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Abstract We explain the ’phases’ of a Frenkel-Konto-

rova chain of atoms in a different way to the commented

article. We reject the decision of states of the chain into

commensurate and incommensurate states introduced

by S. Aubry.
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1 Introduction

This paper is devoted to the aim of understanding what

happens inside the finite Frenkel-Kontorova (FK) chain,

if the two ratios a/b and Vo/k change. The correspond-

ing model of a linear FK chain x = (x1, ..., xN ) with

atoms of equal mass at points xi is [1]

U(x) = −Vo
N∑
i=1

cos(
2π

b
xi) +

k

2

N−1∑
i=1

(xi+1−xi−a)2.(1)

Vo describes the strongness of the substrate, but k the

elastic spring forces between neighboured atoms. Pa-

rameter b is the periodicity of the substrate. It is used

throughout with 2π. The boundary conditions for x1
and xN are free. Parameter a is the distance of two

atoms if the parameter Vo would be zero. However, in
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the chain with the substrate potential, Vo 6= 0, the av-

erage distance, ã, usually changes

ã =
xN − x1
N − 1

. (2)

2 Comment

Our first remark concerns the ansatz of Eq.(3) in Ref. [1],

our Eq.(2). There are (N-1) distances between the par-

ticles xN and x1. The false use of N makes the lowering

of the line at 1 by 1/20 in Fig. 1 in [1], and a row of

crude factors (N − 1)/N there. We give a new point of

view on the problem of taking the limit N →∞ below.
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Fig. 1 Plot of a staircase of the average particle-particle dis-
tances for N=20, k=5, Vo=5 somewhat similar to Fig.1 in
[1] however with more steps. In contrast to [1] we find quasi
regular steps. We avoid noise for the pure chain without tem-
perature, to understand the structures of the minima. The
special chains at the bullets are depicted in the next Figures.
The magenta overlay of the inner picture magnifies the first
step showing that its slope is not zero.
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Our main remark concerns the discussion of com-

mensurate or incommensurate states of the chain. We

start with the chain at the potential energy (1) without

noise thus the possibility to smear out some structures

by statistics. We determine the pure minimizer of the

chain in the combined two potentials (1), by the sub-

strate and by the elastic forces. We have recalculated

a part of the curve like in Fig.1 of [1]. The result is

shown in our Fig. 1. The calculations are done with a

step length of 0.04 thus 78 calculations are executed for

as = b− s ∗ 0.04 for the stepnumbers s = 0, .., 78 in the

b/2 interval (with b = 2π). The initial chain of every

optimization is one with x1 at zero and xi = i a. The

minima of the FK-chain with N = 20 atoms disclose 10

steps in the region 0.5 ≤ a/b ≤ 1, quite more than the

coarse statistics of ref. [1] can do.

The step at ã/b≈1 is reproduced, only rational num-

bers are used for the full step. The step near the dashed

line 1 is not constant; it decreases very slowly to the left

hand side, compare the inset in Fig. 1. Thus we con-

clude that the statement that there is a “zero slope of

length ∆” [2] is not correct. The decrease comes from a

small ascent of the ≈ N/2 left atoms to the right walls

of their corresponding substrate potential wells, and of

the ≈ N/2 right atoms to the left walls of their cor-

responding substrate potential wells, what shortens ã.

The jump down to the upper bullet in Fig. 1 is explain-

able by the structure of the chain in Fig. 2. Note that

this fact does not have relations with commensurate,

or incommensurate numbers. The key is that the outer

atom, xN , jumps over the outer peak of the site-up

potential at the end of the upper step of the staircase.

This pattern repeats for smaller values of a/b again and

again at every step. So the jumps emerge in Fig.1.

From Cantor’s proof that the real numbers are un-

countable but the rational numbers are countable, it

follows that almost all real numbers are irrational. But

the rational numbers are as dense as the irrational ones.

(See any textbook for a first course in Analysis.) There

is no gap in both kinds of numbers which indicates the

steps in Fig.1 of [1]. We conclude that to relate the

transition of different phases of the FK-chain with the

transition from a rational to an irrational ratio of ã/b

is mathematically and also physically not correct.

