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Abstract

We discuss slip bonds, catch bonds and the tug-of-war mechanism using mathemat-

ical arguments. The aim is to explain the theoretical tool of molecular potential energy

surfaces. For this we propose simple 2-dimensional surface models to demonstrate how

a molecule under an external force behaves. Examples are selectins. Catch bonds in

particular are explained in more detail, and they are contrasted to slip bonds. We

can support special two-dimensional molecular potential energy surfacees for E- and

L-selectin which allow the catch bond property. We demonstrate that Newton trajec-

tories are a powerful tool to describe these phenomena. Newton trajectories form the

theoretical background of Mechanochemistry.

1 Introduction

Catch bonds were discovered 35 years ago,1 and they are observed in many biochemical

molecules.2,3 As a molecule deforms, the rate of dissociation decreases. The stabilization

of a complex by an external force in the catch bond model is an exciting phenomenon.

To our knowledge, there are two proposals for suitable free energy surfaces for modeling

catch bond behavior.4,5 We will discuss these models, as well as our own modifications.

If one can assign a potential surface to the region of the molecule with presumed

catch bond behavior then one will be on a good theoretical basis for understanding

the behavior.

We are convinced that the theory of Newton trajectories (NT)6,7 is a tool to ratio-

nalize the biochemical phenomena of slip- and catch-bonds. To understand this mathe-

matical theory, we assume that under an external force, the effective mechanochemical

potential must be taken into account

Vf (x) = V (x)− F fT · x (1)

where V (.) is the potential energy surface (PES) of a molecular system under consid-

eration, or its free energy surface. f is the normalized direction of an external force
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vector acting on the molecule, and F is the magnitude of the force. The superscript T

means the transpose. Note that force is a vector quantity, where both, direction and

size are important. By x we depict the molecule in arbitrary coordinates. The approach

of Eq. (1) is the simplest possible approach with a linear external force. Sometimes a

nonlinear force of the form −F r cos θ 8,9 is used which we will not treat further here.

The stationary points of the PES move under the force. The new barrier of the

effective PES changes with, but the barrier is a sum of two differences

∆V = V (xsp)− V (xmin) and ∆x̃ = −F fT · (xsp − xmin) (2)

The two parts can play together, or they can act against each other. This complicates

the overall picture. The second part for ∆x̃ in Eq. (2) has already been discussed in

refs. ,2,10 for example. We mainly discuss the first summand below. Its solution curve

is usually curvilinear. This contradicts the theory of Bell, as it is also discussed recently

in ref. 5

The gradient of the effective PES for the stationary points, Vf (xc), has to be zero

to describe this movement of the stationary points, xc. It means that it has to apply

g(xc) = F f , (3)

where g is the gradient of the original PES. The value F changes like a parameter along

the solution curve. Given a new value, say F ′, a new point is found, x′c, in the manner

for which Eq. (3) is satisfied for the new parameter value, F ′. At each point xc the

parameter value, F , coincides with the root square of the gradient norm

(
gT (xc)g(xc)

)1/2
.

For the movement of any critical point, xc, one creates a differential equation6,11 by

dxc
dt

= Det(H)H−1(xc)g(xc) (4)
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where H−1 is the inverse of the Hessian matrix of the original PES, and Det(H) is the

determinant of this Hessian matrix. A curve length variable, t, is also used. Solutions

of Eqs. (3)/(4) are called Newton trajectories (NTs). Eq. (4) was created a long time

ago by Branin,12 see also the text book,13 where one uses the so-called adjunct Hessian.

It is the desingularized matrix

A = Det(H) H−1 . (5)

The study by Barkan and Bruinsma 14 also introduces parts of the theory of NTs,

however, note that Eq.(4) is used in a probably misleading form in refs. 5,14

Each solution of Eqs. (3)/(4) to different directions f connects a minimum to a

saddle point (SP) of index one, SP1. In chemistry it is called a transition state (TS).

More generally, an NT connects stationary points of an index difference of one.15–17

A solution curve has to cross a point on its path where it holds Det(H) = 0. The

force in the direction f with the magnitude to reach the point with Det(H) = 0 forces

the former minimum and former saddle SP1 to coincide. This event is called the bond

breaking point (BBP).7 Each local point on the Det(H) = 0 manifold determines one

solution curve of Eq.(3), though its corresponding gradient direction there. The reason

is that along every solution curve of Eq.(3) the gradient direction is fixed, and it is

equal to f . The manifold Det(H) = 0 crosses anywhere on the PES the manifold of

valley-ridge inflection points (VRI).16,18–21

The mathematical theory of Newton trajectories (NT) can be used to study several

types of reaction paths viz the standard reaction model,22 as well as a reaction path un-

der an external mechanical force7,23 and under an external electric field,24,25 the latter

with a generalization of this theory. Some kinds of solutions of Eq.(3) can themselves

serve as reaction pathway models, besides the well-known steepest descent model of the

so-called intrinsic reaction coordinate (IRC),26–29 or the gradient extremals,17,30–35 or

the gentlest ascent dynamics,36,37 or many other models.38,39

The aim of this paper is the foundation of molecular potential energy surfaces for
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catch - and slip bonds. For this we propose simple 2-dimensional surface models. Special

examples are selectins.14 The article is organized in the following way. In the next

Section 2 we show the utility of the mathematical theory of NTs for the description

of slip- and catch-bonds under an external force. Section 3 describes the tug-of-war

mechanism based on the NT theory. We numerate different models with capital letters,

A-F. After a discussion in Section 4 there is reported in Section 5 a glossary of definitions

of bio-mechano-chemistry. Finally, in Section 6 a set of conclusions is reported based

on the present models. Formulas and tables are added in an appendix, Section 7.

2 Slip- and catch-bonds

2.1 Slip Bonds

There are different types of bonds: one type is the ideal bond40,41 being insensitive

against tensile forces. It has been suggested to play a role in enabling the receptor-

ligand pair to withstand tensile force, but it has not yet been reported in experiments.

Usually bonds weaken under the action of mechanical load. Such chemical bonds,

whose dissociation rate grows with increasing external force, are called slip bonds. The

name was coined by Bell in 1978 for biological adhesive bonds.42 An example are B cells

which apply forces to segregate and rupture clusters, and individual antibody-antigen

interactions which exhibit a slip-bond character.43 Thus they show lifetime reduction

under force. Unbinding forces of single antibody-antigen complexes correlate with their

thermal dissociation rates. The same TS must be crossed in spontaneous and in forced

unbinding. The unbinding path under load cannot be too different from the one at zero

force.

