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Abstract: We discuss the twist map, with a special interest in its use for the finite Frenkel–Kontorova
model. We explain the meaning of the tensile force in some proposed models. We demonstrate that
the application of the twist map for the finite FK model is not correct, because the procedure ignores
the necessary boundary conditions.
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1. Introduction

The Frenkel–Kontorova model (FK) was proposed in 1938 to discuss dislocations
in a chain of particles [1]. In the last century, many aspects of solid-state physics have
been discussed using the FK model as an example. One divides a set of particles into a
one-dimensional subsystem of interacting elements and a remainder as a substrate. The
latter acts on the extracted subsystem by a potential. Of special interest may be electronic
applications [2–7] for Wigner electrons or Josephson junctions. Further models are charge-
density wave conductors [8–10], charge transport in solids and on crystal surfaces [11],
magnetic or ferro- and antiferromagnetic domain walls [12], magnetic superlattices [13],
superconductivity [14,15], and vortex matter [16–18], to name a few.

The FK model for a chain of N particles (called atoms) at positions ui on an axis has
the energy [1,19]

U(u) =
N

∑
i=1

λ V(ui) +
N−1

∑
i=1

k
2
(ui+1 − ui − ao)

2 . (1)

The substrate potential function is the usual one

V(ui) = 1− cos
(2 π

as
ui

)
.

The parameter as is the period of this potential, and λ is its amplitude. The second term
is the spring term for the nearest neighbor forces between the atoms. Parameter k is its
amount. The equilibrium distance, ao, of the chain would hold without the potential V,
thus for λ = 0. Usually, the two periods ao and as are different [20].

Sometimes the equilibrium distance, ao, of the chain is missing [21–23]. At first, one
has to assume that ao = 0 is used. One treats the FK model as a different one with the pure
harmonic potential of the spring forces between the nearest neighbors but often with an
additional linear tensile force of amount µ

N−1

∑
i=1

[
k
2
(ui+1 − ui)

2 − µ (ui+1 − ui)

]
. (2)
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Note that the alternating tensile force of form (2) reduces to two summands

−µ (uN − u1) .

If µ = 0, then putting all ui = 0 (or putting all ui = n as with an integer n) gives zero
energy [24–26]. This is the global minimum, but it is a trivial one. If one starts with any
finite chain with no zero distances between the atoms, and if one uses the values of the
parameters of ref. [21] for λ ≤ k, and µ = 0, then a minimization would return this trivial
result.

In Appendix A, we remark that for λ� k, further stationary states can exist for ao = 0
and for µ = 0. However, these states are not global minima.

The paper mainly discusses the application of the twist map on a finite FK chain. In
Section 2, we recall the formulas for an equilibrium structure, and we argue against using
these formulas to apply the twist map. In Section 3, we explain the meaning of the tensile
force. In Sections 4 and 5, we discuss the boundary conditions of a finite FK chain and
explain with examples the incorrect results of the twist map. Further small points are
the energy of the FK chain and the putative problem of the irrational relations of the two
periodicities of the FK model. Some aspects of our treatments include connections to an
infinite FK chain [21].

2. Equations for Stationary States

At first, it seems that the gap of form (2) does not matter, because for the minimum
search for the inner atoms, ui, holds an equation, where the ao disappears

∂U(u)
∂ui

=
2πλ

as
sin

(2 πui
as

)
+ k[2 ui − ui+1 − ui−1] = 0, i = 2, .., N − 1. (3)

Note that the linear tensile force with amount µ also disappears [27]. However, the ao as
well as the µ do not disappear at all; they emerge in the two boundary equations for the
first and the last atom of the chain, u1 and uN [19,28]

∂U(u)
∂u1

=
2πλ

as
sin

(2 πu1

as

)
− k[u2 − u1 − ao] + µ = 0 (4)

and
∂U(u)

∂uN
=

2πλ

as
sin

(2 πuN
as

)
+ k[uN − uN−1 − ao]− µ = 0 . (5)

Equations (3)–(5), for all atoms i = 1, . . . N, form a system of coupled equations,
where we have to include the boundary conditions Equations (4) and (5). To select a single
’solution’ of one or a small number of them will usually not give a correct stationary state
of the FK chain.

In contrast to this simple remark, many researchers propose to use the ’twist map’,
which successively calculates one ui+1 if the former ui and ui−1 are known—an assumption
that we cannot make. If one does not know the solution, one also does not know the
location of the two special atoms at the start of the map [19]. In real calculations, the twist
map is started at an arbitrary pair of two points in a finite region [21]. Of course, to start the
twist map at arbitrary point pairs (see the Mi in Figure 1 of ref. [21]) provides nice pictures,
including the excursion to chaos. We claim that many calculations of twist maps do not use
the correct initial values; for example, see Example 1 and Section 6 below.

