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We propose a new but simpler explanation of the phases of a Frenkel-Kontorova chain of atoms, and we
demonstrate it by examples. Combined with this, we present a criticism of the theory of so-called com-
mensurate and incommensurate states, especially for finite chains. We reject the putative observation of an
Aubry-phase transition in a finite chain.
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I. INTRODUCTION

This letter is devoted to the aim of understanding
what happens inside the finite Frenkel-Kontorova (FK)
chain1–3, if the two characteristic ratios a/b and Vo/k
change. We select ref. 4 to discuss some general problems
of the understanding of the FK model, with the special
example of this paper. For shortness we only treat the
springlike potential of ref. 4.

The corresponding model of the potential energy of a
linear FK chain x = (x1, ..., xN ) with xi < xi+1 for all
atoms, and with atoms of equal mass at points xi is 4

U(x) = Vo

N∑
i=1

(1− cos(2π

b
xi)) +

k

2

N−1∑
i=1

Vint(xi+1 − xi) .

(1)
Vo describes the strongness of the substrate but k de-
scribes the strongness of the springlike forces between
neighboring atoms. Used are Vo = 0.02, k/kB = 783.6
(without units4). Parameter b is the periodicity of the
substrate. It is used with a variable length around the
spring distance of the Vint potential, a = 2.4. This inter-
atomic springlike potential function is

Vint(r) =
−1

1 + co(r − ro)2
+

1

k
Exp(−c2(r − r′o)) . (2)

The following parameters of the function are used4

co=12.9, ro=2.4, c2=263.0, r′o=1.8.
The graph of function (2) is shown in Fig.1. The min-

imum is found to be at a = rmin = 2.4 units, in contrast
to ref. 4 with 2.44 units. We used the Mathematica pro-
gram, version 13.0, for the calculations, as well as for the
Figures.

The springlike potential is of special interest because
it is unsymmetrical for stretching against compression.
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FIG. 1. The springlike potential function of Eq.(2).

However for the calculation of minima this fact alone
does not play a role. The boundary conditions for x1
and xN are free. Parameter a = rmin is the distance of
two atoms if the parameter Vo is zero. It is hold fixed
throughout the letter. However, in the chain with the
substrate potential, Vo 6= 0, usually the average distance,
ã, changes to

ã =
xN − x1
N − 1

, (3)

because the chain will find a minimum form in the
substrate5, compare Fig.2. We have to emphasize that ã
is the average distance in a minimum structure.

In our calculations on the relation of the influence of
the two parts of Eq.(1) we only change the parameters
b, Vo of the substrate potential. The spring potential and
k are fixed.

II. COMMENSURATE MINIMA

Our remark concerns the discussion of commensurate
or incommensurate states of the chain. Note that this
letter is similar to another one6. Thus, the problem may
be widespread distributed in the FK community.
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FIG. 2. Ground state of FK chains of different b values. Only
the substrate potential is shown, however, the fixed springlike
force is not shown. To lead the eye, we moved the atoms up to
the potential line. Note the different length of the substrate
throughs. In (c) and in (e) new kinks emerge. The outer
atoms show impressively the effect of the free boundaries.

We start with the chain at the potential energy (1).
We determine the minimizer of the chain in the combined
two potentials (1), by the substrate and by the springlike
forces. The definition of a ’commensurate’ chain in ref. 4
is useless, because it is empty if Q > N

xQ+i = xi +Rb (4)

for integers Q, R. Then xQ+i would be outside the chain.
For example it is the case for N = 50 and R/Q = 52/51.
Note that cases Q > N will come far before an irrational
relation of ã/b. Of course, for nearly all cases with a 6= b
we will find some atoms at xi outside the bottom of their
corresponding through.

We have recalculated a part of a similar curve like in
Fig.4, part (a-3)4. A result is shown in our Fig. 2 by
some special chains belonging to the case V0 = 0.9 k.
Calculations are executed for steps b = a−s∗0.05 for the

step numbers s = 0, .., 10 in the [a− 0.5, a] interval for b.
The springlike potential with parameter a is not changed.
In every case, we ’sort’ the constantly equal chain into
different substrate throughs. And there it changes, see
Fig. 2.

To see what happens in the FK chain, we only used
N = 8 atoms (and not 50 like it is done in ref. 4). We
always start the minimization of the chain with x1 = 0
and xi = a (i − 1) for i = 2, ..., N . We get steps like in
Fig.4 of ref. 4. Of course, only rational numbers are used
for the steps. The step near the line 1 is not constant; it
slowly increases to the right hand side.

We conclude that the statement that there are “small
intervals of zero slope”4,7 is not correct. The increase
comes from a small ascent of the ≈ N/2 left atoms to
the left walls of their corresponding substrate potential
throughs, and of the ≈ N/2 right atoms to the right walls
of their corresponding substrate throughs, what increases
ã. This implies that this fact does not have relations with
commensurate, or incommensurate numbers.