Let us assume the PES landscape, V (x), of a molecular system constituted for a

receptor and a ligand linked by a noncovalent bond. Coordinates (x, y) may be the
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interesting distances or angles of the molecule. The bound state corresponds to a

minimum of the PES named reactant, R, in Fig. 1. (All drawings and calculations are

done with Mathematica 13.3.1.0 for platform Linux x86 (64-bit).)

The application of a tensile mechanical force, F f , in direction (1, 0) of the red NT

moves the minimum, R, and the TS together. It decreases the height of the barrier if

F increases from zero to some value implying a increase of the dissociation rate. As a

result, the life time of the slip bond decreases when it is stressed by a tensile force.44,45

When the external force is applied then the effective PES, Vf (x), describes the evolution

of the bound state to the unbound state, and it is given by Eq. (1).

R

VRI

VRI

TS

-1 0 1 2 3

-2

-1

0

1

2

x

y

Figure 1: The 2D PES (of Eq. (8) in appendix) in the forceless limit, F=0, depicted by thin
equipotential lines. R is at zero level, but the SP is at 4 energy units. The red curve is a
typical slip bond NT, the thick dashed is a putative catch bond NT, the thin dashed is no
direct catch bond NT (see point B in subsection 2.2 below). The blue curves are singular
NTs through the two VRI points. The green curve is the Det(H) = 0 line of the PES which
also crosses the VRI points.

Slip bonds depict directions where the corresponding NT to f leads more or less

directly from a minimum to a transition state. A typical case of a slip bond is shown

in Fig. 1 by the red NT. It leads from the reactant, R, over the SP to the dissociation.

6



Its direction is (1, 0). At a final amount of F , the former minimum and the former SP1

coalesce to a shoulder point, which is the BBP on the original PES. There the green

curve crosses the red NT. On the original PES the positive curvature of the minimum

bowl turns over into the negative curvature at the SP.

2.2 Catch Bonds

Seen from the TS the slip direction is the natural direction of the SP valley, compare

the TS on the red y = 0 line in Figure 1. Of course, one can deviate to both sides up

to a certain degree, and one still goes downhill the reaction valley. It would still hold

the slip bond character. However, if the external excitation direction becomes more or

less orthogonal to the col then one goes uphill. Such a case was then named catch bond

direction if the barrier increases under the external force.

Note that for an N -dimensional PES we have a one-dimensional valley path over

the SP1, the slip direction, however, we have (N−1) directions orthogonally uphill into

the PES mountains.

An early work1 describes the occurrence of states in which adhesion cannot be

reversed by application of tension. Such states occur only if the adhesion molecules

have certain constitutive properties thus having catch-bond character. Often catch

bond behavior is connected to sheer forces in proteins.46 Another example is dynein’s

interaction with micro tubules which behaves like a catch bond.47 The dependence on

the force direction to modulate the multistep process of translation is reported.48,49

The calculated forces alter the transition state barrier of the peptidyl transfer reaction

catalyzed by the ribosome for two alanine residues in the peptidyl transfer center as

a function of the direction of the force applied to the P-site residue. In a current

discussion50 vinculin is a load-bearing linker protein that exhibits directional catch

bonding due to interactions between the tail domain and the filamentous F-actin, see

also refs. 51,52 There is a large amount of reports to catch bonds.2,3,53–63
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A) Molecular examples: selectins

First we report a current example of a catch bond behavior in endothelial selectin (E-

selectin). Let us assume the simplified 2-dimensional landscape, V (L, d), of a molecular

system5 constituted for the receptor of E-selectin and the ligand sLex linked by a

non-covalent bond.64 It is a challenge to select special coordinates when dealing with

protein-ligand interactions. We find a high dimensionality and a great flexibility. Here5

one uses two length coordinates, L, d in nm, to describe the movement of the ligand.

L is the protein extension, but d is the distance to the ligand. Forces are given in pN .

The bound state corresponds to a minimum of the PES named reactant, R, in Figure

2. The TS is the final level of a Morse ascent at large d and L ≈ 4.44 nm.

R

BBP

TS E-selectin

3.5 4.0 4.5 5.0 5.5

0.0

0.5

1.0

1.5

2.0

L

d

Figure 2: Proposed 2D PES of E-selectin with Eq. (6) in the appendix, in the forceless limit,
F=0, depicted by thin equipotential lines by steps of 7.4 pN. R is the global minimum. The
TS of the dissociation limit is far outside the scale. The thickly dashed NT to direction (1, 1)
is a slip-catch-slip bond NT given in ref. 5 The green curves are the Det(H) = 0 lines of the
PES.

In the both molecular examples in this point A) we mainly treat the direction

(1, 1) for the external force; note that we do not normalize this vector by the
√

2, for

simplicity. The application of Eqs.(3) and (4) for a tensile mechanical force, F (1, 1),

along the dashed NT, decreases the height of the barrier if F increases from zero to
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5 pN. Then the barrier begins to increase, up to 40 pN. After this value the barrier again

decreases, like in a slip bond, compare Table 1 in the appendix, and the right panel of

Fig. 3. The barrier is a nice, typical characteristic for catch bond behavior. It finally

needs here a very large force up to ≈ 350 pN for a full bond breaking where the former

TS and the former minimum, R, coalesce at the BBP, the crossing of the NT and the

right Det(H) = 0 line (the green line).

When the external force is applied then the effective PES, Vf (L, a), describes the

evolution of the bound state to the unbound state, and is given by Eq. (1). Here, at

the early beginning of the external force, F (1, 1), the Morse TS becomes lower and the

minimum, R, becomes higher. It means ∆V in Eq.(2) decreases and we have a slip

behavior. Later, probably the catch bond character is coming from the second part

of Eq.(2), compare the both barriers in Fig. 3. Because there is only the Morse-TS of

the dissociation, in this example, the variation of the coordiante d is large for moving

stationary points, under force F along the direction (1, 1). This causes a large part of

the ∆x̃ in Eq.(2). After F=40 pN, the ∆x̃ becomes negative, and we find again slip

behavior.

10 20 30 40 50 60 70
F

57.0

57.5

58.0

58.5

59.0

Barrier

10 20 30 40 50
F

-1

1

2

Δ x
~

Figure 3: Barriers for E-selectin for increasing force, F , along the NT to direction (1, 1).
Left the full barrier, but at the right panel is, for comparison, shown the influence of ∆x̃.

