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We comment on the work on convex regions of the potential energy surface (PES) of a molecule by
M. Gunde; A. Jay; M. Poberznik; N. Salles; N. Richard; G. Landa; N. Mousseau; L. Martin-Samos and
A.Hemeryck [J. Chem. Phys. 160, 232501 (2024)]. In contrast to the activation-relaxation technique
nouveau (ARTn), in the present work we apply the theory of Newton trajectories (NTs) to the 2D
PES. NTs have no problem traversing convex or concave regions of the PES. The ARTn is compared
with the Gentlest Ascent Dynamics method as well as with NTs.

I. INTRODUCTION

This letter concerns a mathematical detour which dis-
cusses the use of the activation-relaxation technique nou-
veau (ARTn) for a potential energy surface (PES), V(x),
with various convex regions [1]. In contrast, we use a
curve x(t) where at each point the gradient of the PES
is parallel to a given direction, f

grad(x(t)) || f, (1)

t is a curve length parameter. Curves that solve Eq.(1)
are of particular interest in mechanochemistry, where the
direction f can be the direction of an external force [2—
4]. Tt changes the PES in the simplest, linear case by the
equation

Vers(x) =V(x) - Ffx. (2)

where f is the normalized force direction, F' is the force
magnitude, and f and x form a scalar product. In Ap-
pendix I we demonstrate the effect of a mechanochemical
force on a 2D PES.

The problem of Eq.(1) was formulated by Branin in a
differential equation [5, 6]

dx(t)
dt
H is the Hessian of the second derivatives of the PES. It
is important that the matrix

= Det(H(x(t))) H™' (x(t)) grad(x(t)) .~ (3)

A = Det(H) H™* (4)

is desingularized when the Hessian becomes singular.
The matrix A is called the adjoint matrix for H. The
full Hessian matrix can be computationally expensive at
each step of the positions x(¢). However, it can be up-
dated [7-11]. A first numerical step from a stationary
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point goes in direction f. The following steps then se-
cure that the gradient maintains this direction [6]. The
solution curves are called Newton trajectories (NT).

NTs have the nice property that they connect station-
ary points with an index difference of one [6, 12], compare
the example in Section II. If we start at a minimum, we
obtain a next saddle point (SP) with index one. A special
case is a singular NT that crosses a valley ridge inflection
(VRI) point [6]. Normally it connects a minimum with
a saddle of index two and two SPs of index one via the
VRI. A VRI represents the branching of a valley. With
these properties, we can fully investigate the toy PES in
Ref.[1] as well as any high-dimensional PES. We can fol-
low a one-dimensional curve by Eq. (3) in any dimension.
Note that the number of steps to reach an SP depends
mainly on the step length used, and of course on the
length of the path from the minimum to this SP. So we
do not need ’drastically different numbers of steps’ [1] for
different SPs.

The following of an NT is included in the COLUMBUS
program system [13] (under the name reduced gradient
following, RGF). There are some links to different pro-
grams [14-16]. The Newton trajectory method has been
established in chemistry since 1998, see refs. [4, 17-23]
and the references therein. We report that N'T's are calcu-
lated for the PES of Frenkel-Kontorova chains with up to
500 atoms [24] and for medium molecules with up to 150
atoms [25]. Generalizations of the method for nonlinear
forces are proposed instead of Eq. (2) [26].

In Section II we demonstrate the application of the
theory of NTs for a 2D test PES. The conclusions
are given in Section III. Appendix I demonstrates the
application of a mechanochemical force, but Appendix
IT draws a comparison between ARTn, Gentlest Ascent
Dynamics (GAD) and NTs.

A few notes in advance: To calculate the stationary
points of the PES of a molecule, only 3N,;-6 internal
degrees of freedom (DoF) are needed.

A second gap is the wayward definition of a ridge on
page 3 in Ref.[1]. For example, at an SP of index one



we have one negative eigenvalue of the Hessian but N-
1 positive eigenvalues (if N is the dimension). If we go
uphill from the SP perpendicular to the valley direction,
we have positive curvature. This it is a (hyper)-ridge of
dimension N-1. In Fig. 2 below, in the region around the
maximum, the region with two negative eigenvalues is
inside the green line around the maximum.