The adsorption [2] of the chain by the substrate acts

in the kind that for every ratio a/b a rational ã emerges

(to every given exactness of the solution) for a minimum

structure, if N is finite. The latter was our assumption

because in physics only finite chains exist. The claimed

limit N → ∞ in [1,2] is a mathematical abstraction.

Thus one can assume that to every constellation of the

parameters a/b, Vo/k, and N , exits at least one mini-
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Fig. 2 Minimum structure at the upper bullet of Fig. 1, at
a/b = 0.968, for N=20, k=5, Vo=5, and no noise. After a great
jump downhill to the left hand side, the chain is shortened
by one well. Note that the atoms in the figure are artificially
lifted on the substrate potential to guide the eye. The real
chain is on a straight line. Only the distances can change.
The spring potential is not shown in the scheme.
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Fig. 3 Minimum structure at the left lower bullet of Fig. 1
for N=20, k=5, Vo=5, and no noise. The chain is shortened
to a lower number of N/2 + 1 wells of the site-up potential.
Note the fully symmetric structure of the chain.

mizer, a structure of the FK chain in a minimum of the

combined potential (1). We explicitely define different

’phases’ of the chain:

DEFINITION

If an equilibrium structure of the FK-chain occupies L

wells of the substrate then it belongs to phase L. There

is a certain set of parameters for different ratios of a/b,

Vo/k, and N , which lead the the same phase.

A single phase transition is correspondingly a change

of an equilibrium structure of the FK-chain to L+ 1 or

L− 1 wells.

(A strong definition what is a ’phase’ of an FK

model is missing in [1,2].) For a phase transition the

whole chain contracts, or expands, so that one or more

atoms of the chain climb over their current peaks of

the substrate potential. As a result, the chain uses less,

or more wells. It is connected by a jump in the aver-

age ã, compare Figs. 1-3. The question circles around

the count of integers, whole numbers which one counts

with the fingers. The putative sophistication of treat-

ments with ’incommensurable’ FK states has obscured

the simplicity of this central point.

Besides the ratio of a/b the balance of k and Vo also

plays an important role. This is correctly described in

[1] by the comparison of the ’length’ of the first phase,

see Fig.1a of [1], for Vo = 1, 5, or 10 under an equal

k-parameter.
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Often the jumps in Fig. 1 are named ’discontinua-

tions’ [1,2] of the chain. We emphasize that the order of

the chain will rather be conserved. Only some distances

change stronger, as well as ã. But note that the balance

of the substrate potential as well as the elastic forces of

the FK model acts over all atoms of the chain.

The chain of Fig. 2 contains an antikink, a com-

pressed structure, which can wander through the chain

and which can perform an internal movement [3]. Its

location is somewhat accidental. The contraction of a

smaller part of the chain in the antikink is not an in-

commensurate ratio in the sense of the definition [2] by

an irrational number. Note that there exist low energy

saddle points [3] in between over which the internal

movement of parts of the chain goes on as a solitone.

Every new lower step of the staircase of Fig. 1 is formed

by an additional antikink resulting in a new phase.

The chain of Fig. 3 is a regular structure, no kind

of incommensurability emerges at a/b ≈ 1/2 like it is

claimed in [1]. The two outer atoms have a single well,

but all other atoms are distributed by two per well.

Though quite regular, the two atoms per well are not

at the bottom of the substrate [1,2] because they are

repulsed vice versa by their elastic forces. Note that

no atom sits at the bottom of the substrate. This has

important consequences, compare the end of section 3.

In [1] is not discussed that different global minimiz-

ers with different ã may exist to a given N . Compare

the case N=8, a/b=1/2 in Fig. 6 of ref. [3].

For the first step of another staircase longer than

in Fig. 1 a set of mimima exists where, in contrast to

Fig. 2 the outer two atoms, x1 and xN , symmetrically

climb up on their outer walls of the substrate. The min-

imum of a current result for parameter as = 2π−0.04 s

is taken for the initial chain of the next optimization.

