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Abstract
We simplify some proposed formulas for hydrostatic pressure on a molecule by
G.Subramanian, N.Mathew and J.Leiding, J.Chem.Phys.143, 134109 (2015). We
apply the formulas to an artificial triatom ABC whose potential energy surface is
formed by a combination of Morse curves.

Keywords Mechanochemistry · Isotropic hydrostatic pressure · Shock wave · Barrier
breakdown point · Newton trajectory
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1 Introduction

The effect of any external force on some atoms of a molecule, wether constant or
spatially varying, changes the potential energy surface (PES). Mechanochemistry [1,
2] is concerned with the use of mechanical forces to modify the PES of a system. In
particular, the application of pressure is a fascinating method for triggering chemical
reactions [3–7]. It modifies the reaction pathways and rates [8]. Usual one studies the
effective ’linear’ mechanochemical potential

VF (w) = V (w) − F l · w (1)

where V (.) is the PES or the free energy surface of a molecule [9],w is the coordinate
vector usually expressed in a Cartesian system [10–14] for an N -atomic molecule. w
has N x-components w3i+1 with i = 0, . . . , N − 1, it has N y-components w3i+2
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with i = 0, . . . , N − 1, and it has N z-components w3i+3 with i = 0, . . . , N − 1.
Vector l is the normalized direction of an external force vector acting on the molecule,
and F is the magnitude of the force. l · w is the scalar product. The approach (1) is
the simplest possible method with a linear external force. The solution curves for the
motion of the stationary points are Newton trajectories (NT) [15–17]. In most studies
in the literature, it is assumed for simplicity that the external force acting on the atoms
is constant, as in Eq. (1). However, this is not always the case. When pressure is
exerted, it is usually isotropic, and a selected direction, l, cannot be prescribed.

Pressure-initiated structural transitions of proteins have been reported [4, 5] in
biochemistry. A large number of other physicochemical effects can be realized at high
pressures. Shock waves are ultrafast nonequilibrium processes [18, 19]. They can play
an important role in the ignition of explosives [20, 21].

Here we simplify some known formulas for an approach of hydrostatic pressure,
and apply they to an artifical triatomic molecule. In Section II we report the formulas
to mechanochemistry of degree two. The application on a triatom ABC is given in
Section III, where Section IV gives a short report of an application on the Mislow-
Evans rearrangement. Section V reverses the view to shock waves for the triatomic
ABC with an assumption of an inversion of the pressure after the shock. Finally we
discuss and conclude the paper.

2 A simple formula for hydrostatic pressure

This work uses a development of articles [22–24]. Herewe try to simplify the proposed
formulas. The general approach for an effective potential, VF , under external force is
[22]

VF (w) = V (w) − Vex (w) . (2)

We use the geometric centroid of the molecule, c. It is a point in 3D space with the
three components

c = (c1, c2, c3) = 1

N

N−1∑

i=0

(w3i+1, w3i+2, w3i+3) . (3)

So every component is the sum of N j-components of the N atoms

c j = 1

N

N−1∑

i=0

w3i+ j , j = 1, 2, 3 . (4)

Now we restrict ourselves to a harmonic external potential, the ’hydrostatic’ pressure
[22–26]
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VF (w) = V (w) + F

2

3∑

j=1

N∑

i=0

(w3i+ j − c j )
2 (5)

F is the ’pseudo-hydrostatic pressure’ with units of kcal mol−1 Å−2. Positive val-
ues of F correspond to compression. The harmonic ansatz acts differently on atoms
with different distances from the centroid, as shown in Fig. 10 of reference [23] for
a triatomic molecule, and in reference [27]. The name pseudo-hydrostatic pressure is
coined for the ansatz with the centroid in Eq. (5) which acts differently on correspond-
ing parts of the molecule.

Note that approach (5) is different from the sliding shear stress [28, 29]. Also the
use of a bulk of environmental small molecules acts differently. For this ’gas method’
the dynamics is made of two subsystems. One is the molecule under study. The other
is a fictitious ideal gas which exerts on the given molecule the desired pressure, see
[30, 31] and references therein.

