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Abstract We explain the emergence of zero field steps

(ZFS) in a Frenkel-Kontorova (FK) model for a 1D an-

nular chain being a model for an annular Josephson

junction array. We demonstrate such steps for a case

with a chain of 10 phase differences. We necessarily need

the periodic boundary conditions. We propose a mech-

anism for the jump from M fluxons to M + 1 in the

chain.
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1 Introduction

This paper continues the former two-part series on Sha-

piro steps [1,2]. Zero field steps (ZFS) [3] are reported

under dc bias, thus they are another kind of steps in

comparison to Shapiro steps which emerge with an ad-

ditional frequency of an ac-excitation. Josephson junc-

tions (JJs) are electronic superconducting devices. They

are reported in the observation of different experiments

[4–6]. We concentrate here on the emergence of ZFS

in calculations with the Frenkel-Kontorova (FK) model

with periodic boundary conditions (PBC) [7]. This pa-

per is devoted to the aim of understanding what hap-

pens under a ZFS inside the FK chain, compare the

experimental reports in the corresponding Figures 2 in
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references [8–11], and Figure 4 in reference [12]. To look

inside the FK chain we use the potential energy sur-

face (PES) of the chain [13–16] in this work. The PES

maps all possible configurations of the chain to their

corresponding energy. Of special interest are low lying

pathways, valleys, which connect different stationary

structures. The neighborhood of such pathways is the

way where the FK chain moves around the ring under

an external force, if it was depinned before.

The periodic substrate potential is assumed to be

a sinusoidal curve. The annular chain is really of fi-

nite length. We search the form of the movement of the

FK chain through a site-up potential. Overall, we more

deeply treat here the PES for N phase differences (PDs)

of the N JJs which are studied in experiments by other

workers. We find the PES of JJs rings remained not

fully studied until now. The PDs again form a chain.

We search for a global valley through the ’mountains’

of the N -dimensional PES for a sliding of the chain over

the site-up potential. The model changes considerably

in comparison to the parts I and II [1,2]. Addition-

ally we assume a Josephson phase kink along the array

which is called a fluxon [11].

We use the ansatz of an overdamped Langevin equa-

tion for a coarse understanding, but the full equation of

motion is not further discussed here. Thus, our equa-

tions of motion are purely relaxial. Such a treatment

is appropriate also for JJs [17]. In contrast to known

explanations of ZFS [18,19] by resonant vibrations, we

propose a simpler explanation using the behaviour of

the chain under excitation on the PES. The key prop-

erty of the PES are its nearly vertical walls which cause

the steps, without a resonance.

In sect. 2 we introduce the discrete sine-Gordon (SG)

equation and the FK model used in this paper, and we
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give a preliminary impression of the known case with

one fixed fluxon for the case with N=10 chain length.

In sect. 3 the case where no fluxon exists is discussed:

where all things start with. In main sect. 4 we calculate

and discuss a Langevin equation where we find the ZFS

for a dc-force (but where also Shapiro steps can emerge

if one applies an ac-force [1]). In sect. 4.2 we propose

a mechanism for the transition from M = 0 fluxons to

M = 1, and in sect. 4.4 we propose another mechanism

for the transition from M = 1 fluxons to M = 2 be-

ing probably the general jump for a step from M to

M + 1. In sect. 5 we additionally report the structures

of stationary states of the chain for M > 2. Finally

the last sections are devoted to some discussions and a

conclusion.

2 The sine-Gordon (SG) equation and the FK

model

One single JJ has already a rich set of properties which

can be described by a 1D SG in dimensionless form

φ̈+ ηφ̇ = −sin(φ) + F (1)

where φ(t) describes a high frequent phase difference

(PD) between the two superconducting layers of the

JJ [6,20], η is a damping factor, and F is the current

through the JJ.

In the more general case, the vector Φ = (φ1, ..., φN )

represents the value of N superconducting PDs on the

corresponding ith junctions [18] of an annular chain.

Now generally it does not hold that φi < φi+1 for 1 ≤
i ≤ N , in contrast to parts I and II [1,2]. The chain has

the equilibrium distance, ao = 0, and the φi can change

their order. An array of parallel JJs is described by a

system of discrete SG equations [6,18]

φ̈i + ηφ̇i = −sin(φi) + k(φi+1 + φi−1 − 2φi) + F (2)

where the index i runs over certain integers, for a first

ansatz. The periodicity as = 2π is used throughout for

the site-up potential of the JJs, and k is the ’spring force

constant’ between the PDs. F is an external force which

is equally applied to all φi [18]. The number of JJs in

the ring is N . The ’geometry’ of the JJs is fixed, also the

’distances’ between the JJs. However, here a property

of the JJs counts, the superconducting phase difference.