These structures exist up to a/b ≈ 0.68 and ã < 1 but

near to 1. Thus, the first step of a staircase can be quite

longer than in Fig. 1 as it may be the case in Fig. 1a of

[1]. We show a structure of this kind in Fig. 4. If the

atoms x1 and xN climb uphill in their corresponding

wells then continuously the ã decreases but L is not

changed. The step of a staircase for this L also has a

nonzero slope.

The examples demonstrate that one and the same

set of parameters, a/b and Vo/k, can belong to different

phases, thus can have a different ã.

We still treat the case N →∞. The finite case only

is treated in Ref. [1], from N = 20 to N = 1000, though

ã is defined by the limit. Possibly the trend of the ã-

values is not monotone. In the case a/b=2/3 in paper

[3], Fig. 2, there the ã jumps for integers of N/3 for

increasing N . In Fig. 7 in [3], ã jumps for a/b=1/2 from

0 20 40 60 80 100 120
x

Fig. 4 Minimum structure at the upper step of a staircase for
N=20, k=5, Vo=5, and no noise, compare Fig. 2. The chain
is still not shortened to a lower number of wells of the site-up
potential, see text.

N=10 to 11 to 12. However, this flattens out for large

N .

We find that the larger N is, the ’earlier’ a small

change in parameter a leads to a change of the num-

ber of occupied wells. That is because the unperturbed

chain ends at xN = (N − 1) a. If the shortening over-

comes to an

a ≈ b− Mb

N − 1
(3)

with a certain small integer M > 0 depending on Vo and

k, then the count of the wells for a global minimum of

the chain may jump to a lower number. In our case,

N = 20, and Vo = k, M = 1 is enough to overcome

the step length of a/b ≈ 0.025 of the first upper step.

However, for larger and larger N , the limit treatment,

formula (3) leads to the decrease of the step length to

zero. The staircase of Fig. 1 degrades to a straight line.

Independent of the (finite) parameters Vo and k, any

kind of “devils staircase” [1,2] disappears in the limit

but the relation of ã to a forms a straight line. There is

ã = a thoughout.

3 The use of Temperature

Eq.(4) of ref. [1] introduces the temperature. In the spirit

of ref. [4] we can understand the periodic noise as a tilt-

ing to the site-up potential (1) by a corresponding con-

stant force vector, F. Thus we treat the linearly tilted

potential

U(x)− F xT (4)

with F = F (1, ..., 1). It is of interest to find first the

true minima of the chain under a tilting too. This is

demonstrated in Figs. 5-7 with F = 0.25. (We com-

pared the T -values of [1] with the factor of the white

noise being usually absolutely lower than 0.2 . It gives

the coarse approximation of 0.25.) We search again for

minima of the chain under such a mild tilting. We use

the optimization order in the Mathematica program.

Resulting structures of the FK chain are now not sym-

metric, compare Figs. 6 and 7. Over 1/2 ≤ a/b ≤ 1 we
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get stable minimum structures. The chain is still pinned

and no sliding of the full chain happens.
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Fig. 5 Plot of the staircase of average particle-particle dis-
tances for N=20, k=5, Vo=5, and a tilting of F = 0.25. The
structure of the chain at the two bullets is shown in Figs. 6
and 7.
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Fig. 6 Minimum structure at the upper bullet of Fig.5, for
N=20, k=5, Vo=5, and tilting F = 0.25. The shortening of
the a parameter causes a jump analogously to Fig. 2 by form-
ing of a skew antikink. The chain is shortened to N − 1 wells
of the site-up potential.
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Fig. 7 Minimum structure at the lower bullet of Fig.5, for
N=20, k=5, Vo=5, and tilting 0.25. Because ã/b ≈ 1/2, we
again find a quasi regular minimum with two atoms per well
of the site-up potential, without the two outer atoms which
individually occupy a well. Note that it is not a kind of in-
commensurability.

A stronger tilting results in many upper steps of

the ã/b curve, like in Figs. 1 and 5. The steps describe

stable, pinned minima of the chain. However, anywhere

the leftmost atom, x1, climbs to the right hand side

over the top of its substrate peak. But then a next

minimum does not appear. The next jump to a shorter

structure leads to a total depinning of the chain. The

tilted potential becomes an overhang [2]. Then no min-

imum structure is obtained. The chain slides down the

tilted substrate with a velocity as it is reported in [1].