The stationary points of the PESmove under the action of the force. Their displace-
ment emerges when the effective gradient is zero. For example for x-components of
the 3D configuration space we have

VF (x) = V (x) + F

2

N−1∑

i=0

[
w3i+1 − 1

N

N−1∑

k=0

(w3k+1)

]2

(6)

thus

∂

∂xk
V (x) + F

N−1∑

i=0

(w3i+1 − c1)(δ
3i+1
k − 1

N
) = 0 (7)

for k = 1, 4, . . . , 3N − 2. δ j
k is 1 for k = j and zero for k �= j . If we add up all j ,

then the summand with δ
3 j+1
k = 1 remains. It can be written in the following form

using the singular matrix

P = 1

N

⎡

⎢⎢⎣

(N − 1) −1 −1 ... −1
−1 (N − 1) −1 ... −1
...

−1 −1 ... −1 (N − 1)

⎤

⎥⎥⎦ (8)

and the effective gradient is

∂

∂x
V (x, y, z) + F P x . (9)
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P is a stress tensor for a molecule under pseudo-hydrostatic pressure. Analogous
relations apply to the y- and z components of the molecule in the type

∂

∂y
V (x, y, z) + F P y = 0 ,

∂

∂z
V (x, y, z) + F P z = 0 . (10)

With respect to the external force, the 3N coordinates of the 3D configuration space
are separable. Therefor, the gradient of the original PES is modified by a linear coor-
dinate part, in each line. For F = 0 we naturally obtain the original stationary points.
Starting from such stationary points, we can increase the parameter F and obtain the
movement of the stationary point for the effective PES by solving the nonlinear system
of equations (9,10).

To calculate the stationary points, we have to consider the total degrees of freedom
(DoF) of the molecule. In the 3D configuration space, these are 6 DoF, three for the
overall motion of the molecule and three for a rotation. Here we propose to fix the
centroid c at the origin, and fix three additional DoFs to suppress the overall rotation.
Then we can express one of the atoms by the others; for example the N -th atom by

(xN , yN , zN ) = −
N−2∑

i=0

(w3i+1, w3i+2, w3i+3) . (11)

If we place the centroid into the origin then Eqs. (6,7) become sufficiently trivial

∂

∂x
V (x, y, z) + F I x = 0 (12)

with the (N−1)×(N −1) unit matrix I for the remaining (N-1) x coordinates; the last
line for xN ismissing. Analogous equations apply for the y- and z-parts. The result (12)
is also obtained if we replace the last column and the last line of P with the centroid
Eq. (11). Because the centroid c is localized at zero, the coordinates (x,y,z) are really in
direction of the force, Vex , in the case of Eq. (5). Thus, Eqs. (12) for x and analogous
equations for y and z depict the natural directions for the action of the hydrostatic
pressure. Eqs. (12), together with the y- and z-parts, means that on the pathway of
the moving stationary points on the original PES, V (w), the gradient is equal to F w.
The gradient points in direction w, and its magnitude is |F w|. In contrast, in the case
of a linear force, Eq. (1), the gradient must point in the constant direction, l, with
the magnitude F . For every direction, l, there exists a separate NT, and all these NTs
connect stationary points with an index difference of one [32–34]. We also assume
that a curve of stationary points of VF under force connects some original stationary
points of the original PES, as shown in the example below. The calculation of moving
stationary points under hydrostatic pressure can be performed using the method of
enforced geometry optimization (EGO), or along constrained geometry optimization
(CGO) [35, 36]. Here in this approach the general optimization is to replace by Eqs.
(9) and (10).
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With Eq. (12) we obtain the x-part of the Hessian of the hydrostatic pressure
approach using

H(x) = ∂2

∂x2
V (x, y, z) + F I . (13)

And again analogous relations hold for y- and z-parts of the Hessian, but mixed parts
are the usual ones.

3 Example: a triatomic molecule

We treat a non-linear triatomic molecule ABC with three Morse potentials between
the three atoms. The atoms can be located in the (x, y) plane.

With

r1(x1, y1, x2, y2) = √
(x1 − x2)2 + (y1 − y2)2,

r2(x1, y1, x3, y3) = √
(x1 − x3)2 + (y1 − y3)2,

r3(x2, y2, x3, y3) = √
(x2 − x3)2 + (y2 − y3)2 (14)

we define

pn(rn) = Dn(1 + e−2αn(rn−σn) − 2e−αn(rn−σn)) . (15)

Parameters for the three different bonds are

D1 = 4, α1 = 7.5, σ1 = 2,
D2 = 6, α2 = 4.5, σ2 = 3, and
D3 = 4, α3 = 1.5, σ3 = 2.5.

