the potential in 1/Å, and σ1 is the equilibrium distance of the corresponding
bond in Å. The plot of pc1 is shown in panel A of Fig. 6. The position y = 2 represents
the minimum energy at level zero, regardless of the opening of the tweezers.

Each side arm develops a potential with D2 = 5, α2 = 8 and σ2 = 4.46

pc2(σ ) = D2(Exp[−2α2(σ − σ2)] − 2Exp[−α2(σ − σ2)]) (9)
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Fig. 5 A Image of distance surface σ(h, y) of the arm of the tweezers from the dark yellow atom located
at h+y. B Section of distance surface σ(h, y) of the arm of the tweezers from dark yellow atom at y=2
(Colour figure online)

Fig. 6 Upper left panel (A) potential curve pc1(y). B Morse potential of the tweezers which closes with
increasing distance h. C Morse potential pc3 of the tweezers, for Eqs. (8) to (10), see text

Note that σ depends on y and h in a phytagorean form. This pc2-part starts at the
zero level and gains energy to negative values for decreasing σ . A section of pc2 is
shown in Fig. 6B. The complete PES is shown in Fig. 7. Note the missing summand 1
in the formula which describes the real gain of energy for the closing of the tweezers
starting from a level close to zero.

The allosteric closing of the tweezers aremodeled by a combination of the functions
pc2 and pc3. Note that the result is the key-SP named TSz along the h-axis, in Figs. 8
and 9. For pc3 we again use a Morse potential approach, with the parameters

D3 = 4.5, α3 = 2 and σ3 = 16.25.

pc3(h) = (1 − h/10)20 + D3 (1 + Exp[−2α3(h − σ3)]
−2 Exp[−α3(h − σ3)]) (10)
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Fig. 7 2D version of the
potential pc2(σ (h, y))

The profile pc3 is given in Fig. 6C. In addition, this potential starts at the zero level
for the global minimum of the open tweezers, at h = 16.25. The artificially first part
of formula (10) saves a strongly increasing potential at the high h edge to prevent the
tweezers from overstretching the h-coordinate. Compare Fig. 8 with the deep valley
on the right side for the closed tweezers, which is a result of this ansatz. The σ3 = 2
given in Ref. [1] is changed here.

We use a factor of 2 for pc2 because of the two symmetric arms, left and right, of
the tweezers. The sum formula for the PES is

Vo(h, y) = pc1(y) + pc3(h) + 2 pc2(σ (h, y)) (11)

with coordinates (h, y). The PES is shown in Fig. 8. This sum of four potentials for the
tweezers for a model of FimH proteins is the natural way to combine the different parts
of the molecule. The other coordinates are fixed. This approach is in a certain contrast
to the current case of L-selectin with catch-bond behaviour, where the authors have
used the product of two parts of 1D potentials [9]. Equation (11) is the main approach
of this work. Its computation is done by the Mathematica program, version 13.3.1.0
for Linux x86(64-bit), as well as the computation of the inclusion of external forces
by Eqs. (1) and (4). Vo in Eq. (11) means zero external force. Results for special forces
are reported in Sects. 3.1 and 3.2. In an appendix we describe the calculation of NTs
on a 2-dimensional PES section.

The thin lines in Fig. 8 are equipotential lines. The left minimum, M1, is stable for
the ’open’ tweezers, at h = 16.25 and y = 2. The dissociation direction is towards
increasing y-coordinate, outside with a Morse level of 5 kcal/mol. The transition state
is denoted as TSdi. The dashed NT points to the direction (1, 1) when we pull the dark
yellow bead with the relation of the force 1 to 1 to the tweezers closing. The blue
curve is the singular NT through a VRI point (it is found by trial and error), and the
green curves are Det(H)=0 lines. The magenta NT is in the pure h-direction, (1,0),
while the red NT points in the y-direction, (0,1). Note that NTs describe the motion of
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Fig. 8 A PES of the tweezers. B lower part enlarged, the level lines are different. Green are the Det(H)=0
lines crossing the VRI points (Colour figure online)

stationary points under the corresponding force direction for an increasing magnitude
of F .

Minimum M1 is at point (16.25, 2) with energy 0, Minimum M2 is at point
(20.804, 2) with energy −0.8kcal/mol, which is the global minimum, but the late
TSz between them is at (20.521, 2) with energy 6.86kcal/mol, a slightly larger barrier
than the dissociation at 5 units at TSdi. The symbol z in TSz means the ’zero-line’ of
the tweezers, at a distance of y =2. Therefore the left minimum M1 is stable for an
open tweezer. The minimumM2 on the right describes the closed tweezers. It is stable
without an external force. However, a force is required to move the tweezers from the
open to the closed form, given, for example, by the direction of the dashed NT. (One
could also use a force only to close the tweezers (1,0) in the magenta colour; the NT
is given in Fig. 8B.) The lower M2 then acts as a ’trap’ trick for the catch-bonds [20].