We explain the steps in Fig.2. It is ã = 2.39, 2.36, 2.25,
2.38, and 2.38 correspondingly, and ã/b is then 1.02, 1.07,
1.13, 1.22 and 1.25. Thus we really get consecutive states
on the staircase like in Fig.4 of ref. 4.

The step from part (a) to (b) for a shorter b, thus a
larger a/b, shows a climbing up of the outer atoms to
their left walls (the N/2 left ones) or to the right hand
side walls (the right N/2 atoms) .

Between (b) and (c) happens a ’phase’ jump, see be-
low a definition of a phase. Now the chain occupies one
through more of the substrate, not N = 8 however 9
waves. This is possible because the central through, say
with number 5, is now empty. The chain has a kink.
Note that all structures in Fig.2 are minima.

Part (d) is again a stretching of the chain, but a/b
correctly increases.

A next ’phase’ jump happens between (d) and (e).
Again a new kink emerges. Now two kinks concern the
throughs 3 and 8 of the substrate, which are bridged by
the kinks.

The key is that one or two atoms, x5 in (c), or x3 and x8
in part (e), jump at the end of the increasing movement
over a peak of the site-up potential. Note that the new
kinks are not restricted to the center of the chain, as it
has been claimed in a former work8. The pattern of new
kinks repeats for higher values of a/b again and again at
every step. So the jumps emerge in Fig.4 of ref. 4. Thus,
the given jumps are correct.

The pure minima of the FK-chain with N = 8 atoms
disclose 3 ’phases’ in the region 1 ≤ a/b ≤ 1.265. The
minimization of Mathematica leads to the same phase for
certain intervals of a/b. The character of the used num-
ber b rational or irrational, is irrelevant. What counts
is the length of the chain, given by the a, and the (in-
teger) number of throughs of the substrate, which the
chain occupies. Any distinction into commensurate or
incommensurate is nonsense here.

From Cantor’s proof that the real numbers are un-
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countable but the rational numbers are countable, it fol-
lows that almost all real numbers are irrational. But the
rational numbers are dense as well as the irrational ones.
There is no gap in both kinds of numbers which indicates
the steps in Fig.4 of ref.4

The statement of ref. 4 that ”the ratio a/b is highly
irrational and quite far from a rational value” is not cor-
rect. There is no smallest distance from every irrational
number to any ”neighboring” rational one. If z is irra-
tional, and if such a distance existed then we coud take
the ”left” rational number z1 and the ”right” rational
number z2 and build the rational number (z1 + z2)/2
which is nearer to the initial z number.

We conclude that relating the transition of different
phases of the FK-chain with the transition from a ratio-
nal to an irrational ratio of ã/b is mathematically and
also physically not correct. And we wonder how the au-
thors of ref. 4 have decided the different kind of results in
their Fig.4 to be ’rational’ or ’irrational’ steps? We have
to assume that they used a computer for their calcula-
tion. Every numerical calculation on a computer goes on
with a (restricted) range of rational numbers. Irrational
numbers are not representable. We cannot imagine how
they use an irrational b, and we cannot imagine how they
know that the result ã is ’irrational’.

The adsorption of the chain by the substrate acts in
the way that for every ratio a/b a rational ã emerges
(to every given exactness of the solution) for a minimum
structure, if N is finite. The latter was our assumption
because in physics only finite chains exist. Every limit
N →∞ is a mathematical abstraction. Nowhere in ref. 4
we could find a treatment of such a limit process.

Thus one can assume that to every constellation of the
parameters a/b, Vo/k, and N , exits at least one mini-
mizer, a structure of the FK chain in a minimum of the
combined potential (1). We now explicitely define differ-
ent ’phases’ of the chain.

III. DEFINITION OF A PHASE

If an equilibrium structure of the FK chain occupies
L throughs of the substrate then it belongs to phase L.
There is a certain set of parameters for different ratios of
a/b, Vo/k, and N , which lead the the same phase.
A single phase transition is correspondingly a change
of an equilibrium structure of the FK-chain to L + 1
or L − 1 throughs. (We have outlined above that the
“commensurate-definition” by Eq. (4) may be empty.)
For a phase transition the whole chain contracts, or ex-
pands, so that one or more atoms of the chain climb
over their current peaks of the substrate potential. As
a result, the chain uses less, or more throughs. This is
connected by a jump in the average ã, see Fig. 2. The
question circles around the count of integers.

Besides the ratio of a/b the balance of k and Vo
also plays a role. In all cases, the chains like in Fig. 2
are regular structures, no kind of incommensurability

emerges at any a/b as it is claimed in ref. 4.