Dn is the dissociation energy of the bond in kcal mol−1, αn is the inverse width of the
potential in 1/Å, and σn is the equilibrium distance of the corresponding bond in Å.
The potentials are defined so that three different bond strength are obtained, as well
as different dissociation hights. To summarize, we set

V (x1, y1, x2, y2, x3, y3) = p1(r1(x1, y1, x2, y2)) +
p2(r2(x1, y1, x3, y3)) + p3(r3(x2, y2, x3, y3)) .

(16)

Three 2D sections of the PES are shown in Fig. 1. It can be seen that the bond r3 is
the weekest, but the bond r2 is the strongest. The ground state is the triatomic state
with A=(-1.48,0), B=(0.18,-1.12), C=(1.3,1.12), compare the blue triangle in Fig. 2
with the correct distances r1 = 2, r2 = 3, r3 = 2.5. Note that we have set y1 = 0
and (c1, c2) = (0, 0) to exclude the overall DoF.
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Fig. 1 Level lines of the PES sections for the triatomic molecule. Distances ri are in Å. The full 3D PES in
4D space is not representable. The missing dimension in each panel is fixed at the equilibrium value of the
corresponding missing ri

The three remaining gradient components of interest are

g1(x, y) = ∂

∂x1
V (x, y) ,

g3(x, y) = ∂

∂x2
V (x, y) ,

g4(x, y) = ∂

∂ y2
V (x, y) . (17)

With centroid c=0 and atom A on the x-axis, it is y1 = 0 and (x3, y3) = −(x1, 0) −
(x2, y2). The matrix P reduces to a 2×2 unit matrix for the x coordinates, but it is
an 1×1-’matrix’ with the value 1 for the single remaining y2 coordinate. For the
remaining 3 coordinates we need to solve 3 non-linear equations corresponding to
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Fig. 2 Mechanical pressure on a
triatomic molecule. Atom A is
fixed on the x-axis. Blue is the
force-free minimum, orange is
under F = 10 kcal mol−1 Å−2,
but green under F = 50 kcal
mol−1 Å−2. Coordinates are
given in Å. The centroid, c, is
allways at the origin (Color
figure online)

Eqs. (9, 10). Note that the other coordinates are to replace in the gradient formulas.

g1(x1, 0, x2, y2,−x1 − x2,−y2) + F x1 = 0

g3(x1, 0, x2, y2,−x1 − x2,−y2) + F x2 = 0

g4(x1, 0, x2, y2,−x1 − x2,−y2) + F y2 = 0 (18)

The partial derivatives of the gradients have to refer to the variables in the definition
(16), and the substitution of (x3, y3) is performed after the derivation. In Fig. 2 we
report the effect of pressures F = 10 and F = 50 kcal mol−1 Å−2. The blue triatom is
the ground state, but orange is the slightly suppresed form. The green triatom is under
F = 50 kcal mol−1 Å−2 pressure. The weekest bond between atoms B and C is the
most strongly shortened. Note that the pressure of the additional paraboloid in Eq. (5)
pushes all atoms together which means that the steep side of the Morse potentials is
involved when Eqs. (18) are solved. So all three bonds become shorter, but one needs
strong forces for an action. So to say, the pressure-volume curve of the molecule goes
in the expected direction [37, 38].

Under the Morse potential (16) with an external disturbance (5) there are no tran-
sition states (TS) in a finite region. This is because Morse potentials have artifical TS
for infinite distances, and the harmonic potential only has a minimum at c. The sum
of the both parts in Eq. (5) induces an overall increasing PES for increasing distances
from c. In this case, increasing the hydrostatic pressure does not increase a possible
reaction rate.
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Fig. 3 Mislow-Evans
rearrangement to SP by
mechanical pressure [43]

Fig. 4 Scheme of the pressure of
a blast wave in time, with peak
overpressure pmax which
happens at time of arrival of the
blast. First acts a positive phase
impulse I+ at phase duration t+,
but then acts a negative phase
impulse I− at phase duration t−,
compare an explanation in Ref.
[48]