A third gap in the annotated paper is the lack of know-
ledge about the well known streambed methods such as
gradient extremal following, see for example Refs.[27, 28].

A fourth gap in the commented work is the lack of
knowledge about the Gentlest Ascent Dynamics (GAD)
method, where the gradient of the PES is projected into
a certain direction and also perpendicular to it, see for
example Ref.[29]. ARTn is, so to speak, a special case
of the GAD technique. Since this comment mainly de-
scribes that NT's can cross convex or concave regions of
the PES equally, we provide an explanation of this point
in Appendix II.

A further gap is the distinction between ’valley branch-
ing’ and VRI points. This is not correct. Singular NTs
unambiguously define the branching [6, 30-32]. There
is an illustrative introduction to the higher dimensional
case [33]. For a PES with more than two (toy) dimen-
sions manifolds of VRI points arise [34]. If the PES is
symmetric, the VRI manifold often forms a symmetry
hypersurface. However, asymmetric VRI manifolds can
also be computed [15, 34, 35]. Recently, the role of VRI
points in dynamical processes has been discussed [36].

II. FIND THE SP OF AN EXAMPLE PES

The PES of Ref.[1] is
V(z,y) = 5cos(F) cos(%) cos(}) + cos(x) cos(%y)
+ exp(—[(x —17)* + (y — 17)%]/125) (5)

for x € [13,18] and y € [14.7,18.6], as shown in Fig.1.
There is a central minimum, M, which is surrounded
by five SPs. Five VRI points are shown between the
SPs through X, where ¢ is a consecutive number. The
boundaries of the convex-concave regions are enclosed by
green lines. They are given by the condition det(H) = 0.
These lines also cross the VRI points. Normally they
are curvilinear, so that the points of a molecule on a
higher dimensional PES with det(H) = 0 form curved
hypersurfaces (not "hyperplanes’ as claimed in [1]).
Each VRI is intersected by its own singular N'T, all of
which are represented by thin blue lines. For example,
the dashed blue curve is the singular NT through the VRI
point X1. Singular NTs are the boundaries of families
of NTs that connect the minimum, M, with different
SPs. Two singular NTs each form a corridor for all NTs
connecting the minimum, M, with the same SPi [37].
To find all SPs, you have to choose an appropriate di-
rection in the corresponding corridor. For example, a

FIG. 1. Level lines (thin black) of the PES (5). M is the
central minimum, SPi are the 5 closest transition states, but
Xi are the 5 VRI points between the SPs. A special region is
the shoulder, Sh. See the text for the meaning of each colored
line.

branch of the thick black NT (direction f :%(17 1)) con-

nects SP1 to M via Sh, which leads to SP4. A branch
of the magenta NT (f=(1,0)) connects SP3 with M and
goes to SP5. Incidentally, it is not necessary to follow
the specified NT exactly within a corridor, since a neigh-
boring NT also leads to the same next stationary point.

The special region of this PES here is the shoulder, Sh,
where some NTs come close to each other, but do not
intersect [38]. The steepest descent from SP2 leads to
the shoulder. To connect SP2 with the minimum, M, we
have to find a direction between the blue singular NTs
through VRI points X1 and X2. For example, this is
fulfilled by the dashed red NT to direction (0.987,0.163).
Before M, the red NT moves together with the magenta
NT to SP5. This means that the corridors before M and
after M are different.

Note that there is no bifurcation of the valley of M at
the shoulder, Sh. The corresponding bifurcation points
are X1 and X5, which are the boundary points for the
corridor of the thick black NT from the minimum M to
SP1.