It can be zero for all JJs, but usually it changes. The

PDs, φi, are the ’variables’ of the FK model. They are

the former ’particles’. The handling of the periodicity of

a ring of JJs needs deeper attention. Traditionally peri-

odic boundary conditions (PBC) [11,17,21] were used

φN+i = φi + 2πM, for all i , (3)

with an integer M . At first glance the PBC are ’dis-

turbing’ because for M > 0 the PD with number i and

the PD with number i + N are not equal though they

belong to the same JJ. The contradiction is solved by

the action of the PDs on the site-up potential, sin(φi)

which is periodic with 2π. To give the same value for

i and i + N , the number M in the PBC must be an

integer. M counts the ’fluxons’ trapped in the chain

which emerge under the cooling of the experiment with

a magnetic field [9]. In subsections 4.2 and 4.4 below

we try to explain how a jump from M to M + 1 can

happen.

The first action of the PBC with a given N is that

the formally infinite system (2) is reduced to N equa-

tions [22]. Thus the PBC act like a modulo specifica-

tion. On the other hand, the variable M in the PBC is

assigned to the number of ’fluxons’, thus kinks which

are trapped in the chain [21]. One or more fluxons en-

force a difference between the PDs. The frustration is

named by δ = M/N , and the average distance between

the PDs becomes ã0 ≈ 2πδ. Note that this is not the

real distance between all the PDs, like it is claimed [23,

24], compare Fig. 1. The average length of the chain is

|Φ| ≈ 2πM(N − 1)/N . In sect. 5 we discuss that it has

to hold δ ≤ 1/2 in a JJs ring.

We treat the harmonic spring potential which is the

background of the discrete SG of Eq. (2) [17,25,26], and

an additional ring potential

Sring(Φ) =
k

2

N−1∑
i=1

(φi+1 − φi)2 + (4)

k

2
(φ1 − φN + 2πM)2 . (5)

The usual distance in the chain, a0, of the other FK

models of parts I and II [1,2], is put to zero here. The

first sum (4) is the inductive energy of the chain [26].

The last summand (5) is the contribution to the PBC.

The relation of the periodicity of the sine function in

(2), 2π, and the frustration may strongly affect the spa-

tial structure of the system. The PES for the variable

changes of the φi is the Frenkel-Kontorova model

V (Φ) = P (Φ) + Sring(Φ) (6)

where the site-up P is the potential

P (Φ) =

N∑
i=1

(1− cos(2π φi/as)) . (7)

(Note k=1 and as=2π is used in the paper.) The ring

potential (5) enforces a chain of a length of ≈ 2πM .

The number N of JJs in the chain is packed into this

interval.
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Fig. 1 Equilibrium structures (minimum left and SP1 right [17,20]) of the FK chain with N=10 PDs under the ring condition
(5) with M=1. The bullets are artificially lifted on the potential to guide the eye. Because we use a0 = 0 in the model potential
(4), the PDs can form ’nearby together lying clouds’ in the minimums of the cosine function.

In the JJ-ring model, the ring condition of the pe-

riodic boundaries comes to its intrinsic right. The ring

structure of the JJs enforces the 2π-modulo relation of

all the φi. It organises, on the other hand, that at the

boundaries no disturbing reflections emerge [3,8], and

so that the array prevents anti-fluxons [18].

We use a short chain with N=10 PDs and M=1.

The parameters could be achieved in a typical experi-

ment. In Fig. 1 we represent two known stationary points

of the chain, a minimum and a saddle point of index one

(SP1). Their energies are 7.868 and 7.894 units, corre-

spondingly. The ring condition really makes a chain in

the box with the length 2π. The chain itself is stretched

over the full box and thus forms a kink, in comparison to

a solution with zero distances corresponding to a0 = 0.

Note that the ’centre of mass’ of the chain [17,18]

is probably not a good measure for the annular chain,

because the beginning and the end of the numbering

are arbitrary. Formally one can describe the movement

of the chain along the Φ-axis. However, then the φj
are not periodic functions, like the PBC enforces it, by

the relation modulo 2πM . To Fig. 1 belong still nine
other equivalent minimums and SP structures with a

further moved numbering: compare Fig. 2. After 5 steps

on the minimum energy path (MEP), the PD φ1 crosses

the SP1 but all other φj are collected in the next well

around 2π. For both structures of Fig. 1, minimum and

SP1, the bottom of the well contains 6 to 8 PDs, but two

PDs are sitting on top, for the minimum, or only one

PD is placed there, at the SP. To describe a movement

of a fluxon, it is better to say which single PD currently

crosses the top of the site-up potential. Having in mind

the PBC (3) we can say that the ’centre of mass’ of the

chain is on the opposite side of the active φk where the

set of the other φj jostles.