An indicator for a catch bond can be a large movement of the involved stationary

states of the PES under the external force.

Note that the dashed NT has a turning point (TP) at (L, d) ≈ (5.4, 0.4). This must
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not be directly connected to the catch bond character, see also an extreme counter

example in ref. 6 However, the existence of a TP is also an indicator for a possible catch

bond behavior. An NT between R and TS without a TP describes a slip bond, like the

red NT in Figure 1.

A second nice example is leucocyte selectin (L-selectin), see Figure 4. Now the

situation on the PES dramatically changes because a new TS emerges on the L-axis,

at (5.18, 0). The model concerns the parts of Eq.(2) in a more mixed form, but the

∆x̃ again plays the main role. For the chemical details see refs.3,5,65,66, as well as for

the representation of the molecule. The formula of the 2D model PES is given in the

appendix by Eq. (7). Note an analoge formula like in the E-selectin, only the parameters

are quite different. There are used two length coordinates, L, d in nm to describe the

movement of a ligand. L is the protein extension, but d is the distance to the ligand.

Forces are given in pN .

RTS

TS L-selectin

+ PSGL1

VRI

Int

4.4 4.6 4.8 5.0 5.2 5.4 5.6

-0.2

0.0

0.2

0.4

L

d

Figure 4: Proposed PES of L-selectin5 with Eq. (7) in the appendix. The TS of the dissoci-
ation limit is far outside the panel. The thickly dashed NT to direction (1, 1) is the NT with
catch bond behavior. The red line is the NT to direction (-1, 0), and the gray-black NT goes
to direction (-1, 1). Both are slip directions. The blue NT goes through the VRI point; it
is the separatrix for the catch bond NT. The green curves are the Det(H) = 0 lines of the
PES.

.
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On the L-axis we have two minima and one TS. This axis is also an NT to direction

(-1, 0) drawn in red. It is a slip direction. The right minimum, R at (5.58, 0), is the

global minimum but the left one at (4.48, 0) is a flat intermediate. Along increasing d

on the line with L ≈ 4.43 we have a dissociation channel of the ligand. Thin lines of

the figure are level lines with steps of 5.2 pN . The green lines are the Det(H) = 0 lines

of the PES.

Of interest also is the gray-black NT to direction (-1,1) from R over TS through

Int to dissociation. It should be the usual direction of the process of interest: globally,

L decreases, but d increases along (-1,1), if the ligand moves away. It has slip bond

character because along this NT, under increasing force, F , the barrier decreases. Along

the NT, under force, the minimum, R, and the TS move towards each other, and this

causes a decrease of the barrier. If one exites the system up to F = 200 pN then

minimum R and TS coalesce at a barrier breking point (BBP), see Figure 5. It is the

crossing of the NT and the green line in Figure 4.

F=200
L-selectin

+ PSGL1

BBP

4.4 4.6 4.8 5.0 5.2 5.4 5.6

-0.2

0.0

0.2

0.4

L

d

Figure 5: Effective PES of L-selectin for the gray NT to direction (-1, 1) of Figure 4, for
force F = 200 pN . The former TS and the former minimum, R, now form a shoulder. The
barrier disappears.

.

On the PES of Figure 4, through a VRI point at (4.65, 0.17) is calculated a singular

NT which is drawn in blue. The VRI point marks the border between the two (orthog-
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onal) valleys to R, or to the dissociation TS, and the singular NT separates the two

thickly dashed branches of the NT of special interest here. It goes to an orthogonal

direction, (1, 1), a pulling of the molecule along both coordinates. The NT to this direc-

tion is shown by black dashes. The pulling along L seems to be counterproductive for

the process. Seen from R, the pulling points into a dead valley at the right hand side

of the figure. The right closed branch of the dashed NT connects only R and the TS.

Its upper arc is disrupted from the left branch through Int by the blue, the singular

NT. This NT acts as a separatrix .5

It is a second indicator of a catch bond behavior: The main exit to the dissociation,

and the NT of interest through the minimum, R, are divided by a singular NT.

If one excites the molecule along direction (1, 1) then one moves the stationary points

R and TS along the upper arc of the dashed NT. Here we find catch bond behavior, see

Table 2 in the appendix. Why? The minimum bowl is deep, thus has strong curvatures.

Its eigenvalues in L- and d-directions are ≈ (15300, 4850) but the eigenvalues at the

TS are ≈ (−280, 570). Thus any movement along the given excitation for F up to

≈ 60 pN will move more the TS than the minimum. That is why the second part of

Eq. (2) does play here the main part. The change of ∆V is only 1/5 of the change of the

barrier. For higher F values, however, the arc over TS and R closes, and we go back

to slip behavior, to a decreasing height of the barrier. And at the end, if F is so large

that the BBP on the green line is reached from both sides then the molecule finally

slides to dissociation, compare Figure 5. We guess that the 2D example of Figure 4 will

be a main pattern for catch bonds. It is already anticipated by a schematic picture by

Figure 2 B in ref. 3

Of course, by drawing a comparison of the catch bond NT, the thickly dashed upper

arc to direction (1, 1), its slip bond counter part below to direction (-1, -1), and another

usual slip bond NT to orthogonal direction (-1, 1), the gray-black one, this shows that
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one has an ’asymmetry’ for the catch bond.67 This needs no further reasoning. One

cannot expect that the catch bond property holds for any direction of the external force.

Thus, it does not exist ’the catch bond’, but a bond can have ’catch bond character’.

In the following we discuss further different scenarios for the force-induced change of

the TS of simple two-dimensional (2D) PES, especially for an inversion of the relations

between the curvatures in minimum and TS, in comparison to the former example.

This approach was proposed by Suzuki and Dudko.4

B) Linear reaction valley

A very simple abstract model PES with one minimum and one TS on a linear

reaction channel is obtained by Eq.(8) given in the appendix, see Figure 1. On the

right hand side we have a dissociation exit. We have in Figure 1 the level lines (thin

black), and some NTs. The red one is a typical case of a slip bond depicted by an NT

to x-direction. The application of a tensile mechanical force, F f , in the direction of the

red NT to direction (1, 0) moves the minimum, R, and the TS together. It decreases

the height of the barrier if F increases from zero to some value implying an increase

of the dissociation rate. At the same time it also decreases the coordinate x of the

TS. As a result, the life time of the slip bond decreases when it is stressed by a tensile

force.44,45

If one uses an excitation in pure y-direction, (0, 1), then one obtains two branches of

the bold dashed NT. Some values for the force F in this direction are given in Table 3.