The uphill left valley pathway undergoes a single dissociation of the dark yellow
bead with the Morse level of TSdi at 5kcal/mol for y → ∞. The TSz between the
minima is slightly higher, and there should not be a large probability of a ‘sponta-
neous’ movement of the tweezers into its closed form, compared to the probability of
dissociation.

Figure 9 shows enlarged parts of the PES. Diagonal to the right emerges a ridge that
should disappear somewhere on the slope. The NTs used there have turning points,
and a final BBP is included in the upper right corner of Fig. 8A at y =5.6.

If one excites the pure y-direction, along the force vector (0, 1), then the left TSdi
and theminimumM1move together and finally coalesce. The barrier decreases during
this time. Thus, the y-bond alone of an open tweezers exhibit a slip character.

One can also note, especially for Fig. 8B, that on the y =2-line we find a quasi-
shoulder of the PES at (18.65, 2), a point with approximately zero curvature in the
path direction, but which is not a minimum, nor TS, compare below Fig. 10. The
dashed or magenta NTs indicate how the path from M1 to M2 can be increased by an
external force.
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Fig. 9 A Left lower part of PES enlarged, TP is an ’inverse’ turning point of the dashed NT. Dense blue
dots are explicitly computed points of the dashed NT.B Right lower part of the PES enlarged (Colour figure
online)

Fig. 10 Energy profile of a curve near to the minimum energy path (MEP) on the y =2 valley, for the dashed
excitation, with F=0 from left above, over F=0.25, F=0.5 to 0.75 right below

3.1 NT belonging to direction (1, 1)

We assume an excitation of the dark yellow bead by a force (0, 1) of magnitude 1, but
at the same time an excitation of the tweezers closing by a force (1, 0) of 1. Under
the dashed force NT, the moved minima follow the corresponding NT up to the TSs,
and at a certain amount, the barriers disappear. Note that for simplicity we do not
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Fig. 11 A Effective PES for the dashed excitation, with F=0.125 and B with F=1.25 kcal/mol/Å. Here a
new upper TSu appears near y =3.7. The minimum M2 was before in a ‘dead’ valley on Vo

Fig. 12 A Enlargement of the right lower region around the TSz (red point) of Fig. 11B. M2 is at the black
point. Both of the points are moved apart and are over their former y = 2-line.BNTs drawn on the effective
PES for F=4.5 kcal/mol/Å. Corresponding blue dots for different forces are used for the calculation of the
barrier in Fig. 13A (Colour figure online)

normalise this direction (1, 1) by 1/
√
2, contrary to the definition in Eq. (1); all forces

in this section are to be multiplied by
√
2.

The upper and lower branches of the dashed NT are separated by the VRI point,
see Figs. 8 and 9. A singular NT (in blue) forms the separatrix for the dashed NT. The
existence of a separatrix could be an indicator of catch-bond behaviour [4].

We still study the path from M1 to M2. Using the excitation along the direction
(1, 1) leads to a change in character from a valley with one TSz to one with two TSs,
as shown in Fig. 10. It emerges as an intermediate minimum and an intermediate TS.
One can also observe that the global character of the minimumM2 becomes stronger.
Next we will follow this excitation along the dashed NT. In Fig. 11A, an excitation of
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Fig. 13 ABarrier in kcal/mol between two paths along two branches of the dashed NT for the open tweezers
of Fig. 12. The left axis is the barrier of TSdi to the minimum M1. The barrier does not disappear with
increasing F . B Two barriers of the tweezers in kcal/mol: the increasing line is the barrier from M2 to TSz,
the decreasing line is M2 to TSu

F =0.125kcal/mol/Å is applied. We observe a strong downward movement of the left
dissociation TS (TSdi) to y = 3.3. In contrast, in Fig. 11B for F =1.25, we observe
many new weak stationary states: a new minimum and a new TS on the zero line
y = 2, and on the dashed NT, a maximum at (17.5, 2.7), a further TS at (19.8, 2.7), a
minimum at (20.6, 2.75), and an next upper TSu at (20.7, 3.75). However, these points
still have high energies, so the main possible exchange takes place between TSdi
and the two minima M1 and M2. In Fig. 11B an additional minimum ‘Min’ emerges
on the path between M1 and TSz. Fig. 12A is an enlargement of the region around
M2. More important here is the direction of the dashed NT across the TSz. Although
the excitation (1, 1) points to the ‘north-east’, the NT counterintuitively goes in the
‘north-west’ direction, and it almost holds the energy level of the TSz itself. However,
minimum M2 moves in its deep vally towards ‘north’ and becomes deeper under the
force. It moves away from TSz. The effect is, by comparison, the catch bond character
in this direction of the dashed NT.