The energy profile of the global valley line of the

PES is shown in Fig. 2. We calculated an NT to the unit

direction. The nodes depict points on the step length

axis. We use a predictor step of 0.0125. Of course, one

can also reproduce the MEP by consecutive steepest

descends from the SPs [17]. Every top is an SP1 to the

consecutive φj . Corresponding numbers j are put over
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Fig. 2 Energy profile over a piece of the MEP through mini-
mums (black) and SP1 (red) of Fig. 1 calculated by a Newton
trajectory (NT) [2] to a unitary direction (1,...,1). On the the-
ory of NTs see part II. The numbers over the SPs depict the
consecutive φk which cross the SP. Note the very low energy
difference of the two stationary points. Thus, the pathway is
nearly flat, and the critical current is very low.
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Fig. 3 Schematic 2D contour line projection of the PES of the
10-chain. The central y = 0-line is the model of the MEP of
Figs. 1 and 2. The minimums are black bullets, but the SP1

are red bullets. So to say, the x-coordinate is the direction
along the MEP but the y-coordinate collects all the (N − 1)
directions orthogonal to the MEP. The parameter M can run
from 1 to 9, compare sects. 4.3 and 5.

the SPs beginning with the j = 6 of Fig. 1. Though the

energy difference between the SP1 and the minimums is

very low, it is not zero. This is important in comparison

to the continuum SG model [17]. But the nearly zero

energy difference on the MEP causes in the experiments

that the depinning current nearly vanishes, and that the

voltage starts to increase as soon as current is injected

[12].

An imagination of a movement of the chain along

the MEP of Fig. 2 sees the consecutive φk climbing over
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the SP1-structure, the right one in Fig. 1. But every

such passage is followed by a descent of the structure

to the next, consecutive minimum, where φk−1 and φk
are the two PDs next to the top. The movement looks

like a wave. The form of the passage is allways the

same, however, there is no fixed quasiparticle. The chain

changes continuously its shape. The distances around

the ’climbing’ φk are large, where the distances between

the PDs in the wells are short or zero. By the PBC (3)

we have a periodicity. After N = 10 steps the num-

bering of the climbing φk repeats. But we do not have

an invariant chain with respect to discrete translations

from φk to φk−1 [27] what many workers claim.

In contrast to the model of Part II of this series [2]

where the valley through the PES mountains has some

’floors’ with SPs with an increasing index, (in case of

N=8 with two central SPs of index 4) and complicated

relations between the floors, here we find a very sim-

ple PES with only one ’floor’ being at the same time

the ground valley. The floor line is the profile over the

MEP over the minimums and SPs of index one of Fig. 1.

In Fig. 3 we suggest a 2D schematic projection of the

full PES. Of course, this is an oversimplification. One

should also note that the straight line of the MEP here

is curvilinear in the real chain because every minimum,

and every SP1 are located in other dimensions of the

10D configurations space. Note, the chain continuously

changes its internal distances between the φi if it moves

along the MEP of Fig. 2. The most ’single’ φj is the PD

of number j which currently goes over the top of the

cosine function at the SP1.

The move of the fluxon along the MEP is a strin-

gent proof against the assumption [17,27] that the chain

is rigid and moves as a rigid quasiparticle. What is

quasi ’fixed’ is the continuously alternating change of

the minimum- and the SP1-structure where the single

PDs run through their numbering but the chain goes

on in Φ-direction.

The on-site potential will modulate the chain if an

external further force is applied. We use a linear force

by application of a current to the JJ-ring [21,28–31]. It

makes an effective PES

Veff (Φ) = V (Φ)− F (l1, .., lN )T · Φ . (8)

We mainly use the standard N -dimensional normalised

force vector (l1, .., lN )T = 1/
√
N (1, .., 1)T . F is the fac-

tor for the amount of the external force. In this paper

we sometimes suppress the factor 1/
√
N in the formu-

lae for simplicity. The gradient of Veff (Φ) is used for

the construction of the equation of motion (2).

The external term is named dc driving [32,33] (for

direct current) if F is fixed. If the amount of the force

alternates in time then one names it ac driving [34] (for

alternate current). The force tilts the former on-site po-

tential for PD φi with the incline F li, i = 1, ..., N . The

extremal points of the effective PES, Veff , minimums

and SPs, move if F increases. A corresponding curve is

described by a Newton trajectory (NT) [35–39].

The spring constant, k, in Eqs.(2) and (4) is often

represented as a ’discretisation’ parameter k = 1/a2.

This imagination is coming from the connection to the

continuum SG [40]. If we take the limit a→ 0, i a→ x

and φi → φ(i a), we get for 1/a2
∑

i=1(φi+1+φi−1−2φi)

the second derivative, φxx, to a length coordinate, x,

for corresponding decreasing distances between the φi.

Here we understand the parameter, k, as the spring

constant in the FK model.

3 Preliminary Treatment of the PES of an FK

Chain with M=0

The ring condition secures, in the case M = 0, that we

first get a rigid vector, Φ. If we move it by a sufficiently

strong extended unitary force then it will overcome the

top of the cosine function of the site-up potential. The

ground state of the chain is the sitting of every PD in

one and the same well of the cosine function. The lowest

eigenvalue of the Hesse matrix of the PES there is 1,

and the corresponding eigenvector of the first normal

mode is pure translational vibration [30]. This move-

ment leaves the chain unchanged, it only vibrates ’col-

lectively’ in this one well.

