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Description of Shapiro steps on the potential
energy surface of a Frenkel-Kontorova model
Part I: The chain in a variable box
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Abstract We explain the vibrations of a Frenkel-Konto-

rova (FK) model under Shapiro steps by the action of

an external alternating force. We demonstrate Shapiro

steps for a case with soft ’springs’ between an 8-particles

FK chain. Shapiro steps start with a single jump over

the highest SP4 in the global valley through the PES.

They finish with doubled, and again doubled oscilla-

tions. We study in this part I a traditional FK model

with periodic boundary conditions.

Keywords Frenkel-Kontorova model · Langevin equa-

tion · Shapiro steps · Periodic boundary conditions ·
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1 Introduction

Shapiro steps are reported in the observation of dif-

ferent experiments [1–15]. We concentrate here on the

emergence of such steps in calculations with the FK

model with periodic boundary conditions (PBC) [16–

20]. This paper can be seen as a deeper explanation

on recent results [21,22], but mainly it is devoted to

the aim to understand what happens under a Shapiro

step inside the FK chain. How does the chain in the

mountains of the potential energy surface (PES) moves

if it slides downhill the effective PES? To the best of

our knowledge, we think that the question was never

treated in the past. Usually the average velocities of
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the chain are studied. To look inside the FK chain we

use in this work the PES of the chain [23–25], as well

as the tool of the highest Lyaponov Exponent [26].

The FK model describes the situation of a chain of

particles with harmonic spring forces in between. It is

embedded in a site-up potential, and additionally it suf-

fers from a tilting force of ’direct current’ (dc) and/or

’alternating current’ (ac) character. Here we specialize

in the spring force to a soft value [21], in comparison

to the site-up potential, in contrast to our former refer-

ences [23–25]. The competition between the collective

behavior of softly correlated particles and the influence

of the environment on individual particles is important

for many-particle problems.

The periodic substrate potential is assumed to be a

sinusoidal curve. Other forms are possible [16] but not

treated here. The chain is really of finite length. We

search the form of the movement of a 1D FK chain

through a site-up potential. The winding number is

the relation, the misfit, between the original spring dis-

tances, ao, and the periodicity, as, of the site-up poten-

tial. We discuss an example of ’soft’ springs with wind-

ing number 1/2 being the ratio of the two periodicities

of the problem.

Overall, we treat here the PES for N particles of

the chain and search for a global valley through the

’mountains’ of the N -dimensional PES for a sliding of

the chain over the site-up potential. The method cor-

responds to studies of chemical reactions through the

PES of a molecule. We use the ansatz of a Langevin

equation [21].

We find that the chain does not move as an inelastic,

solid body along the site-up potential with translational

symmetry of the chain. The motion of the chain goes

on by steps of the periodicity as with internal compres-
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sion and/or stretchings of the chain. This we can here

illustrate.

In sect. 2 we introduce the FK - in a variable box -

model used in this paper. In sect. 3 the case of the spring

potential with N=8 chain length [21] and k = 1/4v

soft springs is discussed. In the main sect. 4 we calcu-

late and discuss a Langevin equation where the Shapiro

steps emerge. To detect all possible such steps, we use

the highest Lyapunov exponent which is explained in

subsection 4.2. Finally we give some conclusions.

2 The FK model

u = (u1, ..., uN ) represents the position of N discrete

particles of a chain. We treat a finite chain. The posi-

tions ui are on a 1D axis. It holds ui < ui+1 for the

ordered chain. The chain without the site-up potential,

and without the external force, has the equilibrium dis-

tance, ao. The current end points of the chain determine

the current average distance ão = (uN−u1)/(N−1). In

the past traditionally the so called periodic boundary

conditions (PBC) of the kind uN+1 = u1+N ao, with ao
equilibrium constant of the chain, and u0 = uN −N ao
[21] using two ghostly particles u0 and uN+1 are used.

The harmonic spring potential is the sum of all par-

ticles and it results in the harmonic energy of nearest

neighbor potentials, and a variable box potential rep-

resenting the PBC

Sbox(u) =
k

2
(

N−1∑
i=1

(ui+1 − ui − ao)2 + (1)

(u1 − uN + (N − 1) a0)2) .