A typical increase of the barrier with force takes place at the left hand panel of Figure 6.

A third indicator for an increase of the barrier is here that the curvature at the

TS across the reaction channel is larger than the curvature in the reactant into the

same direction.

The eigenvalue in y-direction in the minimum, R, is 2 but in the TS it is 10.
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Figure 6: Barriers along the two dashed NTs of Figure 1 with increasing force, F . Left the
thick NT, but with the right panel the thin one.

.

Again the condition is that the NT is indeed more or less orthogonal to the reaction

valley, to go outside the blue separatrix. It is secured here because additionally the

dashed NT is ruptured into two branches; one goes through the minimum but the other

one goes through the TS. The border cases are the singular NTs (blue curves) through

the VRI points. They depict excitation directions (±1.315, 1), and they form the sepa-

ratrix. There are two such NTs in our example. Inside the region of these singular NTs

between the VRIs are only directions for excitations with slip bond character, like the

trivial red NT. The situation changes for the other side of the singular NTs, for the

dashed NTs. They are disrupted by the VRI points.

However, if the excitation direction of an NT is too near to the valley direction,

though the NT is above the VRI points, then also a slip behavior can be observed; at

least for low F values, see Figure 6 at the right hand side. The used thinly dashed NT

depicts an excitation direction (0.75, 0.64). Additionally here acts the shortening of x

for the thin dashed NT, and the extension of x for the thick dashed NT, if we leave the

TS. This is again the action of the right part of Eq. (2).

One important observation, however, concerns both dashed NTs: they are divided

into two branches and go uphill to infinity on the abstract PES. Therefore the moving

minimum and the moving TS can never coalesce under the excitation force. It means

that they can never end in the usual finale of a slip bond that the barrier disappears.

Belyaev and Fedotova3 name this an ideal catch bond, in contrast to the realistic catch-
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slip bond of real molecules.

We have to notice that though the dashed NTs show (from the beginning, or later) an

increase in barrier height, they do not show the true character of the realistic catch-slip

bond. The possible increase of the barrier in a one-valley model was already reported by

Suzuki and Dudko in 2010.4 (We did not understand this in our 2016 paper6 where we

treated only a slip NT.) However that the possible catch bond NTs in this one-valley

model will not come back to a final decrease of the barrier, this means a disturbing

insight. It later leads us to the next Section, to the two-valley model.

C) Curvilinear reaction valley

This example, Figure 7, is quite similar to the linear case above. We treat a nonlinear

case of the dissociation valley, with a PES model proposed by Suzuki and Dudko,4 see

Eq. (9) in the appendix. Coordinates (x, Q) are again the interesting distances or angles

of the molecule. (We have adapted some parameters of the model.) The reactant R is

separated from the unbound state by an SP1, an SP of index one, located on top of the

PES barrier depicted by TS. The long flat minimum valley ends at both sides by dead

valleys, but the dissociation exit comes over a side valley, see Figure 7. The situation

is similar to the global minimum of the Müller-Brown surface.68,69

Shown in Figure 7 are also two (blue) singular NTs which cross two VRI points.

They are again the border lines for NTs with slip bond character. All the directions

between the two singular NTs are allowed for slip bonds, where the more central NTs,

which are like a steepest descent from TS, are of course the better ones. Such ‘good’

slip NTs do not have a turning point (TP) on their energy profile,7,14 however, a TP

does not disturb the slip character in the region between the VRI points, see an extreme

case in ref. 6 This remark contradicts the treatment by Barkan and Bruinsma14 where

the border for slip bonds is any f -switch point.

In Figure 7 a candidate for a catch bond NT is shown by the black, dashed NT. Its
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Figure 7: The 2D PES of Eq. (9) in the forceless limit, F=0, depicted by thin equipotential
lines. R is at -60 energy units, but the SP is at +60 energy units. The red curve is a typical
slip bond NT, but the two blue curves are singular NTs through the two VRI points. The
dashed curve is an NT divided into two branches which are of interest for a catch bond
behavior. The green curve is the Det(H) = 0 line of the PES.

direction is f=(0.55, 0.83). It is divided by the singular NTs into two branches. One

branch leads from R along the minimum valley in the upper parts of the Figure, but the

other part crosses the TS and connects the right ridge with the exit valley to the lower

right corner. These branches of this NT describe the movement of the two stationary

points, minimum and TS, on the corresponding effective PES if the external force F f

is applied. One branch describes the movement of the minimum, but the other branch

describes the movement of the TS. The external force now increases the difference of

the energy between minimum and SP1. The reaction rate will decrease. In this example

the effect is dramatic, see Figure 8 and Table 4 in the appendix.

10 20 30 40 50
F

200

400

600

800

Barrier

Figure 8: Increase of the barrier for the dashed NT of Figure 7 with increasing force, F .
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Although we have a dramatic increase of the barrier height of the example of Figures

7 and 8 we cannot say that it shows true realistic catch bond character, because it does

not turn back after a certain amount of force, F . The two branches of the dashed NT

never cross. They cannot allow the minimum and the TS to coalesce. Different cases

of the effective PES are shown in Figure 9.
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6 8 10 12 14 16 18 20
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Figure 9: Three cases of an effective PES to Eq.(9) with external force along Eq.(1). The
direction of the force is that to the dashed NT of Figure 7, and the amounts are F=10, 50,
100 force units. Note the movement of the shown sections along the x axis. The stationary
points move on the corresponding NT; the minima in the last two cases are far out off the
figure, see Table 4.

D) Curvilinear reaction valley with an emerging shoulder

We use a PES, Figure 10, along Eq.(10). Now we find a reactant, R, an SP, and a

product minimum, P. The key for our treatment is again the narrowness of the col. The

red curve is again an NT leading from the reactant, R, over the SP to the product, P. Its

direction is (0.151, 0.989). The blue NT is a singular NT through the VRI point, with

the direction (0.646, 0.711), and the black dashed NT is a putative catch bond NT.