The dashed red NT is also shown in an extended re-
gion of the PES in Fig.2. The corridor for this NT is
quite small. A boundary is the dashed blue singular NT
through VRI point X1 on the left, but the other bound-
ary is the blue singular NT through VRI point X2. It
connects the minimum, Min, directly to X2 and the maxi-
mum, Max. Its other branch leads from X2 to the desired
SP2, but in a large arc. The dashed red NT lies above
and to the right of the dashed blue boundary, and below



18.0

[ /
17,55 g,
170
16.5

16.0 -

135 14.0

145 150 155 160
X

FIG. 2. Extended range of Fig. 1 to include the minimum, the
shoulder, the VRI points X1 and X2, the SP2 and a maximum.

and to the left of the solid blue NT. Near the shoulder,
Sh, all NTs come close to each other but do not cross,
compare also Fig.1 of ref. [39] where a similar situation
is described.

One can observe in Fig. 2 the different convex or con-
cave regions of the PES through which the dashed red
NT passes, crossing the green lines. Around M the re-
gion is convex, near X2 up to Sh it is concave, between
Sh and X1 it is convex again and then up to SP2 it is
finally concave. This NT goes uphill through a valley
from M to SP2.

Similarly, other singular NTs form other corridors to
SPs numbered 1, 3, 4, or 5.

On this PES, the dashed red NT does not find the next
minimum after SP2, but continues uphill to the maxi-
mum, an SP of index two, with two negative eigenvalues
of the Hessian matrix. This is allowed by the property
of regular NTs. They connect stationary points with an
index difference of one [6, 12]. Here the NT moves from
index one of SP2 to index two of the maximum. Note
that saddles of index two have been discussed in chem-
istry since 1986 [40, 41]. Currently they play a role in
the discussion about roaming atoms [42].

III. CONCLUSION

We propose to applied Newton trajectories that can
immediately find all SPs of a given minimum basin, see
Fig. (1a) of Ref.[1]. The special curvature of the PES
does not matter [43]. The starting point does not need
to be changed. All NTs to the five SPs around M start
at M.

APPENDIX I

A mechanochemical example

We use the 2D PES Eq. (5) with the mechanochemi-
cal approach Eq.(2) with £=(0.987,0.163), the gradient
direction of the dashed red NT in Figs.1 and 2. For the
original PES, SP1 and SP3 are lower than SP2, whith
SP3 being the lowest. If we use an amount of F' = —0.25
force units, we get the effective PES shown in Fig. 3.

FIG. 3. Effective PES for a mechanochemical pull towards
the dashed red NT with force F' = —0.25. See text.

Now, SP1 and SP2 are lowered below SP3. If it is
possible to pull a chemical system with this PES in the
indicated direction, the high probability that a reaction
will occur above SP3 can be changed to proceed above
the SP1 and SP2. Note that the shoulder is now gone.
A new intermediate minimum, Mint, is formed. One
may also observe that the stationary points, M, Mint,
SP2, Max, and SP3, are moving on the dashed, red NT.
This is the key property for the application of NTs in
mechanochemistry: NTs describe the motion of station-
ary points under the external force.

APPENDIX II

From the Scheraga method to the GAD model
via ARTn and a comparative analysis with NT's

Scheraga proposed half a century ago the first algo-
rithm for scaling and exploring a PES as well as to lo-
cate first-index saddle points [44]. The algorithm starts
at an initial point xg and in iteration k the system is at
the point x;. The new point is found by minimizing the
potential energy V' (x) on a hyperplane Sj whose normal



vector is n;. We always take the vector n; normalized,
n’n; = 1. The hyperplane is defined by

nj; (xi —xx) =0, (6)

where the points x},x) € Sx. Minimizing V(x) on the
hyperplane Si perpendicular to ng gives the new point
by the formula

Xp41 = Okl + argmin,. o5, V(x}) (7)

where §; > 0. This is a parameter that must be adjusted
at each iteration. The process is repeated until the
system reaches the SP of index one. This algorithm is
very general. It defines in a very basic way what any
algorithm whose purpose is to find first-index saddle
points on a PES must have. However, it suffers in two
points: first, how to obtain ny in each iteration and sec-
ond, what it costs to minimize V' (x) in the hyperplane Sj.