The last summand is the contribution to the PBC; its

form leads to a simple gradient. The PES for the vari-

able changes of the ui is the Frenkel-Kontorova model

’in a variable box’ (FKivb)

V (u) = P (u) + Sbox(u) (2)

where the site-up P is the potential [21]

P (u) =
v

(2π)2

N∑
i=1

(1− Cos(2π ui/as)) . (3)

In numerical tests we scale the as-constant of the P -

potential to 1 for computational simplicity. We fix the

potential constants v = 4 and k = 1 and use a short

chain with N = 8 particles [21]. We treat a special case

of the FKivb model with ao = as/2 with the commen-

surate misfit, 1/2, between the two potentials.

Because v > 0, and ao 6= as, the on-site potential

will modulate the chain if an external further force is

applied. We use a linear force. We name the resulting

PES an effective PES

Veff (u) = V (u)− F (l1, .., lN )T · u . (4)

The multiplication point between the N -dimensional

normalized force vector (l1, .., lN )T and the N -variable

u means the scalar product. F is the factor for the

amount of the external force. The new term is named

dc driving [17,27] (for direct current) if F is fixed. If the

amount of the force alternates in time then one names

it ac driving [28] (for alternate current) with

F = Fdc + Fac sin(2π νo t) (5)

with a frequency νo, and a ’time’ variable, t, which will

also be used for the step length below in a Langevin

equation. The force tilts the former on-site potential

for particle ui with the incline F li, i = 1, ..., N . The

extremal points of the effective PES, Veff , minimums

and SPs, move if F increases. A corresponding curve is

described by a Newton trajectory (NT) [29–32].

3 The overdamped Langevin equation

The components of the gradient of the effective PES

are

geff i = k (2 ui − ui+1 − ui−1) + v sin(ui)− F li (6)

for i = 1, ..., N . For i = 0 and i = N + 1 here emerge

additional particles which are connected over the PBC.

They form the movable ’box’ of this FK model, see Sec-

tion 2. If we put the gradient to zero, we get the ansatz

of the NT theory [23]. In contrast, one can put the gra-

dient into a steepest descent equation, the overdamped

Langevin equation [21]

η u̇ = −geff (u, t) . (7)

A ’time’, t, comes into the effective gradient by the ex-

ternal ac-force, Eq. (5). Every time step is depicted by

’Node’ in the corresponding figures.. We use the damp-

ing factor η = 100 throughout. Because of the damping,

the ’velocity’ u̇ in Eq. (7) has to be treated carefully.

It describes the steepest descent along geff in small

steps. It is a mathematical tool for the description of

an abstract sliding along the tilted site-up potential.

Nevertheless, the abstract velocity also originates the

Shapiro steps being the yield of many former references

[16,17,21,22,33], to name just a few. In former works

the unspecific washboard force [6] li = 1/
√
N for all i

is usually used.

Be Fc the critical force. If F > Fc then a really

amount emerges in the Langevin equation, for the ve-

locity of a change of the chain. F is then the tilting
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Fig. 1 Schematic pathway of an ac-driven Langevin particle
on a tilted PES.

force which causes the depinning of the chain and which

causes the sliding downhill the effective PES.

What happens with the ’variable’ ac force?

Fac sin(2π νo t) is alternating, and for Fdc near Fc
critical, it can be that the sum of both overcomes Fc,

or again is below Fc, if t goes on. In Fig. 1 we give

a schematic picture of a Langevin ac-driven particle. A

harmonic potential in x direction is tilted in y direction,

where a sliding also goes on for every external force. If

additionally the ac-vibration is applied then the particle

’vibrates’ on the downhill path over the x direction.

In this way we have to imagine the case of a Shapiro-

step of the ac-driven FK model. Anywhere in the PES

mountains of the chain the frequency of the ac driving

finds left and right walls for a downhill vibration of

parts of the chain.