The force for this NT is assumed in x-direction. The green curve is the line of points

with condition Det(H) = 0 for the Hessian matrix. It crosses the reaction valley from

the minimum to the TS three times. This property will lead to an interesting behavior

of the PES under external force in x-direction: in the long, gently rising valley of the

reactant, R, emerges under F = 6 units of force a further minimum. It replaces the
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Figure 10: PES to Eq.(10) with two minima and a TS in between. A disrupted black dashed
NT for the catch direction (1,0) is shown. Further NTs are with directions red (0.15, 0.99)
for a slip bond character, and blue (0.67, 0.74) for the singular NT. The TP of the singular
NT is the VRI point of the PES. It again divides the two branches of the dashed NT.

former shoulder, before the TS. So to say, a population of states of the former global

minimum splits into a bimodal population for some time, as it is reported in ref. 70

At the beginning of such a force we get a slip bond behavior between the reactant

and the TS. But at F=12 units the new minimum becomes the global one, and its

relation to the TS now turns to catch bond behavior. The corresponding stationary

points of the effective surfaces are given in Table 5.

In Figure 11 we report the barrier height between the two minima and the TS under

different forces, F. The dark yellow line concerns the original minimum, but the blue

curve of points shows the difference to the new one.

In Figure 12 we report the two effective PES under different forces, F. The emer-

gence of the new minimum is to detect.

An indicator for the catch bond character was that the corresponding curvatures

in NT direction are both positive, but the one at the TS should be larger than that

one of the minimum. Here we have the eigenvalues of the Hessian in the minimum by

(80, 402) and at the TS by (307, -157). In a contrary case the difference of both energies
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Figure 11: Two curves for the barrier height of the effective PES to Eq.(10) with an external
force along the x-direction. Dark yellow is the barrier to the original global minimum, the
blue curve depicts the barrier to the new minimum.

F=6

R
NewMin

SP

-2 -1 0 1
-2

-1

0

1

2

x

y

F=12

NewR

SP

-2 -1 0 1
-2

-1

0

1

2

x

y

Figure 12: Two cases of an effective PES to Eq.(10) with external force along Eq.(1) in
x-direction, the dashed NT of Figure 10, and the amounts are F=6, 12 units. The stationary
points move on the corresponding dashed NT.

will decrease and the catch bond character does not appear.

In all three cases B) to D) of different mathematical test PES we obtain a desirable

increase of the barrier under a corresponding external force. However, it happens along

disrupted NTs (the dashed ones) which go up to infinity on the simple PES, so that a

final decrease of the barrier can never take place. These NTs cannot be correct models

for the observed behavior in Mechano-Bio-Chemistry namely the final catch-to-slip be-

havior of the reported experiments.71

Summary of subsection 2.2

In this subsection we studied different models:

The cases A) of E-selectin in Figures 2 and 3, and L-selectin, Figures 4 and 5, allow
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a catch-slip bond property. The next cases B) to D) show the catch bond behavior,

however, they do not come back finally to the chemical slip behavior. So they can be

seen for abstract models where for real molecules the border properties have still to be

changed.

2.3 A pure one-dimensional path model

There is another one-dimensional path model to explain catch bonds.72 However, we

assume an inappropriate use of a rate formula. One uses a Kramers’ rate. This approach

does not apply to a disappearing barrier.73 The error also concerns the rate formula

Eq.(41) of ref.74 The inadequacy of the formula used was already reported in 2006,75

but it is currently in use again.76,77

From the beginning of the treatment of the catch bond problem a 2-pathway model

was proposed for it.54,67,78–85 We propose to accept such an explanation. The catch

bonding appears to be an important phenomenon which can occur when multiple valleys

are present. Slip bonds then work together collectively,62,86 see below the situation in

the tug-of-war mechanism where we use the case of two reaction valleys.

3 Tug-of-war mechanism with a catch bond

The jump from one given reaction valley to another one is a central task for the ap-

plication of external forces. There is a long list of experimental results concerning

this tug-of-war mechanism47,70,87–90 to name a few. It also concerns the stereo selec-

tivity of reactions.71,91 Further examples for the tug-of-war mechanism are unifying

mechanosensing and affinity discrimination. T cells employ multiple modes of mechan-

ical proofreading to stabilize receptor binding and achieve a specificity of discrimina-

tions. These include catch-bond behavior during activation92 and negative selection,93

or conformation changes of adhesion molecules.94 In contrast, B cells apply forces which

exhibit a slip-bond character.43 Catch bonds drive stator mechanosensitivity in the bac-

terial flagellar motor.95 For another molecular motor model a ‘tug-of-war’ solution was
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proposed in ref. 96 Molecular motor proteins use the energy released from ATP hydrol-

ysis to generate force and transport cargoes along cytoskeletal filaments. This suggests

that dynein’s interaction with micro tubules behaves like a catch bond.47 We note

that the expression ‘tug-of-war’ may be coming from the molecular motor problem for

dyneins.

If there are two competing TSs for two possible reactions from one reactant, then

a valley-ridge inflection point (VRI)6,7,16,18,19,22,97–100 is always in between, compare

deeper Figures 2 to 9 of ref. 7 The VRI point divides the two valleys of the PES.21,101–105

It is characterized by a special kind of an NT, the so-called singular NT which bifur-

cates at the VRI point. The bifurcation then has four branches. From minimum one

has a branch to the VRI point, from there two branches to the two next SP1, and

one branch usually goes further uphill to an SP2, an SP of index two. For the 2D toy

surface it is usually a maximum. Again families of regular NTs connect an SP1 with an

SP2, stationary points with an index difference of one. Seen from the minimum, a slip

direction for one of the both TSs of index one on the PES cannot be the slip direction

for the other one, because no two NTs of the two families can start from the minimum

with a same direction. To every family belongs a separate region of directions. In a

minimum of a 2D surface, all ’360o-directions’ are possible, however, the full range is

divided by special singular NTs through the corresponding VRI points.

E) A simple example

Figure 13 demonstrates the tug-of-war mechanism. The PES is described by Eq. (11)

in the appendix. It is similar to Figure 1 but here the y direction is replaced by a

Morse potential. The PES is a simple model because the directions to different SPs are

orthogonal from the beginning, like in ref. 90 Left below may be the reactant structure,

R. The second dissociation channel goes along the y axis. On the right hand side

emerges a ridge. The curvatures at the minimum, R, are represented by the eigenvalues

(6, 20) but they are (-6, 27) at the TS, thus they are again different, and across the TS
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Figure 13: PES similar to Figure 1 with NTs, dashed, red and blue as above. The difference
is a Morse potential along the y-axis.

the curvature is larger than across the minimum.