We can excite the vector of PDs over the critical

force, Fc =
√

10, for the equal bias on all PDs. Then we

get a sliding behaviour. It moves like a lump of narrow

points over the site-up potential. The lump whirles over

the SP of the cosine potential [41]. The minimum of the

PES is all in all φi = 0 with energy zero, but an SP is

for all φi = π with energy 20 units. Thus the energy

difference for this path is much larger than in the case

M = 1, compare Fig. 2. However, the SP has index

three.

So, there is a lower SP anywhere. We get it by a PDs

chain which first extends along the axis, but then folds

back, so that the last φN comes back to the beginning

to fulfil the ring condition, M = 0. Its energy is 15.256

units, see left panel of Fig. 4 for an illustration. A steep-

est descent on the left hand side goes to the minimum

φi = 0 for all i, but on the right hand side it goes to the

minimum φi = 2π for all i. In ref. [7] such a structure is

named fluxon-antifluxon pair, though the name is not

explicitly explained there. We will question such a de-

scription. What is here the anti-structure? The concept

kink-antikink means stretching or compression of the

structure of a chain. For M=0 and a lumped set of PDs,
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Fig. 4 Extended SP1 (left) and SP2 (right) for M=0. The left numbering of the PDs goes from 1 to 6 with increasing value,
but then back. So that φ6+k = φ6−k, k = 1, .., 4 where for the right hand case it goes up to i = 5 and then symmetrically back.
Besides the foldings, the structures look like the minimum and the SP1 of the M = 1-case in Fig. 1.
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Fig. 5 Energy profiles of NTs from SP1 (a) and from SP2

(b) for M=0. The search direction is the unitary one. Both
NTs bifurcate at a VRI point.

there a further compression cannot take place. Only the

kink-concept of a stretching can be applied. We think

that the description by the words ’folded chain’ is bet-

ter. Maybe one could also say ’folded kink’. But never-

theless, the report of such states in ref. [7] leads us to

the search, and finally to the detection of this state.

The exorbitant higher energy difference of the SP1

to the minimum in this case, M = 0, in comparison to

the ’flat’ MEP of the M = 1 case, see Fig. 2, makes a

qualitative different behaviour. Without reference to a

possible case of M = 0, this is named ’parasite’ pinning

[11]. Compare sect. 4.1 below where we further treat

this case.

Closely nearby in energy is also the next index SP,

the SP2, with 15.294 units of energy, see the right hand

side of Fig. 4. We could not find any further SPs on

the PES for M = 0. The reported further structures

in ref. [7], in the case M = 0, have to be of dynamical

character. It would be an interesting task to illustrate

their localisation on the PES between the three SPs.

Profiles over NTs starting at both SPs of index one

and two are shown in Fig. 5. Both curves bifurcate at a

valley-ridge inflection point (VRI), and unite after this

with the global minimum or the higher SP3. The VRI

point is the structure with all φi = 1.97 for i = 1, .., N ,

thus again a lump of points. It is on the fully symmetric

pathway from minimum to SP3 with the rigid ’chain’.

One could speculate that the symmetry breakdown at

the VRI point opens a lower pathway for a moving chain

than the fully symmetric path over the SP3. See sub-

section 4.1 below for the description of such a path.

The two SPs of index one and two are connected by

an annular ridge of the PES, quite as the MEP of Fig. 2.

We found an artificial NT to the direction of the first

positive eigenvalue of the SP1 which connects in a con-

tinuous way the series of the two stationary points by a

consecutive ’rotation’ of the PDs where the chain stays

on the place. The search direction of the NT is lrot=

(0, 0.19, 0.46, 0.46, 0.19, 0, -0.19, -0.46, -0.46, -0.19). The

profile of the NT is shown in Fig. 6(a). In Fig. 6(b) the

final structure of the chain at the end of the NT is rep-

resented which nicely shows the rotation of the PDs

where the vector Φ stays all in all on its place.

4 The overdamped Langevin equation

The components of the gradient of the effective PES

are

geff i = k (φi+1 + φi−1 − 2φi)− v sin(φi) + F li (9)

for i = 1, ..., N . For i = 0 and i = N + 1 here emerge

additional particles which are connected over the PBC

[25]. They form the ring of this FK model, see Section 2.

If we put the gradient to zero, we get the ansatz of the

NT theory [13]. In contrast, one can put the gradient

into a steepest descent equation, and one can name it

the overdamped Langevin equation [43,44]

η Φ̇ = −geff (Φ) . (10)

For JJs systems, the full Eq. (2) is usually the correct

description. However, if one shunts each JJ by a resis-
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Fig. 6 (a) Energy profile over a piece of an NT through con-
secutive SP1 and SP2, for M=0. The search direction of the
NT is the first positive eigenvector of SP1. The NT balances
on a ridge. (b) A stroboscopic structure at the end of the
NT: the PDs are ’rotated’ where the chain stays on the place.
Compare the order in Fig. 4.

tance then one can get a correct description by the over-

damped dynamics [17]. Numerically we approximate so-

lutions of Eq.(10) with t-steps of length 0.001, 0.005,

or 0.01. In corresponding representations we depict the

time axis by ’node’.