Such an explanation of catch bonds was proposed by Suzuki and Dudko [8] 15
years ago, by an orthogonal NT to the corresponding SP. Here the direction is only
oblique to the valley path, and the effect of the excitation is only a slight catch bond
character. Note that the dashed NT along the MEP M1 to M2 has no turning point
(TP), both before and after TSz. Nevertheless, it shows a catch-bond behaviour. This
is a new case in addition to the cases discussed in Ref. [4].

Another reason for the catch-bond character could be that the y coordinate does not
change along the MEP from M1 to M2, but the h coordinate increases. And from the
M2 minimum uphill, the movement increases the y coordinate but does not change
the h coordinate. Here, the second part of Eq. (2) seems to play an additional role in
the catch-bond character.

However, at higher force levels, the previously high TSu will become less energetic
and become the main channel for dissociation from the minimum M2. Excitation
along the dashed direction will decrease the left barrier, TSdi, and TSz is consistently
higher, as shown in Figs. 11 and 13. The blue points on the NT in Fig. 12B are the
calculated data for the barrier comparison. Under the force direction (1, 1) there is then
an intermediate maximum on the effective PES, shown in Figs. 11 and 15. Although
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Fig. 14 AEffective PES for dashed excitationwith F=2.5kcal/mol/Å.BEffective PES for dashed excitation
with F=3.5 kcal/mol/Å

Fig. 15 Effective PES for the
dashed directional excitation,
with F=25kcal/mol/Å. All
minima have disappeared. Only
dissociation with increasing y
takes place

the upper branch of the NT reaches the crest of the ridge of the PES, the difference
decreases. Figure 13A shows the barrier height.

The tweezers are stable in their open form. However, if it is possible to excite a
closure along the minimum energy path (MEP) along the h-axis then the closed form,
M2, is deeper in energy than the open form, M1. This is a first catch-bond gap.

Starting fromM2, the excitation along the dashed NT causes a catch-bond increase
of the barrier TSz, as shown by the rising curve in Fig. 13B. This is the main result of
this work. However, at F > 1.8 the energy difference between the global minimum,
M2, and TSz becomes larger compared to the difference between M2 and TSu which
becomes the lower barrier. In Fig. 13B, the first difference increaseswith F , it describes
the catch-bond behaviour of the state at the M2 minimum.

At F = 1.8 the TSu becomes lower than the TSz. The relationship between TSu
and M2 is the usual slip bond behaviour. In summary we have a minimal catch-bond
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Fig. 16 A PES with the black NT to direction(0.1, 1) for F =0, and B for F=0.5kcal/mol/Å. The circular
part of the NT begins at the shoulder and describes an emerging intermediate minimum and a new TS for
increasing F

barrier of M2 to the TSz of the PES, but for F > 1.8 this is already finished. Note
the small region of F values for the catch-bond behaviour, in contrast to Ref. [1]. In
Fig. 14A, B one can follow this process. The two stationary points of Fig. 14A, Min
and TS between TSu and Max, almost coalesce, and only quasi flat minimums remain
in Fig. 14A. They disappear in Fig. 14B. So for F =2.5 the upper TSu is lower that
the left TSdi, but for F =3.5, only the skew platform is over, and all structures are
almost washed out. The minimum M2 exists above and moves ’uphill’ in its former
deep valley up to F ≈ 25 kcal/mol/Å in the upper BBP (shown in the upper right
corner of Fig.8A). This is demonstrated by the effective PES shown in Fig. 15.

3.2 NT belonging to direction (0.1, 1)—mechanical model for an ideal bond

We assume an excitation of the dark yellow bead by a force of 1 kcal/mol/Å, but
at the same time a very small excitation of the tweezers closing by a force of 0.1
kcal/mol/Å. Under this force, we draw a thick black NT, as shown in Fig.16. Again,
the moved minima follow the corresponding NTs up to their transition states, and at a
certain value, the barriers disappear. Note that for simplicity we do not normalise this
direction by 1/

√
1.01.

The NT has a different characteristic. At saddle TSz, this NT crosses the saddle
valley orthogonally, as opposed to the previous case where the dashed NT runs skew
to the valley ground. The left and right branches of the black NT are separated by the
VRI point. The separatrix is the same as in the previous subsection because it is the
same PES. However through the flat minimum energy path of the connection from
M1 to M2, forming a shoulder, we find a closed branch of the NT. Such a form is rare
for NTs [41]. For the two deeper minima, M1 and M2, this has no significance.