If one selects the direction (-0.24, 0.97) for an excitation, and one goes uphill from

y = 0, then the bold dashed NT again describes the pathway of the moving stationary

points, R, TS1, and new TS2, the Morse finale level at (0,∞). Coordinates, energies,

and barriers for different forces, F , are given in Table 6. This direction still will be

the catch direction for the former SP at (2, 0), however, it will be a slip direction for

the dissociation for the Morse direction along the y axis. Quickly, near force F=2,

the former Morse exit level becomes lower than the former TS on the x axis, thus the

y-dissociation becomes the reaction coordinate.

The red NT in Figure 13 along the x-axis describes the typical slip bond direction,

however, also the inverse direction of the bold dashed NT becomes a slip direction.

F) PES with 4 minima: Slip-Catch-Slip case

In early papers to selectin catch-slip kinetics106,107 a slip-catch-slip behavior has

been reported. It concerns the protein E-selectin. The corresponding proposed PES

of ref. 5 shows only one valley from bound state to dissociation, as in the example of
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Figure 2. The slip-catch-slip behavior on this PES may be caused by the Morse-TS

which is far away from the reactant, and the movement of this TS under force may

cause large changes in ∆x̃.
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Figure 14: Modified Wolfe-Quapp PES, see Eq. (12). Three NTs are given, see text. Two
maximums arise here, M1 and M2. Note that the curvatures in y-direction are different in
R and TS1 by a factor of ≈ 10.
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Figure 15: Effective barriers between R and TS1 and R and TS2 (right) for y-excitation
direction, on the PES with 4 minima of Figure 14. The two barriers swap their order. The
curves cross, and later TS2 disappears.

We propose an abstract 2D model PES to enforce slip-catch-slip behavior for smaller

changes of the coordinates. For a better understanding, we have first to notice that

the indicator of a strong curvature difference between reactant and catch bond TS is

not sufficient. To demonstrate this we have chosen a modified Wolfe-Quapp surface,
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see Figure 14. The formula Eq. (12) is given in the appendix. Between the former

maximum, M2, of the Wolfe-Quapp PES, and the TS1 an additional strong hill M1 is

included. A further TS5 emerges between the hills.

F=6
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Figure 16: Modified Wolfe-Quapp effective PES for F = 6. The dashed NT describes the
movement of the stationary points in direction f =(0.075, 0.997). The TS2 slowly disappears.

There are shown three NTs in Figure 14. The dashed one points in y-direction,

(0.075, 0.997), the black one in x-direction (1, 0), but the red NT betwixt and between,

in direction (0.74, 0.67). The red NT is used for comparison for certain skew NT

directions. It could provide a slip direction for both reaction paths starting in R.

As above, the green lines are the curves of BBPs. The solid black NT would depict

an excitation into -x-direction, where this actually the usual reaction valley is from

the reactant minimum, R over TS1 to P1. However, we will excite the system into

y-direction and thereby force the reaction via TS2.

The eigenvalues of the Hessian at stationary points of interest point along the axes

and they are at the reactant minimum, R, (12.99, 21.71) and at the TS1 they are

(−4.24, 218.02). So in the y-direction they are quite different, and the one at the TS is

much larger. The curvature is chosen larger by a factor of ≈ 10. Nevertheless, at the

beginning the excitation to the dashed direction works at the TS1 like a slip bond. The

barrier between R and TS1 decreases up to a force of F = 2, see Table 7 and the left
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panel of Figure 15. The reason is the action of the second part of Eq.(2). However, the

strong hill of the maximum, M1, enforces at least a catch bond character for the barrier

of TS1, for further growing F , see Table 7. Because with increasing F beginning from

F = 3 the barrier increases, compare Figure 15.

Later, for F = 7 the direction to TS2 opens for a main reaction, and the barrier

TS2 disappears. We still give the effective PES in the case F = 6 in Figure 16.

4 Discussion

There are some interesting conceptual models for catch bonds in Figure 2 of ref.2, see

also Figure 7 of108 and Figure 1 of ref. 9 We should note that the connection to our

abstract mathematical models of PESs is still open, in the general case. A next treat-

ment should try to find appropriate coordinates for the conceptual models of ref.2, as

it is done in a recent paper5 to L-selectin. However, this work5 has errors in its math-

ematical execution. It will be discussed in a following paper.

Another problem remains open, viz how our theoretical findings could be translated

into the practical mechanochemical process, for example by hydrodynamic forces,109 or

in a ball mill110,111? In which direction does a ball mill, or a grinding work? They are

an intrinsically isotropic technique.

The addition of further outer excitations becomes even more complicated: thermo-

mechanochemistry, sono-mechanochemistry, electro-mechanochemistry and photo-mecha-

nochemistry.112 A possible clue could be the principle of Le Chatelier: Any vibrational

excitation of the molecule by a random external force, like ball milling, may proba-

bly excite the energetically lowest normal modes first.113 One could therefore tend to

the result of ref. 114 that the reaction mechanism for the process under ball milling

conditions is the same as in solution.

In case of the PES of Figure 10 this could be the catch bond in the x-direction. In

case of the surface of Figure 13 this would be the usual reaction direction because the
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TS1 is lower than the TS2. Here we assume that a ball milling would not have an extra

effect.

5 Glossar: Mechano-Bio-Chem to NT theory

- “Slip bond” is a bond that shortens its lifetime in response to tensile force.108

– It is represented by a direct NT from the minimum to SP1 (without or sometimes

with a TP).

- “Catch bond” is a bond that prolongs its lifetime in response to tensile force.108

– It is often represented by a divided NT, whose division is conveyed by a VRI

point between the minimum well and the dissociation channel, for example. The

corresponding separatrix is a singular NT. The direction of the external force does

not point along the TS valley. The curvature at SP1 across the col direction is

often larger than the curvature at the minimum well in the same direction.

- “f -switch point” 14 should mark the beginning of catch bond behavior. We reject

its reasoning. We will discuss this in a next paper.

–One could test the special NT at the border where the lowest TP occurs first.

But nevertheless, this is often still a slip direction.

- “Ideal bond” 40 should depict the step from slip to catch direction. We question

its possibility – or at least its probability. There does not exist a known example.

- “n̂ -switch point” 14

– is the long known VRI point. The singular NT belonging to the VRI point

marks the border to possible catch bond behavior. For problems with more than

2 dimensions there are manifolds of VRI points.16,18,20,97,99

- “Crossing of an NT with Det(H) = 0”

– barrier breakdown point (BBP), thus the green lines in the Figures above are

the BBP curves. For problems with more than 2 dimensions there are manifolds

of BBP points.25,115
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- “Tug-of-war problem”

– two competing TSs with a VRI point in between. An external force can select

one reaction direction. Of course, a slip can occur in both reaction valleys, as well

as catch directions for an excitation with their corresponding NTs.

