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The adiabatic potential energy surface (PES) is a basic concept of many theoretical

chemistry models. In the last years, the phenomena of the action of a mechanical stress

over a molecular system have motivated experimental and theoretical researches. In a recent

article, Avdoshenko and Makarov1 describe how the concepts of an effective PES and of a

reaction path (RP), or a reaction coordinate can be used for mechanochemistry.

The RP is a one-dimensional description of a pathway on the PES in an N -dimensional

configuration space. We use N = 3n − 6 non-redundant internal coordinates, and n is the

number of the atoms of the molecule. An early used curve is the distinguished coordinate,2

which was later generalized as a distinguished coordinate path (DCP)3 and finally refined as

Newton trajectory (NT).4–6 For this type of RP holds the following property: the gradient

of the PES points into the same direction at every point of the curve. It is the reason that

NTs should be taken into account for mechanochemical problems.

Basically the mechanochemistry model1 consists in a first order perturbation on the

associated PES of the unperturbed molecular system due to a stress or pulling force, f

Vf (r) = V (r)− fTR . (1)

R is the distance between the two pulling points of the molecule.7 It will be associated with

one of the coordinates,7 or a linear combination of them. So we can assume that dR ≈ dr for

a coordinate change in direction of R. The potential Vf (r) with a fixed f can be seen as an

effective PES where ’normal’ chemistry takes place. Due to the external force, the stationary

points of Vf (r) are located at different positions,8 with respect to the unperturbed potential.

For the new minimum holds with Eq.(1)

∇rVf (r) = 0 = g − f , (2)

thus one searches a point where the gradient, g, of the zero-force PES has to be equal to

the mechanochemical force. If the mechanical stress in a defined direction is f = F l with a

2



fixed unit vector, l, then it is l = g/|g| and F = |g|. Another form of Eq.(2) is the projector

equation which was applied many years ago5,9

(
U− l lT

)
g = 0 (3)

where U is the unit matrix. Solution curves of both Eqs. (2) and (3) are equal, and they are

also equal5 to the solutions of the differential equation of Branin10

dr

dt
= ±A(r)g(r) . (4)

t is a curve parameter and the matrix A is constructed by a multiplication of the inverse

Hessian with the determinant of the Hessian, A = Det(H)H−1. Curves r(t) satisfying (4)

are called Newton trajectories (NT). The name is also used for the equivalent solution curves

of the Eqs. (2) and (3).

For different, point-to-point changing forces, F , one should get a curve of the ’reaction

path following force displaced stationary points (FDSPs)1,7,11

δr = H−1(r) f(r) = H−1(r)g(r) (5)

where δr is the distance from the minimum of V (r) to the minimum of Vf (r). Note that the

inverse Hessian H−1 will be singular on the pathway from the minimum to the saddle point

of the original PES, and Eq.(5) loses its meaning. However, such points are the important

catastrophe points in ref. 1.

There is another way to make the FDSPs without the singularity: the Branin Eq. (4). It

is the result of a different parametrization of the curve parameter, t, by the multiplication

of the right hand side of Eq.(5) by the determinant of the Hessian. The determinant is a

number. It does not change the direction of the vector of the right hand side of Eq. (5).
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However, it removes the singularity of H−1 on the way to the SP. The matrix A is named

the desingularized inverse Hessian, or the adjoint to H.

The solution curve of the Branin equation to a given initial direction is a regular curve

(if no valley-ridge inflection point is crossed5,12 – but this is another, seldom property). The

Branin equation is a well-know model for RPs.5 However, the model is used here for the

FDSPs. The stationary points of the different effective potentials with fixed l move with

increasing F on the original PES along an NT. The behaviour of NTs is well known.13

We will still discuss an example:1 the ring opening of trans-1,2-dimethylcyclobutane.

There is chosen a DCP for the curve of FDSPs. However, the DCP jumps over the PES.

The DCP method has been criticized during its first years for such jumps.3 Avdoshenko and

Makarov1 circumvent the problem by calculating two different curves, one DCP from the

minimum, and one direct FDSPs by Eq. (5) from the SP, and both curves meet at the jump

point. The reason is, both curves are parts of a Newton trajectory (NT) with a turning

point, compare Fig. 1 and Fig. 2 of ref. 1.
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Figure 1: NTs on a PES being similar to Fig.2 in ref. 1. The bold faced NTs are direct
curves from the lower minimum to the SP. The thin dashed curves are NTs with a turning
point (TP) in the lower bowl with higher energy than the SP. They may be questionable
pulling scenarios. The thick dashed NT goes wrong. It represents a pulling force which does
not enforce the desired reaction.
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A general solution of the DCP jump problems was given in 1998 by Quapp et al.4,5

using the Eqs. (3) and (4). NTs can have turning points (TPs) where the energy profile

over the curve changes its direction. These TPs are the break-down points of the DCP

method. Important points are also the valley-ridge inflection points (VRI) of the PES5,12

where singular NTs bifurcate. VRIs discriminate different families of NTs which lead to

different SPs around the initial minimum. An NT which leads to a not desired SP represents

an uncorrect pulling scenario. On the PES of Fig. 1 a VRI is at ≈(3,0). We represent an NT

(thick and dashed) which does not find the SP.

It should be noted that a further mathematical method gives curves in the coordinate

space which are equivalent to NTs, the Newton homotopy method.14–16 It can extend the

arsenal of methods to get the FDSPs curve.

We conclude that Newton trajectories can be used for the ’reaction path following force

displaced stationary points’ (FDSPs). This kind of curves form an important model for the

treatment of mechanochemistry. The theory of NTs is well prepared. It is to hope that it

can accomplish deeper insights into the understanding of mechanochemistry.
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