Example 1. A simple example is a chain with N = 3 atoms, with the parameters as = 2 π, k = 2.5,
λ = 1, and ao = 2as/3. The equilibrium structures of a minimum are obtained by the NMinimize
procedure of Mathematica 13.0, starting with a chain with ui = ao (i− 1) for i = 1, .., 3, as shown
on the left of Figure 1.
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Figure 1. (Left): Minimum solution for an FK chain with N = 3 atoms. (Right): With an arbitrary
start of u1 = 0, we obtain u2 = a0 = 2as/3, and we obtain with Equation (3) the shown point u3.
However, the structure is not a minimum, see text. Note that the atoms are shifted on the site-up
potential to help the imagination.

Using the twist map of Equations (4) and (3) starting at an arbitrary point, for example,
with u1 = 0, we obtain with Equation (4) u2 = a0 = 2as/3, and we obtain with Equation (3)
the structure on the right hand side of Figure 1. It does not look like a minimum. The left
minimum has an energy of 2.756 units, but this special twist map ‘solution’ has an energy
of 2.826 units. Its gradient (0, 0, 0.118)T is not a zero vector.

The reason for the deviation of the gradient from zero is that the third Equation (5) for
i = N = 3 is not fulfilled for the obtained u3. Only when one begins with u1 of a stationary
structure is the third equation fulfilled. Further arguments to understand the result are
given in ref. [19]. We conclude with the following theorem.

Theorem 1. Using the twist map at an arbitrary start point is useless. In the general case, it will
not provide a stationary structure of the FK chain. The reason is that Equation (5) is not fulfilled, in
the general case. This is not restricted to the N = 3 chain.

The twist map fulfills the demand of equilibrium only from step to step. Only when
the start pair belongs to the correct minimum do the results (under numerical problems, see
below) build a correct minimum structure. In the system, one can fulfill some equations—
with false values, which vice versa compensate—however, one cannot assume that the
other equations obtain the correct solution.

3. A Remark on the Length of the Chain

We treat the energy of the chain structure (1). When the spring distance of the chain,
ao, and the period of the site-up potential, as, are equal, and if µ = 0, or if a0 = 0 and
µ/k = as, or if a0 + µ/k = as, then an equilibrium chain exists in its ground state with all
particles at the bottom of the site-up potential, with energy zero for every particle, and thus
with zero energy for the chain in its ground state. (This case was originally treated [1] for
an infinite chain.)

In any other case, an infinite chain needs an infinite energy in the sum, which is
impossible. Strangely, the authors of ref. [29] stated that ”. . . one does not hope that the
sum of the energies converges.” Nevertheless, they worked with the divergent sum.
Tong et al. [30] treated a finite segment of the infinite incommensurate FK chain without
the boundary conditions. Without further explanation, the problem was circumscribed by
the word ’formal sum’ [31,32].

A way out, avoiding the infinite energy of an infinite chain, was proposed [33] by
dividing the energy of the chain by N, the number of atoms. So, one has a finite energy per
atom [34,35], and one can apply the optimization per atom at ui, discussed in Section 2 [36].

4. The Meaning of the Tensile Force

If λ = 0, we see with Equations (4) and (5) that the equilibrium separation of the chain
becomes

a0 + µ/k . (6)
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In addition, if one uses the ansatz of form (2) with a0 = 0, then the value of the tensile
force divided by the value of the spring force, µ/k, becomes the placeholder of the a0 in the
original FK model. One can put [37,38]

lo = µ/k → new ao .

The meaning of the tensile force in (2) is to include an equilibrium separation of the chain,
lo for a0. One can ask why one needs the tensile force.

On the other hand, one can ask for the action of the tensile force, if its amount µ
increases. It has the form

−µ fT u

with the special form of the force vector

fT = (−1, 0, . . . , 0, 1) .

At µ = 0, we may be in an original minimum (with a0 = 0 or not). Increasing the amount
of µ, we can optimize another minimum. The curve, which describes the consecutive series
of minima, is a Newton trajectory; it was named the curve of the force-displaced stationary
points [19,39–44]. Newton trajectories connect stationary points of an index difference of
one [45] on the original potential energy surface. It is a quite interesting property that the
special form of the f vector acts as a change in the orginal distance, a0, of the atoms of the
FK chain, see value (6), and not only as the tilding of the potential of the first and the last
atom of the chain. The FK chain is similar to an accordion. If one pulls the ends, all of
the bellows relax. Newton trajectories with force f can be used to calculate many kinds of
solitones of the FK chain and, thus, intermediate minima of the potential energy surface
and saddle points with an increasing index [3,6,19,46–48].