6 Conclusion

Applying the NT theory would make probably easier to understand the tug-of-war

problem. By jumping back and forth between slip and catch bond directions one could

change the corresponding reaction direction, especially when one works with a directed

force.88

We observe in this paper direct or delayed catch bond behavior where we only count

for the barrier height of the effective PES after an external excitation. In our opinion,

this indicator is the most important of the catch bond behavior. Note that we use for

the models simple 2-dimensional toy surfaces. They are good enough to represent some

interesting observations to catch bonds in the experiments of the last 35 years.

However, one should note that the model of Eq. (1) is only a linear approach for the

force, so it is the simplest possible model. In refs. 24,25 we start to treat a nonlinear

approach to an external force. And one should also note that the rules for catch bond

behavior, given here, are of empirical character. According to our assumption, it is

not enough to look on a PES. No, one needs a control calculation along the NT of the

direction of the external force. We are safe that the proposed f -switch points of Barkan

and Bruinsma5 are not the solution.

Of course, the definition of the difference is very important between slip and catch

regions for the influence of an external force. However, note that another central in-

tention for the slip-force is to find an optimal direction, to achieve a BBP with a least

amount of force. This is discussed in the articles.25,115,116
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7 Appendix: PES formulas and tables

A) We treat the PES of E-selectin.5 We use the constants kθ = 273 [pN nm], D0 =

207 [pN nm], d0 = 0.26 [nm], σ = 0.18π [radians], θ0 = 0.58π [radians], θ1 =

π [radians], c = 9.5 [pNnm], use an angle θ and set

θ(L) = 2 Arcsin(L/5.6) , Vθ =
1

2
kθ (θ − θ0)2 ,

B(d, θ) = D(θ) [(1− Exp(−d/d0))2 − 1] ,

with

D(θ) = D0 Exp(−(θ − θ1)2/(2σ2)) + c

and build the PES

Vf (L, d) = Vθ(θ(L)) +B(d, θ(L))− F (L+ d) . (6)

The last summand means force direction (1, 1) for the dashed NT. The normalization

by
√

2 is suppressed for simplicity; it should be observed for the amount F . F (1,1)

means the same like F
√

2 1√
2
(1, 1). The direction is changed for other NTs.

Table 1: Stationary points to PES Veff of V for E-selectin by Eq. (6), to NT to
direction 1√

2
(1, 1), energies in pN.

F
√

2 Min(L,d)[nm] VMin[pN] SP(L,d)[nm] VSP [pN] Barrier ∆x̃
0 (5.417, 0) -57.893 (4.425, 9.925) 0 57.893 0
10 (5.430, 0.002) -112.137 (4.566, 0.791) -55.256 56.881 -0.372
20 (5.441, 0.004) -166.525 (4.692, 0.656) -108.686 57.839 1.955
30 (5.450, 0.007) -221.037 (4.801, 0.695) -162.381 58.656 1.846
40 (5.458, 0.009) -275.658 (4.894, 0.561) -216.628 59.030 0.512
50 (5.466, 0.011) -330.379 (4.973, 0.539) -271.464 58.915 -1.765
60 (5.472, 0.013) -385.190 (5.040, 0.524) -326.849 58.341 -4.709
70 (5.478, 0.015) -440.084 (5.097, 0.512) -382.719 57.365

PES of L-selectin.5

We use the constants kθ = 266, D0 = 237, d0 = 0.29, σ = 0.12π, θ0 = 0.58π, θ1 =
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π, c = 0 and use the same formula like above for E-selectin

Vf (L, d) = Vθ(θ(L)) +B(d, θ(L))− F (L+ d) . (7)

Stationary points on the surface under external excitation in direction 1√
2
(1, 1) are

given in Table 2, together with the corresponding energies. (Compare Figure 2A of

ref.5 which we can confirm.)

Table 2: Stationary points to PES Veff of V for L-selectin by Eq. (7).

F
√

2 Min(L,d)[nm] VMin[pN] SP(L,d)[nm] VSP [pN] Barrier
0 (5.570, 0) -39.24 (5.151, 0) 10.96 50.194
10 (5.571, 0.002) -94.95 (5.113, 0.024) -40.47 54.480
20 (5.571, 0.004) -150.69 (5.078, 0.075) -91.87 58.823
30 (5.572, 0.006) -206.47 (5.093, 0.161) -143.84 62.629
40 (5.573, 0.009) -262.26 (5.147, 0.242) -197.06 65.207
50 (5.573, 0.011) -318.09 (5.205, 0.302) -251.55 66.535
60 (5.574, 0.013) -373.94 (5.225, 0.345) -307.11 66.836
70 (5.574, 0.015) -429.82 (5.298, 0.377) -363.50 66.324
80 (5.575, 0.018) -485.73 (5.334, 0.400) -420.55 65.178
90 (5.575, 0.020) -541.67 (5.364, 0.416) -478.13 63.537
100 (5.575, 0.023) -597.63 (5.390, 0.426) -536.12 61.513

B) The PES for the linear one-channel approach for a catch bond is

V (x, y) = −x3 + 3x2 + (1 + x2) y2 . (8)

It is an abstract model: its scaling is free, as well as the scaling of the next examples.

The minimum of this PES is at (0,0) and its SP at (2,0). The eigenvalues there are

(6,2) and (-6,10) thus the curvature across the reaction valley is stronger at the TS

than at the reactant. The stationary points on the surface under external excitation in

y direction are given in Table 3, together with the corresponding energies.
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Table 3: Stationary points to PES Veff of V by Eq. (8).

F Min (x,y) VMin SP (x,y) VSP Barrier
0 (0, 0) 0.0 (2, 0) 4.0 4.0
1 (0, 0.5) -0.25 (2.01, 0.1 ) 3.83 4.08
2 (0, 1.0) -1.0 (2.03, 0.2 ) 3.8 4.8
3 (0, 1.5) -2.25 (2.05, 0.29) 3.56 5.81
4 (0, 2.0) -4.0 (2.09, 0.37) 3.23 7.23

C) The PES for a curvilinear one-channel approach for a catch bond is

V (x,Q) = −45 (−0.25 +Q) + 3.75 (−0.25 +Q)3+

7 (−0.1 + 0.5Q− 0.6Q2 + x)2/(1− 0.13Q) (9)

It is used along a proposal of ref.4 The stationary points of the NT along the direction

(0.55, 0.83) on this surface are given in Table 4, together with the corresponding ener-

gies.