If one chooses F > Fc, the critical force, in the

Langevin equation then a positive amount emerges for

the velocity of a change of the chain. By the stronger

tilting of the force, F than Fc, the chain will be de-

pinned and slides ’downhill’ the effective PES. However

by the PBC we get a rotation of the chain around the

annular JJs array.

4.1 Movement of an FK Chain for M=0

We remember that the ground state of the chain is

the lump of PDs in one and the same well of the co-

sine function. The movement under the equal excitation

F/
√

10 (1, .., 1) leaves the chain unchanged. We have to

report that this pathway is quite stable. If we start in

the unsymmetrical SP1 then a Langevin solution first

correctly relaxes to the region of the global minimum

and then goes the way over the fully symmetric SP3,

see Fig. 7 for a corresponding energy profile. Note that

we use a reduced representation, without the part of

the external bias, the PES only, compare parts I and II

[1,2].

If one is on the PES for M = 0 then the ’collective’

unified movement of the chain as a lump, over an SP

of index 3, is not the direction to a lower energy path
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Fig. 7 Energy profile over a Langevin solution on the PES
only (without representation of the tilting, compare parts I
and II [1,2]) starting at SP1, for M=0. The excitation direc-
tion is the unique case, (1,1,...,1), and the amount, Fdc = 3.5
is a bit over the critical force, Fc =

√
10 = 3.16 . After settling

in the first cycle, the solution alternately crosses the regions
of the minimum and of the SP3.
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Fig. 8 Energy profile of a dc-driven Langevin solution on the
PES only for M = 0 and for Fdc = 3.2. The excitation direc-
tion is a gradient vector, see text. We find a stable vibration
after an initial settling.

through the PES mountains. This should go over the

region of the SP1. We found such pathways for other

external excitation directions. One may imagine that in

the array of JJs not all currents through every single JJ

are equal. Then the vector of the force, l, may be not the

vector of equal entries. Or one can imagine a disorder

by thermal noise. Here we use l=(0.3, 0.39, 0.48, 0.23,

0.1, 0.07, 0.1, 0.23, 0.48, 0.39). It is the direction of the

gradient in the barrier breakdown point (BBP) [2] of

the steepest descent from the SP1 downhill. The result

of a Langevin solution is shown in Fig. 8. The amount

of the external force is Fdc=3.2. We still illustrate the 4

turning points (TP) of the solution of Fig. 8, in Fig. 9.

M1 is near an SP2 and one can observe that φ3 and φ9
climb over the top of the site-up potential. The point

m1 is nearer to an SP1 and the pairs φ4−φ3 and φ8−φ9
are on top. For M3 already the φ4 and φ8 are over the

top, it is again nearer to the SP2 structure.

4.2 Middleton’s rule, Jump of M = 0 to M = 1

In contrast to the NT in section 3, for M = 0 does

not exist a stable Langevin solution staying only on
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Fig. 9 Structures of the TPs for the movement of the chain
in Fig. 8 for N = 10,M = 0. The pattern repeats for every
next cycle of the sliding.
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Fig. 10 Energy profile (PES only) over a Langevin solution
starting at SP2, for M=0. The bias direction is the first posi-
tive eigenvector of SP1, lrot of Fig. 6. The excitation amount
is Fdc = 0.1, but the step length of t-steps is 0.01. After step
15 000 it descends to the global minimum (not shown). M1,
m1, and m2 are maximal and minimal TPs.

the ridge between the two SPs of index one and two,

as one could speculate with the result of the NT. In

Fig. 10 we show the solution with the start at SP2 to

the not-unique eigenvector of the former NT and an

Fdc = 0.1. It comes back, really once times, on the PES

only (compare parts I and II [1,2]) to the region of the

SP2, but then it descends after a longer sliding to the

minimum where it is fixed caused by the small Fdc far

below the critical force. The first loop is, so to say, still

a settling phase.

The rotation of the PDs in the folded kink, on the

profile of the cosine function reported in Fig. 11, con-

tradicts the Middleton’s no-passing rule [45] because

the rotation destroys the given order of the chain at
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Fig. 11 Structures of the TPs of the Langevin solution of
Fig. 10 for N = 10,M = 0. Note the rotation of the PDs from
(m1) to (m2), or from SP2 (Fig. 4, right panel) to (M1).

an initial structure. One reason may be the not-unique

force vector with alternating signs. Compare, however,

another case in subsection 4.4 below.

On the other hand, if one images a rotation by 3

places of all PDs, starting with the SP1 of Fig.4 left,

or still better a rotation by 8 places, then one gets the

PDs ’sorted’ in the kind that on one side of the co-

sine function one half of numbers is collected, 1 to 5,

and on the other side the numbers 6 to 10 are collected.