3.1 Lyapunov Exponents

To understand the global behavior of the solutions of

the Langevin equation, one studies the action of the

phase flow on certain partial sets of the phase space

RN . Usually, the flow is not to grasp analytically, but

the vector field, geff , of Eq.(7) is the velocity field of the

phase flow. The divergence, div geff , then determines

the velocity by which the value of an infinitesimal vol-

ume element changes at u(t), under the action of the

flow. If u(t) is a region of RN , v(t) is its volume, and

s(t) is its border then one gets after a Liouville theorem

[34]

d v(t)

dt
=

∫
s(t)

div geff (u)du . (8)

If one approximates div geff (u) to be nearly constant

then one would get v(t) = v(0)et div geff . The diver-

gence of the effective gradient is the sum of the diagonal

of the Hessian of the PES. If the sum is less than zero

then we name the system dissipative. If one concen-

trates on the largest eigenvalue of the Hessian, one can

use this Lyapunov exponent for a quantity which char-

acterizes the rate of separation of two trajectories which

are infinitesimally close at an initial point of time. We

treat, of course, the Eqs. (7). They form a dynamical

system of N first-order ordinary differential equations.

One assumes a rate by

|δu(t)| ≈ eλt|δuo(t)| . (9)

Of course, if the Lyapunov exponent λ < 0 one can

expect some sort of order for different trajectories. The

more negative λ < 0 is the more regular movement is to

expect. Usually, for general dynamical systems, the rate

depends on the initial points. However, here we have a

dissipative system where the start only determines some

transient steps.

Lyapunov exponents are a tool for detecting chaos

[35]. They provide a computable, quantitative measure

of the degree of stochasticity of solutions for large times,

t. We use the works of Benettin et al. [36], and Wolf

et al. [26] for an application to the FKivb model. It

is based on a Gram-Schmidt method. We use the alge-

braic formulation of the model from which the Jacobian

matrix is derived. A set of N infinitesimal perturba-

tions is generated (one for each direction of the phase

space) and the Jacobian matrix is used to estimate lo-

cally the divergence or the convergence of the flow. To

dimension, N , of Eq. (7) we form N further vectors, yi,

i = 1, ..., N , the components of which are set at start

to yi,j = δi,j = 0 for i 6= j and yi,i = δi,i = 1. So

to say, every yi represents one dimension of the chain,

thus one particle. Using the Hessian of the PES, note

that for the FK model holds Heff = H, we treat the

extension of the Langevin Eq. (7) by the N2 additional

equations

Ẏ = H(u(t)) Y . (10)

This is a so called linearization of Eq. (7) with respect

to a solution u(t). The Hessian matrix is the Jacobian

matrix of the gradient, and the yi are treated as a small

deviation of the trajectory u(t). The Hessian matrix in

Eq. (10) is a linear evolution operator in the tangent

space of the yi vectors. For large t the limit

Λ = lim
t→∞

1

2t
log(Y(t) YT (t)) (11)

defines a matrix, if it exists [37]. The eigenvalues of

matrix Λ are the Lyapunov exponents. Using a proposal

of refs.[26,38] one can orthonormalize the yi vectors in

every t-step and thus one can automatically get the

eigenvalues. In our case, the set of Lyapunov exponents
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Fig. 2 The first Lyapunov exponent, λ, for increasing exter-
nal force, Fdc, with Fac = 0.2 and νo = 0.2 fixed. The biggest
spike around Fdc = 0.22 depicts the first, the main Shapiro
step. Further steps are numbered with increasing Fdc.

will be the same for almost all start structures of the

chain.

We fix Fac = 0.2, and νo = 0.2. For a step length

of 0.01 in t and 100 000 steps for the common system

(7) and (10) (in N (N + 1) dimensions) we calculate for

a series of Fdc values in the range from Fc to 1.0 the

Lyapunov exponents, with steps of ∆Fdc = 0.001. We

represent the first Lyapunov exponent, named λ, for

increasing Fdc in Fig. 2. Compare the analogous former

result [21].

We will treat the regions of the spikes of Fig. 2: ev-

ery spike ’houses’ one Shapiro step of the FKivb model.