If one starts an excitation at the minimum M1 along the given NT, then a simple
dissociation takes place with a slip character. To argue with the given NT-direction,
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Fig. 17 A Effective PES for the excitation along the black NT, with first F=2 and B with F=3kcal/mol/Å

Fig. 18 Barriers in kcal/mol for
the two different TSs, seen from
M2, to TSz and TSu

we first move the tweezers in its closed form, by any other excitation. For example by
the direction (1, 0). Then we can assume that we start at the minimum M2. The lower
M2 still causes a trap effect. Next, we will follow the excitation along the black NT
with direction (0.1, 1) starting at M2. In Fig. 17 one can observe that the new hill on
the PES moves slightly to the right under excitation. At point (20.75, 3.75) another
TSu appears on the ridge above. In Fig. 17B the TSu becomes lower than TSz (and
TSdi, not shown).

The excitation of the tweezers in closed form, thus from the minimum M2, causes
a catch-bond behaviour of the bond up to a value of F =3.1. However, the barrier
height becomes almost constant, and its increase is very small. Such a characteristic
is called an ’ideal’ bond [42, 43]. Note that the corresponding NT for this excitation
is not the singular NT through a VRI point that marks the boundary, the separatrix,
where catch-bonding can begin.

In Fig. 18 one can observe that the barrier height crosses with the upper TSu,
again for F ≈ 3.1 kcal/mol/Å. This upper TSu quickly becomes the dominant TS for
dissociation in the y-direction.
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4 Discussion

It is not exactly easy to come up with a theory of catch-bonding [4, 8, 9]. So we argue
for our parameters: The dissociation level of pc1 should be low compared to pc3, but
twice as high as pc2. Therefore, TSz under force should be slightly higher than the
left TSdi of the single dissociation of the dark yellow bead. The barrier TSz between
the minima is the most important criterion for the catch behaviour. However, TSz
should also not be too high so that the molecule can still transfer from minimum M1
to M2. On the other hand, the the newly emerging upper TSu should be as high as
possible. The parameters of pc1, pc2, and pc3 are balanced for mathematical reasons.
This interpretation involves some degree of speculation, as all parameters are based
on mathematical reasoning more than chemical considerations. However we assume
that we have constructed a model for an allosteric process.

A previous step at the beginning of a pulling excitation could be the ‘pulling’
along the force directions (1, 0), or at least (1, 1) along the connecting NTs in the
valley between M1 and M2. Then the molecule, or the tweezers, can jump in another
direction (0.1, 1), or stay on (1, 1). The right-hand minimumM2 indicates that there is
indeed a catch-bond behaviour which can be observed by the trap action of this lower
minimum.

We underline that we do not address how the behaviour of the PES relates to lifetime
versus force curves [44]. We only treat the height of the corresponding TS but do not
use simulations or statistics of trajectories. This means that we avoid possible side
effects of such methods. We also do not address the temperature sensitivity of the
catch-bond behaviour. This should be done in future work.

5 Conclusion

By fine-tuning of the parameters of three Morse potentials used, which should model
an allosteric process, we can observe a mild catch-bond character for single bonds in
the given tweezer model. Additionally, we find an ideal bond for a changed pulling
direction. We hope that the given example of a PES for a ‘mechanical’ model with
chemical background can help to further unravel the mystery behind the catch-bonds,
and the discussed model with a positive catch-bonding result can pave the way to other
models. There are some interesting conceptual mechanical models for catch-bonds in
Fig. 2 of Ref. [6], or Fig. 7 of Ref. [45] and Fig. 1 of Ref. [46]. The tweezers of this
paper could, with good will, be assigned to cases c to e in Fig. 2 of Ref. [6] where for
the unsymmetric cases c and d the symmetry of the two tweezer arms in Eq. (11) is
to cut. However, the field of real catch-bond behaviour in biochemistry is even larger
[47, 48]. Further studies are therefore warranted.
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Appendix

2D Examples—representation of NTs

[49]
In 2D toy examples, NTs can easily be represented by a graphical rule. It applies

in two dimensions that the orthogonal direction to the force direction

f = ( f1, f2) is unique the direction f⊥ = (− f2, f1).

Then condition (3) that f ‖ g is the zero of the scalar product

g f⊥ = 0.

In Mathematica, one can represent the corresponding NT by

Contour Plot[−g1[x, y] f 2[x, y] + g2[x, y] f 1[x, y], {x, 0, 5}, {y, 0, 5},
Contour Shading → False, Plot Points → 30,

Contours → {0.0},Contour Style → {Thickness[0.008], Dashed}]
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