Gedankenexperiment

Now one can imagine a cut of the ring potential (5)

with the M = 0 parameter. Thus we solve the ’bond’

between φ1 = φ11 and φ10. The structure of the folded

chain will relax to a minimum where one half of the PDs

collects at the left hand well, but the other half collects

at the right hand well. It can relax to a minimum of

the chain of the case with PBC M = 1. The minimum

structure itself (see Fig.1) does not make a contribution

to the PBC.

Of course, the special ring condition (5) with φ1
and φN only is contributed to the numbering; so, every

SP1-’bond’ of the folded chain can tear. In Fig. 4 left it

concerns the bond 3-4 or 8-9.

The ring condition itself is necessary to guarantee

the ring structure of our problem. However, which M

one should put? This is arbitrary. So, under the excita-

tion of the last subsections, one can guess that it is pos-

sible that the system jumps to the next M . The given

M is conserved by our formula (5) but probably not in

the real chain. There only any M must rule the ring

character. Reference [12] describes that M is ...”deter-

mined by the initial conditions, but remains constant

throughout the subsequent evolution of the system ...”

The initial conditions are put by an orthogonal mag-
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netic field of M flux quanta, MΦ0 [9,46] which is ap-

plied before the experiment. See a further discussion in

sect. 5.

So to say, JJ arrays in ring form have the dimension

(N+1) where N dimensions describe the N JJs but the

(N+1)st dimension describes the number of fluxons. Of

course, the last coordinate, M , can only assume discrete

integer values, but it can jump.

Up to now we cannot combine the optimisation of

the N usual dimensions with the extra M . But we can

change the M in our formula by hand. Compare a simi-

lar remark in ref. [10], as well as: ”while the fabrication

of annular junctions is rather easy, trapping of fluxons

in them remains a difficult art” [42]. In experiments

it is reported that JJs arrays really jump between the

M-’coordinate’ [10,20]. Thus nature finds these ’worm-

holes’ between the different M -worlds. See subsection

4.4 below for a further propose how it could work.

4.3 The Movement of an FK Chain for M=1

Here we have again a box of 10 elements of the JJs

ring. However, now by M = 1 we allow a ’fluxon’ of

the PDs, to emerge in the ring [7,9,20]. It acts like

an enforcement of an SP1 respective an intermediate

minimum for the chain; it is shifted to the first floor

of the PES of a chain with N = 10 particles and free

boundaries [15]. However this first floor now has no end.

It is periodic along the JJs ring.

In Fig. 12 we show calculations of a ’sliding chain’,

a solution of the Langevin Eq. (10) with a unique force,

which quickly finds the region over the MEP and then

there goes on up to infinity. Note that the pathway of

the MEP is (for k = 1) quasi flat.

Note that the profiles still follow the pattern of the

MEP between the minimum and the SP1 of the chain

in Fig. 2, but on an increasing level of energy. The ex-

ternal force acts uniformly on all φi, not only on the

one φk which actually overcomes the top of the site-up

potential. The decay direction for the PD φ6 (see Fig. 1)

being on the top of the sine potential is the eigenvec-

tor (0.02, 0.03, 0.06, 0.16, 0.41, 0.78, 0.41, 0.16, 0.06,

0.03). This is not the unique excitation direction of the

JJs ring. So, we have an unnecessary force effort to all

parts of the chain, where one only needs the force fk to

act on the one φk. This accumulates a great amount of

the external force to move the one φk further, and then

the next φk+1, and so on. The increase of the energy

of the profile line of the different cases with increasing

Fdc demonstrates the effect.

In panel Fig. 12 (a) we find, after a short settling,

that the flow oscillates by a fixed, but low frequency.
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Fig. 12 Energy profile of dc-driven Langevin solutions on
the PES only (without representation of the tilting, compare
parts I and II [1,2]) for N = 10,M = 1 and direction (1,...,1).
(a) for Fdc = 0.15, somewhat over the critical force Fc =
0.02542, with the start in a minimum, (b) the profiles for
Fdc =1, 3, and 5, (c) for Fdc = 7.5. We find a stable small
vibration in cases (a) and (b) after an initial settling. In case
(c) the curve flattens out.

The profile repeats the MEP of Fig. 2 however, on a

higher energy level. The minima and maxima of the pro-

file are turning points (TPs) but not stationary points

of the PES.

To panel (b): after ≈10 000 t-steps (nodes) the chain

slides ’down’ the tilted effective PES by a stable flow,

and with a much higher frequency than in case (a).

However, the amount of the vibration decreases. The

projected profile on the original PES is much higher

than the MEP.

To (c): a giant settling after the large Fdc causes

a ’collective’ push of the chain of PDs, thus of all φi,

to an inversion of the former positions. In low energy

positions most φi are in the well of the cosine function.

However, in high energy positions they are on the top

of the cosine function. After ≈ 15 000 t−steps the vi-

bration flattens out and ’stays’ without any vibration

at 11.784 units. One could imagine that the frequency

increases to ’infinity’, in comparison to case (b), but
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Fig. 13 Stroboscopic picture of the structure of the chain
in case of Fig. 12 (c) for Fdc = 7.5 at the end of the calcu-
lated time. The chain comes already near to an equidistance
between the PDs, the blue bullet in Fig. 14.