Table 4: Stationary points to PES Veff of V by Eq. (9).

F Min (x,Q) VMin SP (x,Q) VSP Barrier
0 ( 2.01, 2.25) -60.0 (2.81, -1.75) 60.0 120.0
10 ( 4.76, 311) -133.2 (3.15, -1.54) 54.91 188.1
20 ( 8.43, 4.02) -251.7 (3.63, -1.38) 42.94 294.6
30 (13.08, 4.96) -425.6 (4.18, -1.26) 23.72 449.4
40 (18.76, 5.92) -665.5 (4.77, -1.15) -2.93 662.6
50 (25.47, 6.90) -981.9 (5.39, -1.06) -37.09 944.8

D) Case of an emerging new minimum for the PES of Figure 13 under force. The

example is again a theoretical model. For the quite skew 2D PES with x = (x, y) we
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use a product of two quadratic forms similar to refs. 6,23

V (x, y) =(x− 1, y − 1)

 5 −0.5

−0.5 1


 x− 1

y − 1

×
(x+ 1, y + 1)

 2 0

0 10


 x+ 1

y + 1

 75x2 Exp(−10y2) .

(10)

The last expression in the definition is used to tighten the col through the TS, because

we need it for a putative catch bond. Table 5 reports the stationary points of the

PES.

Table 5: Stationary points to PES Veff of V by Eq.(10).

F Min (x,y) Min2 (x,y) SP (x,y) Barrier
0 (-1.00,-1) – (0.59, 0.04) 27.92
1 (-0.99,-1) – (0.59, 0.04) 26.34
2 (-0.97,-1) – (0.59, 0.04) 24.77
3 (-0.96,-1) – (0.59, 0.03) 23.21
4 (-0.95,-1) – (0.59, 0.03) 21.66
5 (-0.93,-1) (0.49,-0.81) (0.60, 0.03) 20.13
6 (-0.92,-1) (0.58,-0.73) (0.60, 0.03) 18.61
7 (-0.90,-1) (0.63,-0.69) (0.60, 0.03) 17.10
8 (-0.88,-1) (0.66,-0.69) (0.61, 0.02) 15.60
9 (-0.86,-1) (0.69,-0.66) (0.61, 0.02) 14.12
10 (-0.84,-1) (0.71,-0.64) (0.61, 0.02) 12.66
11 (-0.82,-1) (0.72,-0.64) (0.61, 0.02) 11.21
12 (-0.80,-1) (0.74,-0.63) (0.62, 0.02) 9.89
13 (-0.77,-1) (0.76,-0.63) (0.62, 0.01) 9.81
14 (-0.75,-1) (0.77,-0.63) (0.62, 0.01) 9.81
15 (-0.71,-1) (0.78,-0.62) (0.63, 0.01) 9.86
16 (-0.67,-1) (0.79,-0.62) (0.63, 0.01) 9.93
17 (-0.62,-1) (0.80,-0.62) (0.63, 0.01) 10.02
18 – (0.82,-0.62) (0.64, 0.01) 10.12
19 – (0.83,-0.61) (0.64, 0.0) 10.23
20 – (0.84,-0.61) (0.64, 0.0) 10.36
30 – (0.93,-0.61) (0.68,-0.01) 13.81
50 – (1.08,-0.62) (0.74,-0.02) 19.79

31



E) The example for a Tug-of-War mechanism

The theoretical formula of the PES of the example B) is changed by a Morse ascent

to positive y-direction, thus we assume in y-direction a bond length with a Morse

behavior. The former one-channel approach is turned into a two-channel one because

now at (0,∞) emerges a second TS.

V (x, y) = −x3 + 3x2 + 10(1 + Exp(−(x− 3)2)(1− Exp(−y))2 . (11)

The former minimum is again at (0,0) and its SP at (2,0). The eigenvalues are (6,20)

and (-6,27) thus the curvature across the reaction valley is still stronger at the TS

than at the reactant. The stationary points on the surface under external excitation in

direction (0.24, 0.97) along the fat dashed NT are given in Table 6, together with the

corresponding energies. Note that the left upper part of the table is similar to Table 3.

Table 6: Stationary points to PES Veff of V by Eq. (11).

F Min (x,y) SP (x,y) Barr P2 (x,y) Barr2
0 (0, 0) (2.0, 0) 4.0 (0, ∞) 10.0
1 (0, 0.05) (2.0, 0.038 ) 4.001 (0, 2.94) 6.03
2 (0, 0.11) (2.01, 0.082 ) 4.033 (0, 2.18) 3.62
3 (0, 0.20) (2.02, 0.132) 4.086 (0, 1.69) 1.85
4 (0, 0.32) (2.04, 0.190) 4.184 (0, 1.29) 0.62

F) The PES with four minima for a Tug-of-War mechanism

We use a modified Wolfe-Quapp surface117

V (x, y) = x4 + y4 − 2x2 − 4y2 + xy + 0.3x+ 0.1y+

100(y + 1.3)2 Exp(−3.5(y + 1.5)2 − 10(x+ 0.275)2) . (12)

The modification concerns the summand with the exponential term in the second line.

At the TS1 an additional strong hill is included which enforces a second maximum of

the PES model. For a 2D PES the maxima are saddles of index two which are common
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in theoretical chemistry.118,119 Stationary points, energies, and barriers are given in

Table 7.

Table 7: Stationary points to PES Veff of Eq. (12). With F = 3 the barrier
increases.

F Min (x,y) SP1 (x,y) Barrier
0 (1.23, -1.57) (-0.25, -1.50) 3.169
1 (1.22, -1.52) (-0.25, -1.49) 3.120
2 (1.22, -1.47) (-0.25, -1.49) 3.117
3 (1.22, -1.41) (-0.25, -1.48) 3.166
4 (1.21, -1.34) (-0.25, -1.48) 3.274
5 (1.20, -1.26) (-0.25, -1.47) 3.452
6 (1.19, -1.15) (-0.25, -1.47) 3.718
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NT Newton trajectory

PES Potential energy surface

SP,TS Saddle point, transition state

TP Turning point

VRI Valley ridge inflection point
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