4 Chemical example

In experiments with large molecules, a part of the molecule must be a punch, another
an anvil [18, 25, 39–44]. There have to be heterogeneous components, a compressible
mechanophore and an incompressible ligand. Over the anvil, isotropic stress leads
to relative motion of the rigid ligand which anisotropically deforms the compressible
mechanophore. The anvil acts as a counterpart to the real bond changes under pressure.
Thus isotropic tension leads to the relative motion of rigid ligands, which can deform
the bonds anisotropically. A small example is the Mislow-Evans rearrangement [43]
where the step to the TS is shown in Fig. 3. Used are pressures of 100-150 GPa (1GPa
=104 bar). A carbon atom numbered by C forms the anvil for the oxygen atom to built
the five-ring of the TS.

Quite another physical example is the phase tranformation under pressure from
body-centered cubic to hexagonal close-packed structure in iron [44].

5 Triatomic molecule – dissociation

To check the hydrostatic pressure formulas for TSs of molecule ABC we artificially
turn around the direction of the pressure. One can compare the ’virtual negative’
pressure difference with an application in the original Eq. (5) by using a negative
F , thus turning around the paraboloid in the negative direction. We can understand
such a ’negative pressure difference’ as the situation after a shock wave has passed
the molecule [18–20, 45–47]. Then a certain hypotension may happen because of
formation of cavitations [48–50], compare Fig. 4.
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Fig. 5 PES sections showing the global minimum of the triatom at F = 0. Left is fixed y2 = −1.116 but
in the right panel it is x2 = 0.178 fixed. Coordinates are in Å

Another sort of experiment with possible ’negative pressure difference’ is high-
intensity focused ultrasound [51], or pulsed ultrasonification [52–54]. Quite more
complicated are weak detonation waves which can be nonlinearly stable [55, 56].
They create environments in pressures (20-40GPa) and temperatures (3000-5000K)
that are difficult to study experimentally and theoretically [57].

Weapply ’virtual negative’ pressure difference to the globalminimumof the triatom.
Two PES sections are shown in Fig. 5. We obtain the effect of ’pulling’ again on the
weakest bond, r3, well represented by coordinate y2 of the right panel. The action
continues in the right panel of Fig. 5 along the valley to the bottom right corner. y2 is
stretched up to F = −5.35 kcal mol−1 Å−2 of the force. A bond breaking point (BBP)
[58, 59] emerges for the bond r3. The former minimum for varible y2 in the right panel
of Fig. 5 opens to a shoulder in Fig. 6. The term BBP describes the disappearence of
the barrier; of course, a chemical reaction will take place before at a given temperature.
After the BBP, the system of Eqs. (18) does not converge if the force parameter F is
further increased, or the search for a stationary point jumps to another region of the
PES. This is an indication of the opening of the PES. It happens in analogy to the
case of NTs, for a linear approach as in Eq. (1). At the BBP the effective PES has a
shoulder point. The former minimum and the former TS of the bond coalesce. The
BBP emerges in the right upper panel of Fig. 6, while the left panel shows that diatom
AB with distance r1 remains nearly unchanged on this pathway. The next bond r2
breaks for F ≈ −5.95 kcal mol−1 Å−2 which is shown in the left-hand scheme of the
second line of Fig, 6. Subsequently, the atom C is completely dissociated. Then the
remaining diatom AB will break when its TS energy is exceeded. This happens with
the additional increase in force by 4 units to 9.95 kcal mol−1 Å−2. The right-hand
panel in the second row of Fig. 6 explains the situation: x1 here represents the bond r1.
The former minimum flattens out at a shoulder. At the same time, a maximum on the
PES also flattens out in a shoulder. At all we find the molecule ’exploding’, however
in consecutive steps.