The deeper the value of λ, the more ’stable’ is the oscil-

lation of the chain on its way downhill the tilted site-up

potential. Note: all interesting aspects concern the slid-

ing region of the external force. There is no kind of

’steady state’ as it is pretended [33]. At least, we find a

kind of steady flow.

4 The PES of the FKivb Chain N=8, v=4, k=1

4.1 The first Shapiro step for the periodic movements

of 2π along the site-up potential

In the range of Fdc ∈ [0.16, 0.3] one meets the first

Shapiro step, compare Fig. 1 a) of Ref. [21]. We use the

fixed ac-force Fac = 0.2 and νo = 0.2.

We draw in Fig. 3 the energy profile of the PES only,

over a trajectory, thus the tilting energy is suppressed.

The additional part of the external energy is projected

out of the representation. This delivers a good imagina-

tion of the movement of the chain on the sliding down-

hill pathway. The profile shows periodic, regular, and

short oscillations of a stable kind. For the cases of Fdc
in the full range of the Shapiro step we find the same
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Fig. 3 Energy profiles (PES only, without the effective part)
of 1,000 t-steps of two Langevin trajectories at the Shapiro
step 1. The colors are Fdc = 0.17 blue, and Fdc = 0.28 green.
Four turning points of the blue profile are depicted by Mi for
maximal TPs, or by mi for minimal TPs. One double-cycle
of 1,000 nodes of the profile corresponds to a double-step of
the chain by one period over the site-up potential, see Fig. 4.
For comparison, the ac-oscillation is schematically shown by
the red curve. Its scale is adapted to the PES scale.

frequency of the profile: it is locked. We emphasize a

cycle of 1 000 time steps of the profile. The time steps

are depicted by ’Node’. It is done in Fig. 3 by the blue

profile for Fdc = 0.17, and by the green profile for the

larger Fdc = 0.28. An animation for the front part of

the Fdc of Shapiro step 1 is given in the Supplementary

data.

The turning points (TP) of the blue profile are de-

picted by Mi for the upper ones, and by mi for the

lower ones. One full cycle over 4 TPs makes a move-

ment of the chain by one site-up well further, a step of

2π along the site-up potential, see Fig. 4. Two full cycles

of the ac-force are used here. A trajectory in the region

of the first Shapiro step explores the PES of the chain

in an impressive kind: the upper TPs on the PES cross

the ’global’ SP4 where half of the particles at the same

time turn over their next tops of the site-up potential.

It happens just in time with the maximal external force,

compare the red help curve in Fig. 3. In every substep

from mi to Mi, i = 1, 2, four alternating particles climb

over the next tops of the site-up potential, and on the

other side they form the next, complementary global

minimums of the chain.

The two upper SP4 are mirror pictures, vice versa,

thus they are equal in energy. One can imagine that par-

ticle 5 plays the role of a reflection point to obtain the

other version. However, this is only an abstract picture

because it would change the numbering of the particles.

Note that the two SP4 are the tops of the global valley

through the PES. On can imagine still SPs with higher

index, however, they do then not belong to the inter-
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Fig. 4 Structures of the chain for the four turning points of the blue profile of the Langevin trajectory of Fig. 3. They form
the corner stones of a full cycle of the moving chain with a 2π step along the site-up potential. The lower TPs cross the two
different structures of the global minimum of the chain. The upper TPs cross the two different structures of the SP4. The
particles are artificially lifted on the potential to guide the eye. The real chain is on a straight line. Only the distances can
change.
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u
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u
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m3 22 23 24 25 26 27
u
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u

Fig. 5 Structures of the chain for the six turning points of the green profile of the Langevin trajectory of Fig. 3. They are a
full cycle of the moving chain with a 2π step along the site-up potential. Internally happens a substep with a forward- and a
backward oscillation between m1 and m3.

esting valley through the PES for a movement of the

chain.