Fig. 14 2D projected picture of the PES of the 10-chain at
the equidistant structure of the chain (the fat blue bullet at
coordinate (0, 0, V)). This point is probably a VRI point. The
two directions are the gradient there, and the one negative
eigenvector of the Hessian. By the black bullet we depict a
minimum.

the amount of the vibration decreases to zero. Thus,

the external force drives the chain along a level line of

the PES. The small difference between the minimum

and the SP1 is totally flattened out.

In Fig. 13 is shown a moment structure to case (c).

The diverse PDs nearly have equal distances, compare

reference [12]. However, the distances are still not to-

tally equal, here. They are at the structure of Fig. 13

∆φ= (0.56, 0.55, 0.57, 0.62, 0.67, 0.71, 0.71, 0.68, 0.63).

Note that we have shortened the representation by the

transformation of the chain to the initial interval by the

PBC modulo relation with 2π.

The transition from a ’stable’ wave as in Fig. 12 (b)

to a flat curve as in panel 12 (c) goes on quasi contin-

uously for the Langevin solution. For the continuum

SG equation, however, it has a singularity, see Fig. 2 of

reference [12].

How far can the pathway be moved uphill? Or in

other words: is there an end for Fdc? Like the observed

Zero-field steps (ZFS) would mean [8–11]. A similar fig-

ure like 12(c) we get for Fdc=10, where the level of the

flat final line is at an even higher energy of 11.967 units.

The energy of a chain with an equidistant distribution

of the PDs is 11.974 units. The structure has the PDs

φi = (i−1) 2π/N giving (0, 0.63, 1.26, 1.89, 2.51, 3.15,

3.77, 4.4, 5.03, 5.66). An equally distributed chain, Φ,

of length 2π needs a nearly equal amount of force to

move along the site-up potential. Thus the PES profile

line can really flatten out. One could guess that this

is the end of the story? (Compare the pre-structure in

Fig. 13.) But a further, strong excitation with Fdc=25

makes a ’line’ at the energy of 11.975, over the equidis-

tant distribution of the PDs. The chain itself is here a

little bit compressed, on its way ’downhill’ the sliding.

Its length varies between 5.63 and 5.68 being smaller

than 2π.

On the other hand, the example of an excitation

with Fdc=25 is far over the symmetric SP3 of the case

M = 0 lying at 20 units of energy. If one assumes here

an inverse ’relaxation’ of the not fully stretched chain

from the M = 1 to the M = 0 case, one would get a

back jump and the pure whirling of the chain as a lump,

like in section 3.

All in all, we cannot see a resonant oscillation of the

chain at the fin of the ZFS [6]. In contrast we detect no

kind of vibration, but only a straight, stiff ’downhill’

sliding of the chain.

Conjunction

The reason for the ZFS is that the force for the move-

ment of the chain can increase, but the PES flank be-

comes steeper, to vertical. So the increase of the level

line goes to zero. The relation of the PDs to the voltage

of experiments is given by the Josephson voltage-phase

equation [12,47]

Vj =
Φ0

2π
< φ̇i > (11)

where< .. >means time average. If the φi all move with

equal distance and velocity, we get a constant voltage.

Note that the relation (11) can be directly transformed

into the usual current-voltage characteristics.

We imagine the different cases of the external exci-

tation, f, in Fig. 12 with the help of Fig. 3. The chain is

uniformly driven by the ’washboard’ force to all direc-

tions f=F /
√

10(1, ..., 1)T . However, it is moved by the

component fk only over the k−th SP1 where the PD φk
is on top of the cosine function. The other components

act in the moment to other dimensions. Thus, the driv-

ing is, so to say, inefficient. The orthogonal components

to the MEP of f are consumed with unnecessary energy.

This explains why the solutions of the Langevin equa-

tion do not follow the MEP but are moved somewhat

uphill on the flank of the PES. However, the Langevin

solution goes somewhat parallel to the MEP.

We study the character of the point on the PES

for the equidistant distribution of the PDs, compare

Fig. 14. The gradient there does not have equal compo-

nents but is symmetric: (0, 0.588, 0.951, 0.951, 0.588, 0, -
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Fig. 15 (a) Langevin profile (PES only) for a non unique
excitation, see text. The red inlay is the changing of the length
of the chain under the ’downhill’ sliding with this force. The
black bullet in the upper right corner is a possible entry point
to a ’wormhole’ to M=2. Its structure is given in panel (b).
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Fig. 16 Ladder of energy levels of the MEP for different num-
bers of fluxons, M . Note that steps for M > N/2 are not re-
alized in experiments, by symmetry reasons [9,12,24] caused
mainly by the PBC (3).

0.588, -0.951, -0.951, -0.588), and it is of course not near

the zero vector, and the determinant of the Hessian is

negative. An eigenvector to the one negative eigenvalue

is (0.02, 0.035, 0.101, 0.257, 0.486, 0.61, 0.486, 0.257,

0.101, 0.035) which is orthogonal to the gradient.