5. The Meaning of the Free Boundary Conditions

Now, we discuss the boundary conditions (BCs). If one has free BCs, then we cannot
start with an arbitrary ‘left’ BC, because the minimization will probably result in different
BC in the end. So, the steps of an arbitrary twist map start in a nebula. The developments
by some researchers [21,49–51] (to name a few), which use the twist map, ignore that the
chain will find another minimum structure at the boundary, in comparison to an arbitrary
twist map result [19].

Of course, if one starts the twist map with the correct u1, u2 of a minimum structure
or of another stationary state of the FK chain, then one can regain this stationary structure
with the result of the twist map, at least for the first section of the structure; see the example
below. However, we do not know where the stationary structure of an FK chain begins if
the BCs are free.

Example 2. The example is again the chain with parameters as = 2π, k = 2.5, λ = 1, and
ao = 2as/3, for N = 3, 4, 8–10, 20, 47, 74, 99, 500, 1000, and N = 5000 atoms. The equilibrium
structures, probably minima, are obtained by the NMinimize procedure of Mathematica 13.0 starting
with a chain with ui = ao (i− 1) for i = 1, . . . , N. The first atom of the chain at u1 changes its
place with N, as well as the average distance

ã =
uN − u1

N − 1
, (7)

see Table 1. The numbers in Table 1 are rational numbers, because they are the result of a computer
calculation. We do not know whether the character of the limit for N to ∞ is rational or irrational.
The two values possibly converge for large N against defined values around u1 = 0.369 and ao.
However, we do not know the exact limit of ã.
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Table 1. Position of the first atom of a minimum of an FK chain and its average distance.

N u1 ã/2 π N u1 ã/2 π

3 −0.769 0.6224 47 0.390 0.6700
4 0.117 0.6542 74 0.370 0.6688
8 0.751 0.6801 99 0.358 0.6621
9 −0.341 0.6386 500 0.368 0.6670

10 0.239 0.6582 1000 0.369 0.6665
20 0.632 0.6736 5000 0.369 0.6667

We show in Figure 2 a minimum of an FK chain with N = 500 atoms. The central
region represents the winding number, the ratio 2/3 of ao/as; however, the two boundary
regions show the large influence of the free BCs. A swing in at the left boundary needs
≈50 atoms, and an analogous transient process needs ≈50 atoms at the right boundary.
One could imagine that an infinite chain with the 2/3 ratio could be represented by the
central piece of Figure 2. However, a cut anywhere relaxes the strain at the border [20], and
the shown boundary pattern will emerge again. It also holds for N = 1000 and N = 5000,
where we obtain similar pictures.

The structures of the FK chain at the reported minima are mirror symmetrical up to
a length of N = 46; see the left panel of Figure 1. Beginning with N = 47, the symmetry is
broken, and the different form at the two boundaries emerges, as in Figure 2.

0 50 100 150 200 250
u . . . 1500 1520 1540 1560 1580 1600

u . . . 1850 1900 1950 2000 2050
u

Figure 2. Minimum solution for a fixed ao, see text. FK chain with N = 500 atoms, with the first
66 atoms on the left and the last 66 atoms on the right. The center is an enlarged piece with the regular
pattern representing the rational relation to as sorting three atoms in two wells.

In Figure 3, we show the corresponding twist map representation of the first 66 atoms
for N = 500. There, we used the map Φi = ui(mod as) for the minimization result.
Consecutive pairs of atoms are shown, (Φi, Φi+1), (Φi+1, Φi+2), (Φi+2, Φi+3), . . . and so
on. The dashed triangle is the start set of points, and the red triangle shows the periodic
stable cycle of the central region of the FK chain. The swing in at the left boundary of the
chain is the path from the dashed to the red triangle. Note that the points of the inner cycle
form a kind of a unit cell defined by the used winding number, 2/3, but they are not free of
tension. This is demonstrated by the relaxation at the boundaries.

1 2 3 4
ϕi

1

2

3

4

ϕi

Figure 3. Twist map representation of the first 66 atoms of a long chain. The dashed line is the start
triangle of points, and the red line is the quasi-stable cycle of three atoms in one cell of two troughs,
as in the central region of Figure 2. (The calculation was a minimization.)