The lower TPs cross the two global minimums of the

chain. The two global minimums, on the other hand, are

of the same energy, but they are not mirror pictures,

vice versa. Internally the structures of all four station-

ary points have a mirror symmetry with the reflection

point at the half of the central bond, between particles

4 and 5.

The oscillation fits into the ’global’ valley over the

two high SP4 structures. The corresponding times for

an increase or a decrease of the pathways on the PES

are perfectly synchronized with the ac-oscillation. Note

that the chain behaves not as a fixed body like former

workers had assumed [33,39]. No, it moves in contrast

like an accordion with internally changing distances. At

minimum m1 we have ão > ao, at SP4 it is ão = ao, but

at minimum m2 we have ão < ao.

On the frequency itself: In the program we use a

t-step length of 1/η=0.01, and νo = 0.2, thus a cycle

of 500 t-steps is one period of the ac-force. 1 000 steps

correspond in Fig. 3 to a double-cycle in the ac-force

(5) of sin(4π). 500 steps of the ac excitation make the

cycle from m1 to M1, but the next 500 steps finish the

cycle over m2 to M2. Then the next double-cycle starts.

The maxima of the profile correspond to the maxima of

the ac-force, and the minima of the profile correspond

to the minima of the ac-force. The Shapiro step needs

such a lockstep of the sliding and the ac-force (5).

How can the equal frequency be realized under a

different external force, Fdc? We can study this by the

behavior of the green profile being at the end of the step

interval of Fdc. The sliding still goes over the global SP4

of the chain in the substep from m1 to M1. Thus the

quite rigid box condition (2) prevents any other lower

SPs of a lower index than four [23–25], compare also

part II of this series [40]. We try to understand how

the period of the sliding acts. We are in the region of

a larger 0.28 = Fdc > Fc = 0.255 of a sliding. However,

the negative part of the ac-force, of Fac sin(2πνot), can

cause the sum of both parts become smaller than Fc.

Then the chain is pinned in the current well of the PES.

The Langevin trajectory searches the minimum of the

well, but the ac-force continuously changes. It causes

an internal oscillation of the chain just in time with

the ac-force, so that we can overcome the next SP4 for

the next cycle at the suitable time step. Note that the

lower TPs at the mi structures now do not cross the

global minimums of the chain. The larger Fdc in this
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Fig. 6 Accidental section of an energy profile (PES only) of a
Langevin trajectory between the first and the second Shapiro
steps, at Fdc = 0.304. A periodic oscillation does not emerge.
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Fig. 7 Energy profiles (PES only) of a cycle of 500 t-steps
of two Langevin trajectories at the second Shapiro step. The
colors are: Fdc = 0.317 blue, and Fdc = 0.388 green. One cycle
of the profile of 500 nodes corresponds to a step of the chain
by one period over the site-up potential, see Fig. 8.

case may cause an earlier crossing of the region of the

SP4, at M1, then the internal vibration will consume

the additional time so that the next crossing of the SP4

region at M3 is again in time with the maximum of

the external ac-oscillation, compare Fig. 5. Then a next

cycle will start.

One can ask how the large interval of Fdc values of

the main Shapiro step will come to its end? A profile is

shown for the region between the intervals of the first

and the second Shapiro step, at Fdc = 0.304 in Fig. 6.

The vibration ’continuously’ degenerates.

4.2 A second Shapiro step

This step includes the interval Fdc ∈ [0.315, 0.4]. We

use a fixed ac-force Fac = 0.2 and νo = 0.2. The profile

in Fig. 7 again shows periodic, and regular oscillations

of a stable kind. For the cases of Fdc in the range of the

Shapiro step we find the same frequency of the profile:

it is locked. We emphasize a cycle over 1 000 time steps

of the profile. It is done in Fig. 7 by the blue profile for

Fdc = 0.317, and by the green profile for Fdc = 0.388.

Note the equal frequencies of the curves in Fig. 7. The

turning points of the blue profile are depicted with Mi

for upper, and mi for lower ones. One full cycle over

4 turning points makes a movement of the chain by

one site-up well further, a step of 2π along the site-up

potential. It looks like the first Shapiro step, however,

now only 500 time steps form one cycle. Thus the ve-

locity is doubled by which the chain slides downhill, in

comparison to step one. The TPs are depicted in Fig. 8.