It is to assume that the free sliding chain assumes its

a-distances. This is to observe in Fig. 1 of [1] in the step-

free parts of the curves. The influence of the substrate

disappears. The chain is more or less free moving. May

be it can vibrate under the sliding.

The remaining steps in Fig. 1 of [1] describe the

pinned region of the parameter space. But a discus-

sion of pinned structures is missing in [1], as well as a

discussion of the transition to depinning. The depinned

chain slides over possible saddle points and intermedi-

ate minima of the potential which exist for tiltings [3].

The example of Fig. 7 is again a quite regular struc-

ture of the chain, no kind of incommensurability emerges

at a/b ≈ 1/2 as it is claimed in [1]. Though quite reg-

ular, two atoms per well are not at the bottom of the

substrate [1] because they are repulsed vice versa by

their elastic forces. This has important consequences,

compare the end of this section. The cases of pinned

structures like in Figs. 6 and 7 are not discussed in [1]

though in some of the Figures in [1] emerges a zero ve-

locity. It points to pinned structures.

The minima of the linearly tilted potential in eq.(4)

are not the full picture of the Kramer’s equation (5) in

[1]. If one includes the vibration term, one has a more

complicated picture, like in [1]. Nevertheless, a compar-

ison with our pinned sructures may be of interest. In

the case of a depinning, especially the question emerges

why the velocity, v, of the chain becomes so large near

the parameter combination a/b ≈ 1/2? Of course, 1/2

is not incommensurable to 1. So, the reasoning in [1],

Fig. 1a, that there one has a maximal IC-phase, does

not fit the problem. Most results in [1] are given for

ΦT = π/2. For a/b ≈ 1, all atoms are sitting in the

minima of the site-up potential. Their ’hot spots’ of

the temperature, T (x) in eq.(4) of [1], at (xi + π/2)

are ’far away’ by π/2 from the tops of the barriers ot

the site-up potential. However, for a/b ≈ 1/2, nearly a

half of the atoms are sitting so at the slope that their

’hot spots’ are near the tops of the barriers, compare

our Figs. 3 and 7. We guess that these special atoms are

moved by the Büttiker-Landauer process [4], and so the

full FK chain is moved.
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4 Conclusion

This comment discusses the widespread theory of so-

called commensurate (C) versus incommensurate (IC)

phases of the FK model [1,2]. We have seen that the

so-called C-phases, the steps in Fig. 1, are not specially

ordered phases in the sense that all atoms are locked-

in to the minima of the substrate. In the putative IC-

phases we also find no broken regular arrangement of

the atoms of the chain. What makes steps in the average

distance ã of the chain is the possibility that the chain

contracts or stretches over different periods L of the

substrate. Of course we have to assume free boundaries

of the chain.

In a 2D or 3D crystal lattice a long-range periodic

order with an irrational ratio of the periodicities can

exist [2]. Its description as an IC crystal is alright. How-

ever, the ã in the FK model is not the description of a

fixed lattice. It is rather the result of the balance of the

four different parameters, a, b, Vo, k, and it is only an

average value. The term IC means ’out of proportion’.

However, in the FK chain we have to sort N atoms into

L wells of the substrate, both N and L are integers.

Two integers always form a proportion, thus the coined

term ’IC’ is a wrong term. One should use the already

introduced terms kink and antikink.

The point of a/b where the ’phase’ transition occurs,

thus the chain contracts to a smaller number of wells of

the site-up potential, has nothing to do with rational or

irrational numbers. It is the balance between the two

forces of the FK model, and of their periodicities.

The steps in Fig. 1 are not flat, in contrast to a state-

ment of ref.[2]. Water could drain off from the staircase.

There is not a single value of ã/b involved, but many

different, slowly decreasing ratios, down to the jump

point. This jump point is, in all of our calculations, of

course a rational number because we use a computer

working with rational numbers.

Final note: One of the origins of the incorrect ’C-IC

sight’ may be the articles of S. Aubry. We have given

an analysis of a main part of his incorrect theory in

Ref. [5].

Last remark: Refs. 1 and 2 in [1] cite the authors in

an incorrect order, see references [6,7].
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