Among many other algorithms proposed on the basis
of Scheraga’s, it is worth highlighting that of Barkena
and Mousseau called the activation-relaxation method
(ARTn) [45-48]. To see the connection between this al-
gorithm and the more general Scheraga algorithm, we
make the following modifications. We transform

nj; g(x)
LT "

and
argmianGSkV(xZ) = x; — pp(I— nkng)g(xk) . (9

The parameters, S > 0 and pg > 0, are arbitrary and
different for each iteration. M\j is an eigenvalue of the
Hessian. Instead of minimizing V' (x) in the hyperplane,
this is replaced by a minimization of the gradient descent
type in the subspace normal to the vector ny, i.e. in the
subspace Si. This computation is less expensive than
minimizing V' (x). With these considerations, the general
formula of Scheraga’s algorithm for finding the new point
Xj+1 now has the following form

- mM(nfg(xk))

—pr(T—men)g(xx) . (10)

Xk+1 = Xk

The ARTn algorithm provides an unambiguous way to
obtain the vector n; from the the eigenvalue equation
of the Hessian matrix, H(xg)ny = Agng, by taking
the eigenvector of the smallest eigenvalue. These are
the two equations that must be evaluated in each
iteration of the ARTn algorithm. In Mousseau’s last
article the hyperplane was changed to a hypersphere, see
Fig. 4 of ref. [1], but the methodological basis is the same.

At this point, it is worth highlighting that in the evolu-
tion of the algorithms based on the Scheraga model, the
one with the most sophisticated of all is the one based

on a dynamic formulation known as Gentlest Ascent Dy-
namics (GAD) [29, 49-54]. We can connect the GAD
algorithm to the ARTn algorithm in the following way.
We establish the relation

1
min(Ag, —B)
where Aty =ty —tr > 0 and we define Axy = xp41 —

x. With these relations, the first ARTn equation has
the following form

— — Aty (11)

Axy = —Atk(l - annf)g(xk) . (12)

Regarding the second ARTn equation of the eigenvalues
and eigenvectors of the Hessian matrix now has the form

Any, = —Aty (T — npn} YH(xp )0y | (13)

where, Any, = ngy1 — ng, and so

Ny
Ngy 1 = ——=< . 14
= K] (14)

These two equations, which must be evaluated in each
iteration, represent a very sophisticated and advanced
form of Scheraga’s original method. The GAD model
is also an example of the optimally controlled Zermelo
navigation problem [53, 54]. In this case, this is under-
stood as navigation on the PES.

Finally, let us look at the analogies between the phi-
losophy of Scheraga’s method and the NT algorithm [12].
At the iteration k the Branin Eq. (3) [5] has the form

N
A= Aty e | X avvT L a9
v=1
with g(xx) = n|/g(xx)|, and where {af,k)}fy:l are the
eigenvalues of the adjoint Hessian of Eq. (4) in the itera-
tion k and {v,(,k)}f,\’:1 are its eigenvectors. Therefore, the
computation of this equation involves the computation
of the Hessian matrix and its eigenvalue and eigenvector

equations, hence

H(xp,)v(" = APv (16)

in the same way as it occurs in the ARTn algorithm. We
use the normalized eigenvectors, vl(,k)Tv,(,k) = 1. With all

this, we can calculate the elements

AP

This represents an N'T iteration. To see the analogy with
the previous algorithms we consider that

it A <oand AP >0, v=2,... N,
then it is agk) > 0 and a,(,k) <0, v=2,...,N.
(This excludes the zero eigenvalues of the overall DoF.



In convex regions of the PES, they should be the lowest
ones.)

With the previous considerations, the Branin Eq. (3)
can be rewritten as follows

Axy = Aty ||g(xx) |

(AT 2 T ) 19

which is very similar to the first equation of the ARTn
algorithm, but it is more flexible by explicitly using

the projectors, V,(,k)v,(,k)T

, instead of using only two
projectors and the contribution of elements a&k). This
allows the NT algorithm to locate VRI points [34] which

is not possible for an ARTn type algorithm.

We emphasize that all previously discussed and
analyzed methods using the Hessian matrix can be
updated and diagonalized by the method described in

Ref. [8]. This work is an oriented and focused method
for large molecular systems.
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