123



Journal of Mathematical Chemistry

Fig. 6 Upper row: PES sections under ’virtual negative’ pressure for F = −5.35 where the BBP emerges.
Left y2 = −1.33 is fixed but in the right panel x2 = 0.09. Second row: F = −5.95 and x1 = −1.43 fixed,
right for F = −9.95 and y2 = −1.33 fixed, see text. Coordinates are in Å

6 Upper regions of the PES of ABC

After the BBP we find ourselves in the ’influence’ regions of the former saddle points
of the original PES. Of theoretical interest here is that we can use the force parameter
F to go back with to smaler values down to F = −0.125 close to zero. The small blue
dots over the BBP in Fig. 7 show this pathway to the saddle (SP) of bond r3. The SP
of index one is virtually a pure extension of r3 near 4.15 Å, but r1 and r2 are nearly
unchanged at their equilibrium values. In contrast, the calculation in the r3-valley is
not very stable. This is because the isotropic force in Eq. (5) does not point in the
direction of a special valley. The small points of this path are slightly shifted to the
’right’ slope of the r3-valley by ≈ 0.01 Å, but they are not completely on the ground
of the valley. One could guess that a quasi-isotropic path exists from the minimum to
uniformly expanded bonds, however, we could not find such a path. On the contrary,
sometimes the determined points for changing F values jump out of the r3-valley.
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Fig. 7 Calculated pathways
from F = −5.3 kcal mol−1

Å−2 back to zero by 0.125 steps,
after the BBP. Shown is a PES
section of r2 and r3 like in Fig.1.
Small dots are the former way to
BBP and up to the TS for r3, but
thick dots are two pathways after
the BBP besides the valley of r3.
Distances are in Å

In Fig. 7 two such pathways are shown by thick blue dots. The breakout goes both
in the r2-direction, as well as in the r1 direction (which is not shown – the picture
is analogous for an r1, r3-section). It results in two SPs on the original PES of the
triatom, one in the combined r2 and r1 valleys, an SP with index two, and one on the
top for both distances and r3, a flat SP of index 3, at top right of Fig. 7. It is at r1=2.65,
r2 =3.96, and r3 =4.29. The SP2 concerns an r3 at equilibrium 2.5 Å, but both r1
and r2 are extended to their SP value. This means the diatom BC is fixed and atom A
leaves the core. In SP3 the r3, r1 and r2 are all stretched.

The two pathways emerge whith a bifurcation at a point where the index changes
from two to three: In other words, a BBP of a higher index. It is depicted in Fig. 7
by ’BBP23’. It could be assumed that it is located near a valley-ridge inflection point
(VRI) [60, 61] between the valleys of interest in Fig. 1. However, the situation is
different in comparison to the case of NTs [15, 16, 62–64]. At a VRI of a PES, a
singular NT with four branches crosses. Two branches usually connect a minimum
and an SP2, while the other two branches connect two SP1. The singular NT for the
VRI point on a given PES usually requires a special direction, l, of the external force.
Under the hydrostatic force, however, we only have the one isotropic direction, see Eq.
(5). It is not to expect that the hydrostatic solutions hit the VRI points. (In the 2D image
of Fig. 7, the VRI point is at (3.15, 2.96).) Here, at the bifurcation, the former SP of
index two has a ridge-shoulder transition up to the SP3, see Fig. 8. The corresponding
PES section r1/r2 still has a maximum there (not shown). As with a BBP under NTs,
the parameter F also increases here from the side SP2 up to the bifurcation, but then
decreases on the way to SP3.

The beginning of the curves of thick dots in Fig. 7 at its left point is connected with
an analogous shoulder point on the r1/r2 part of the effective PES (not shown by a
figure).

Note that a linear structure of the ABC molecule is not stable under the potential
(16). We do not discuss this case.
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Fig. 8 PES sections of VF showing the region around the bifurcation point of Fig. 7 of the triatom at
F = −3.034 kcal mol−1 Å−2. The energy increases from bottom to top. The shoulder concerns a ridge
structure. Coordinates are in Å

7 Discussion

We only treat the barriers of the PES, so we are not ’kineticists’ in the narrower sense
[8]. Of course, the isotropic use of pressure as in the approach of Eq. (5) also has no
connection to the normal modes of the molecule of interest [65, 66]. We also do not
discuss the influence of pressure on the electronic structure of the molecules [67].

8 Conclusion

We simplify the mechanochemical ansatz with an external hydrostatic pressure. We
apply the formula to a non-linear triatomic ABC.We find that compressive hydrostatic
pressure does not lower the energy barrier for a change in a non-linear triatom. In
contrast, a shock wave, represented by a ’negative’ pressure difference, could do this.
A dissociation reaction of a single atom from the triatom can be enforced, as well as
an ’explosion’ of the molecule.
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