6. The Twist Map for a Finite FK Chain

In the right side of Figure 4, we depict the result of the twist map used with the two
correct initial points, u1 = 0.369 and u2 = 4.701, of the optimized structure. The calculation
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was performed with Mathematica 13.0 with the usual accuracy. The result fits the true
structure up to N ≈ 300 atoms. Then, the twist map ’breaks out’, and at N = 353 the former
right BC appears. Its way out emerges by numerical effects, which can accumulate over the
consecutive iterations.

0 500 1000 1500 2000
u

0 500 1000 1500 2000
u

Figure 4. (Left): FK chain, optimized minimum with N = 500 atoms. (Right): The result of the twist
map with the two points of the minimum, u1 and u2, at the start. It repeats the left BC; however, it
‘finishes’ at N = 353 with a right BC; then, the calculation is reflected.

The twist map must include the handling of the tension of the central quasi-unit cells.
The N = 4 minimum shown on the left of Figure 5, with a u1 value of 0.117, is two times
’shorter’ than the putative unit cell of 4π/3, see Table 1. The distances of the minimized
structure also change from atom to atom in the central part. It only looks like a unit cell. In
reality, a unit cell does not exist.

The result for an infinite chain [21] does not hold here, where one has a unit cell if
ao/as is a rational number. There is no period of the kind

ui+3 = ui + 2 as , but it holds ui+3 = ui + 2 as + εi

with variable values of εi. The smallest εi we find at the central region of the chain with
ε244 ≈ 2× 10−11.

The fact that even the twist map calculation by Equation (3) finds (though at a false
place) a correct upper boundary structure, as the direct optimization does, is very interest-
ing. One has to consider that the quasi-perfect cyclic behavior in the central region is not
the behavior of a limit cycle, in contrast to the propositions of ref. [36].

0 5 10
u
0 100 200 300 400 500

u

Figure 5. (Left): FK chain minimum for N = 4 atoms; it is not the unit cell of Figure 2, center;
however, it is shorter, see Table 1. (Right) The result of a twist map calculation with the two points,
u1 = 0 and u2 = 2as/3, of a putative unit cell at the start. It does not result in the quasi-unit cells of
Figure 2.

Next, we show a twist map calculation in the right panel of Figure 5 and in Figure 6.
The start is the putative unit cell with u1 = 0 and u2 = 4 π/3. However, the twist map does
not find the structure of consecutive unit cells. It finds that the 3-cycle of Figures 2 and 3
rotates and does not form a correct stable cycle, at least not for three atoms. See the twist
map representation in Figure 6.
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1 2 3 4 5 6
ϕi

1

2

3

4

5

6

ϕi

Figure 6. Twist map representation of a twist map calculation with u1 = 0 and u2 = 4π/3. The
dashed line represents the start sequence of points.

7. The Disappearence of Incommensurabilities

For a given length of a finite FK chain with N atoms for λ = 0,

Lo = (N − 1) ao,

one can determine an integer M such that the chain of length Lo covers up M troughs of the
site potential. If λ is set correctly, the FK chain will fit into the M troughs forming a structure
of a minimum with an average separation ã, with Equation (7). It holds independently of
whether the numbers, Lo, ao, ã, and as, are rational or irrational. One can cite ref. [52] “. . . a
finite chain on a periodic substrate will always be locked because of its free ends.” The
relation of N to M is in every case a commensurable ratio between two integers [53]; see
Example 3.

Example 3. We treat an example of a chain with a putative ’irrational’ winding number [54] of
ao = 0.873as and the other parameters as = 2π, k = 2.5, and λ = 1, for N = 500. The equilibrium
structure, probably a minimum, is obtained by the NMinimize procedure of Mathematica starting
with a chain with ui = ao (i − 1) for i = 1, . . . , N. Figure 7 shows the structure and the
corresponding twist map representation.

0 500 1000 1500 2000 2500
u

1 2 3 4 5 6
ϕi

1

2

3

4

5

6

ϕi

Figure 7. (Left): Optimized FK chain minimum for N = 500 atoms with winding number 0.873.
(Right): Twist map representation of the result. The dashed line is the start sequence of nine points
plus the first step of the next cycle. It is a quasi-cyclic result.

The structure seems not to be very erratic. The twist map shows a quasi-cycle of
nine points. However, the winding number 0.873 is not fully irrational.

8. Remark on the Aubry Transformation of a Finite Chain

There should be a value λC, where a qualitative change in the behavior of the infinite
FK chain occurs [21,55,56]. For a finite chain, there is no such value. If λ > 0, and k > 0,
then the action of the site-up potential will fix the chain in a minimum, if we start a
minimization for the ‘relaxed’ chain with distances a0; see Section 7.