Again the question emerges, how can the equal fre-

quency of the step be realized under a different exter-

nal force, Fdc? Similarly we look at the behavior of the

green profile being at the end of the step interval of Fdc.

The sliding again goes over the global SP4 of the chain

in the substeps over the Mi. But an internal oscillation

of the chain just in time with the ac-force realizes that

it is overcoming the next SP4 for the next cycle at the

suitable time step.

Good to see by the structures, in Fig. 9, is that some

parts of the chain do a back-step in their site-up wells

if the ac part of the force is in a pinned region. Though

a half-loop of the Langevin trajectory is there in the

pinned region of the energy, it does not converge to a

fixed structure because the trajectory escapes for the

next F > Fc from the pinned region and slides into the

next well. The steady change of the external force, F ,

by the ac-part is necessary for a Shapiro step. For a

pure dc-force one has the theorem that if u̇i(0) > 0, for

i = 1, ..., N , then it holds in the sliding case u̇i(t) > 0

for all t > 0 [41]. Then all particles move forward only.

4.3 A third Shapiro step

The next Shapiro step of the movement of 2π along the

site-up potential is in the range of Fdc ∈ [0.435, 0.45].

We again use the fixed ac-force Fac = 0.2 and frequency

νo = 0.2. The profile in Fig. 10 shows periodic, regular,

and short oscillations of a stable kind. We emphasize

1 000 nodes being the time steps. An animation for the

final part of the Fdc is given in the Supplementary data.

The resulting force, F , is now throughout over Fc,

The turning points of the profiles are again depicted

with Mi for upper, and mi for lower ones. Correspond-

ing structures of the chain for the points Mi or mi, are

shown in Fig. 11.

A full cycle over 6 turning points causes a movement

of the chain by one and a half site-up well further. Such

a cycle consists of three nearly equal subcycles.
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Fig. 8 The turning points of the blue profile of a Langevin trajectory of Fig. 7 form a full cycle of the moving chain with 2π
along the site-up potential.
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Fig. 9 The six turning points of the green profile of a Langevin trajectory of Fig. 7 form the full cycle of the moving chain
with 2π along the site-up potential.
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Fig. 10 Energy profiles (PES only) of a double-cycle of 500 t-
steps of a Langevin trajectory at the Shapiro step 3 at Fdc =
0.44. One cycle of the profile corresponds to a step of the
chain by one period over the site-up potential, see Fig. 11.

A cycle of 500 steps in Fig. 10 corresponds to 3 sub-

cycles in the ac-force (5) of sin(2π).

4.4 Shapiro step 4

At Fdc = 0.565 is a small region of a periodic oscillation

with 8 TPs, over a time interval of 500 time steps. We

represent one profile in Fig. 12 A cycle of 500 steps in

Fig. 12 corresponds to 4 subcycles in the ac-force (5) of

sin(2π).

4.5 A fractional Shapiro step

We treat the external excitation with Fdc = 0.308 be-

tween the first and the second Shapiro step [21], com-

pare Fig. 2. It was named in former treatments as Shapiro

step with number 3/2. It results in a periodic oscilla-

tion with one cycle over 1 000 t-steps, and an oscillation

number of 8 TPs all in all. It causes a movement of the

chain over 3π along the site-up potential. Three sub-

cycles move 1π further along the TPs M1 to M3, but

one subcycle is a back-movement, from M4 to m4. In

Fig. 13 we show the energy profile of a cycle.

5 Discussion

Shapiro steps concern the average velocity of the trajec-

tory of the Langevin equation. This velocity is locked

on a step. Note that there is no such construct like a

’steady state’ as it is often claimed in former papers [16,

33]. The Langevin trajectory goes downhill the effective

PES without forming a stable orbit.