We still treat the case N →∞. In ref. 4 is treated the
finite case only, for N = 50. We find that the larger N
is, the ’earlier’ a small change in parameter b leads to a
change of the number of occupied throughs. Because the
unperturbed chain ends at xN = (N − 1) a. If then b is
so much smaller that holds

N b < (N − 1) a

then the minimization leads to a kink. It means a step
in the ’staircase’. However, in the condition

a >
N

N − 1
b (5)

the factor at b converges to 1 in N for every finite Vo
and k. However, for larger and larger N , thus the limit
treatment, formula (5) leads to the decrease of the step
length of the staircase of Fig. 4 in ref. 4 to zero. The
staircase of Fig. 4 in ref. 4 degrades to a straight line.
Any kind of “devils staircase”4,7 disappears in the limit.

IV. PHASE CHANGES

A next section concerns the putative Aubry-phase
transition demonstrated by Fig. 6 in ref.4 The first eigen-
value of the second derivatives of the potential of the
chain is the frequency for a collective movement of the
chain. For an unpinned chain it has to be zero, thus the
potential has to be flat. However, here the first eigen-
value is greater than zero, for the blue points, as well as
for the red points of Fig. 6 in ref.4. Thus the potential
is a minimum, in both cases, and the chain is pinned.
Of course, the pinning is small if the Vo is small. The
chain can collectively vibrate, however it cannot move.
The step in the higher eigenvalues under the red points
concerns inner vibrations of the chain. This has nothing
to do with pinned or unpinned states. Unpinned versions
of a ground state of a finite FK chain are not correctly
calculated. (If Vo is not zero. And if Vo is zero then we
do not have the FK model, at all.)

V. DISCUSSION

We ask for the fascination of irrationals for workers in
the field of the FK model. The early source may be the
papers of S.Aubry9–14. Our main contradiction to these
works is the use of an infinite chain. For any ’limit’-
process which one needs to treat such a chain, the correct
way would be to study a finite chain with N particles, to
determine its equilibrium structure, and then to increase
step by step the number, N , of the chain, more and more
up to a limit. However, such a treatment is missing in
the papers of S.Aubry.

Note, an actual infinity is not possible, as well as an
infinite long chain. Such a construct does not exist in
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reality. In Mathematics only one studies the possibility
of infinite rows, for example, and their convergence, or
divergence. There are strong rules for the handling of the
’infinity’.

Especially, we miss the treatment of the boundary
conditions (BCs), over which the distance of the chains
spring, a = rmin, (see Fig. 1) comes into play. Without
the BCs this parameter of the chain disappears in many
FK studies. This is questionable. If one has free BCs
then we cannot start with a fixed ‘left’ BC because the
minimization will result finally in a probably other BC.
So all the steps of the twist map start in a nebula. The
development by S.Aubry15, and others16–18 which use the
twist map, ignores that the chain will find at the bound-
ary another minimum structure, in comparison to any
twist map result3. If there are assumed fixed BCs, for
example, and one starts ’left’ with the left BC, and one
uses all the steps throughout the twist map then usually
the result at the ’right’ end of the chain will not fit the
right BC. (However, nobody can put BCs at infinity, and
nobody can really start at minus infinite, at all.)

We still note that some workers reduce their treat-
ment19–27 (to name a few) to finite chains, what is quite
correct, however, they continue using the erroneous con-
trast of rational to irrational numbers in the finite FK
model.

In a positive contrast, there is a treatment28 which
sorts the FK chain in a ’commensurable’ kind into the
site-up potential.

VI. CONCLUSION

This letter discusses the widespread theory of so-called
commensurate (C) versus incommensurate (IC) phases of
the FK model4,7. We have seen that the C-phases are not
specially ordered phases in the sense that all atoms are
locked-in to the minima of the substrate. In the putative
IC-phases we find no broken regular arrangement of the
atoms of the chain, either. What makes steps in the
average distance ã of the chain is the possibility that the
chain contracts or stretches over different periods L of
the substrate.

In a 2D or 3D crystal lattice a long-range periodic order
with an irrational ratio of the periodicities7,29 can exist.
Its description as an IC crystal is in order. However,
the ã in the FK model is not the description of a fixed
lattice. It is the result of the balance of the four different
parameters, a, b, Vo, k, and it is only an average value.
The term IC means ’out of proportion’. However, in
the FK chain we have to sort N atoms into L basins of
the substrate, both N and L are integers. Two integers
always form a proportion, thus the coined term ’IC’ is
a wrong term. One should use the already introduced
terms kink and antikink.

The point of a/b where the ’phase’ transition occurs,
thus the chain contracts or stretches to another number
of basins of the site-up potential, has nothing to do with

rational or irrational numbers.
As discussed above, one of the origins of the incorrect

’C-IC sight’ may be due to the theory of S. Aubry. There
is already an analysis of this non-appropriete theory3,6.
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