The putative Aubry-phase transition demonstrated by Figure 6 in ref. [54] is an incor-
rect interpretation. The first eigenvalue of the second derivatives of the potential of the
chain is the frequency for a collective movement of the chain. For an unpinned chain, it
has to be zero; thus, the potential has to be flat. However, in the example used in [54], the
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first eigenvalue is greater than zero. Thus, the potential is a minimum in both treated cases,
λ > λC and λ < λC, and the chain is pinned. Of course, the pinning is small if the λ is
small. The chain can collectively vibrate; however, it cannot move.

For the interpretation of the experiment [57] with N = 1–5 atoms, we assume that the
reported effect is for other reasons.

9. Discussion

We understand the long history of the twist map in the following way:
For a finite FK chain, the parameter a0 is given; however, the localization of the

minimum is unknown. We do not know the values of u1, uN , and ã. Thus, we cannot start
the twist map.

To salvage this nevertheless, one assumes a limit l of the average separation and starts
with this l anywhere with assumed points u1 and u2 for the initial values. One postulates
that every arbitrary pair of the start values is possible.

It is clear that the result is not helpful for an original finite FK chain, see Figure 1.
We note that many researchers have treated finite chains [9,33,35,54,57–65] (to name a

few); however, they use a useless contrast of rational with irrational numbers in the finite
FK model.

In a positive contrast, the treatment in [66] sorts the FK chain in a ’commensurable’
way into the site-up potential.

10. Conclusions

We are surprised by researchers’ attention to the twist map in the field of the FK model.
For a finite FK chain, the twist map theory can only be a supplement; otherwise, important
physics conclusions of the model are lost.
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Abbreviations
The following abbreviations are used in this manuscript:

BC Boundary condition
FK Frenkel–Kontorova

Appendix A

For k = 0 and µ = 0, the FK model shortens to the pure site-up potential without
spring forces. Any arbitrary distribution of the atoms at the bottom of the siteup potential
is possible.

For λ� λc > k > 0 in the FK model, further minimum structures are possible under
a0 = 0, aside from the zero solution discussed in Section 1. λc depicts a critical value. Note
that every small k > 0 prevents the length of the FK chain from becoming too large.

In Figure A1, we depict a case for N = 8, λ = 10, k = 1, and µ = 0. The structure has
two ‘slightly stretched’ springs, three ’stretched’ springs, and two ’overstretched’ springs,
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which are possible because of the much smaller k parameter. Note that most of the atoms
are not at the minima of the site-up potential, as claimed for large λ [34].

0 10 20 30 40
u

Figure A1. A nonzero FK minimum to potential (2).
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63. Wang, C.L.; Tekić, J.; Duan, W.S.; Shao, Z.G.; Yang, L.P. Existence and stability of the resonant phenomena in the dc- and ac-driven

overdamped Frenkel-Kontorova model with the incommensurate structure. Phys. Rev. E 2011, 84, 046603. [CrossRef] [PubMed]
64. Zhirov, O.V.; Lages, J.; Shepelyansky, D.L. Thermoelectricity of cold ions in optical lattices. Eur. Phys. J. D 2019, 73, 149. [CrossRef]
65. Zhirov, O.V.; Lages, J.; Shepelyansky, D.L. Thermoelectricity Modeling with Cold Dipole Atoms in Aubry Phase of Optical Lattice.

Appl. Sci. 2020, 10, 2090. [CrossRef]
66. Thomas, A.; Leoni, T.; Siri, O.; Becker, C.; Unzog, M.; Kern, C.; Puschnig, P.; Zeppenfeld, P. A one-dimensional high-order

commensurate phase of tilted molecules. Phys. Chem. Chem. Phys. 2022, 24, 9118. [CrossRef] [PubMed]

http://dx.doi.org/10.1023/A:1018807217179
http://dx.doi.org/10.1016/0378-4371(95)00411-4
http://dx.doi.org/10.1098/rsta.2016.0160
http://www.ncbi.nlm.nih.gov/pubmed/28373383
http://dx.doi.org/10.1103/PhysRevE.84.046603
http://www.ncbi.nlm.nih.gov/pubmed/22181292
http://dx.doi.org/10.1140/epjd/e2019-100048-1
http://dx.doi.org/10.3390/app10062090
http://dx.doi.org/10.1039/D2CP00437B
http://www.ncbi.nlm.nih.gov/pubmed/35383807

	Introduction
	Equations for Stationary States
	A Remark on the Length of the Chain
	The Meaning of the Tensile Force
	The Meaning of the Free Boundary Conditions
	The Twist Map for a Finite FK Chain
	The Disappearence of Incommensurabilities
	Remark on the Aubry Transformation of a Finite Chain
	Discussion
	Conclusions
	Appendix A
	References