In the case of a linear chain treated here there is no

possibility that a single particle moves. The interaction

of the particles in the chain leads to collective states like

antikinks or kinks. Here, the box-potential makes that

’fourfold’ antikinks or kinks move along the chain from

a zero level minimum over the SP4 to the next zero level

minimum. However, no real dynamics is treated. We
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M1 67 68 69 70 71 72
u

m1 67 68 69 70 71 72
u

M2 67 68 69 70 71 72
u

m2 67 68 69 70 71 72
u

M3 67 68 69 70 71 72
u

m3 67 68 69 70 71 72
u

Fig. 11 The 6 turning points of the profile of a Langevin curve of Fig. 10 form 1+1/2 cycles of the moving chain along the
site-up potential.
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Fig. 12 Energy profile (PES only) of 500 t-steps of a cycle of
the Langevin trajectory of Shapiro step 4.
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Fig. 13 Energy profile (PES only) of a cycle of 1 000 t-steps
of a Langevin trajectory at Shapiro step 3/2 with Fdc = 0.306.

only study the damped steepest descent on the tilted

effective PES.

Refs. [16,17,21,22,33] pretend a translational sym-

metry

ul(t) + 2π = ul+i(t+ s) (12)

with an integer index, i. It means that the chain acts

like a single body [39]. The chain is an ordered chain of

N particles where every particle has its own, fixed num-

ber, l. The imagination of a symmetry like in Eq. (12)

may lead to the picture of a rigid chain with a fixed

a0 distance. Already with the first Shapiro step one

can observe that this picture is not correct. Thus as-

sertion (12) is not correct. What the box condition of

the spring part of the potential energy, Eq.(5), enforces

here is a fourfold symmetry of the chain: any two con-

secutive particles behave like the next two, or the two

before. This property does not hold for a chain with free

boundaries [40]. In contrast, we found that for an FK

chain with free boundaries the results of the FK model

with the periodic boundary conditions are not trans-

ferable. Surprisingly, the sequence of the Shapiro steps

becomes inverse, see the accompanying paper, part II

of this series [40].

6 Conclusion

In the depinned case of the FKivb chain, the solution of

the Langevin equation is, in principle, a boring affair:

it slides downhill, and slides, and slides down to minus

infinity. However, an interesting fact is the possibility

of regular, equal vibrations over certain intervals of the

Fdc force. Thus the frequency, as well as the average

velocity of the chain, are locked. There emerge Shapiro

steps which one can compare with experimental results

[1–15].

It is a matter of fact, that we confirm the reported

properties of FKivb chains under (dc+ ac)-force in the

past [16,17,21,22], to name but few. Like the integer

and fractional steps, the Farey-steps [18,34], the change-

ability of ac-frequency, or of the site-up potential, and

others. Here we demonstrate the kind of oscillation which

the FKivb chain undergoes at a Shapiro step. The chain

’breathes’ as a whole, it is compressed, or stretched

into the two wells of the two different global minimums,

but the barrier in between is formed by the two SP4-

structures, see Fig. 4 as the prototype.

Different values of the parameter Fdc on one and

the same Shapiro step are balanced by different ’back’-

oscillations of subloops of the oscillation. The oscilla-
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tion frequency itself is locked, just in time with the

ac-frequency.

For Shapiro step 1 we obtain an oscillation of the

chain, compare Fig. 4, exactly in time with the ac-fre-

quency. The movement leads over the profile between

global minimums and the two SP4. The corresponding

pathway goes in the SP-region along a highly symme-

tric ridge. This is enforced by the box-potential which

prevents an outbreak to lower index SPs, compare part

II of this series [40]. If the dc-amount in the interval

of the Shapiro step increases, we find a balance of the

additional force by an internal back-vibration of the

chain. In sum, the same frequency happens again.

For Shapiro step 2 we get a shorter oscillation cycle

to one half of number one. But the character of the

oscillation is the same. And so on for the still higher

steps.
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Medvedeva, A.E. Botha, Y.M. Shukrinov, J. Tekić, Phys.
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Chem. Phys. 147, 152710 (2017)
32. W. Quapp, J.M. Bofill, Int. J. Quant. Chem. 118, e25522

(2018)



10 Quapp and Bofill
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