In Fig. 14 the 2D projected PES at the equidistant

structure of the chain is shown. It seems that the point

of interest could be near a valley-ridge inflection (VRI)

point of a ridge of the 10D PES. An NT to the downhill

direction correctly gives a known minimum. It seems

that Fig. 14 represents a piece of Fig. 3. An NT going

uphill this structure starts the folding of the chain, but

we could not find any ’folded’ SP. Diverse NTs going

uphill turn back later after passing only TPs.

4.4 A possible ’wormhole’ for a jump to M=2,

once more Middleton’s no-passing rule

The last subsection has demonstrated that an exter-

nal excitation of the ring chain by a totally symmetric

force vector, (1,1,...,1), climbs up the wall quasi parallel

to the floor of the MEP, compare Fig. 3. But because

the wall becomes steeper and steeper, the increase of

energy height, thus the increase of the ’speed’ of the

chain on its ’downhill’ sliding on the effective PES will

become smaller and smaller. We guess that this is the

reason for the measured ZFS in experiments.

How can a jump to the next M state happen, or

with the experimental result, how can the array switch

to a higher voltage state [10]? We assume that the ex-

citation of the chain is not totally symmetric. In an

experiment one can imagine, besides the omnipresent

noise [48], that one can change the array parameters

[17] by the plaquette self-inductance, or by the single

JJ critical currents. Additionally, in some experiments

[12] the current is actually injected at one JJ, instead of

all JJs. So, we take for a calculation an unsymmetrical

excitation direction

lwormhole =1/3.26 (0.5, 0.75, 1, 1, 1, 1, 1, 1, 1.25, 1.5)

with norm 1, and the large amount Fdc=20.

Fig. 15(a) shows the profile of the Langevin solu-

tion, being somewhat similar to former curves. The red

inlay is the length of the chain: it becomes stretched

because of the unsymmetrical force. The black bullet is

a structure, shown in panel (b) which has 3 PDs in the

left well, 4 PDs in the central well, but 3 PDs in the

right well of the cosine function. This structure will re-

lax to the SP1, or to the minimum of the case M=2, (see

sect. 4.5 below) if the ring condition of the PBC is put

to M=2. The chain can jump to the next M like this.

Because the ’floors’ of the PES to different M values

have different energies (see Fig. 16 and Table 1 below)

we get for the transitions between the branches in the

experiments a discontinuous voltage [47].

Note again an interchange of φ1 and φ2, as well as

of φ9 and φ10, of the ’wormhole’-entry. Thus the no-

passing rule here is injured as well. Though in this case

the force vector has only positive components, in con-

trast to subsection 4.2. The reason for the interchange

of the outer PDs may be the strong action of the PBC

(5). One may see this structure as a beginning of a fold-

ing, like the SP1 of the M = 0-case.

Note that the exact calculation seems quite difficult,

for which high Fdc amount, for which slightly unsym-

metrical force, and at which point on the pathway of

the chain ’downhill’ such an entry point first emerges.

Our example only demonstrates the existence of such a
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Fig. 17 Extended two fluxons of the chain for PBC M=2 with the minimum (left) and SP1 (right). The SP1 is symmetric,
but the φ1 disturbs the symmetry for the minimum.
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Fig. 18 Energy profile over the MEP through minimums
and SP1 of Fig. 17 calculated by an NT to unitary direction
(1,...,1). Note again the very low energy difference of the two
stationary points. Thus, the pathway again is nearly flat.
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Fig. 19 Energy profile of three dc-driven Langevin solutions
in case M = 2 on the PES only (without representation of
the tilting) for N = 10 PDs. (a) for Fdc = 0.15 with the start
in a minimum, (b) for Fdc = 1, and (c) for Fdc = 7.5. We find
a stable small vibration in cases (a) and (b) after an initial
settling. In case (c) the curve flattens out quite analogously
to the case M = 1. Note the different t-scales in the three
panels.

point. One hint can give the minimal energy step which

one should apply to jump from the minimal floor of one

M to the next floor for M + 1, which is represented

in the scheme of Fig. 16, compare sect. 5 for the cases

M = 3 to 10.

4.5 The Movement of an FK Chain for M=2

Two ’fluxons’ of the PDs can emerge in the ring, see

Fig. 17 for the structure of a minimum and an SP1.

Their energies are 16.173 and 16.237 units, correspond-

ingly. An NT which connects consecutively the mini-

mums and the SP1 with a wandering top φi is given in

Fig. 18. It is similar to former cases in Fig. 2 and 6(a).

In Fig. 19 we show calculations of a ’sliding chain’,

a solution of the Langevin Eq. (10), which quickly finds

the region over the MEP and then goes on up to infin-

ity. Note that the pathway of the MEP is (for k = 1

and M=2 also) quasi flat. The profiles follow again the

pattern of the MEP between the minimum and the SP1

of the chain in Fig. 18, on an increasing level of energy.

In panel Fig. 19 (a) we find, after a short settling,

that the flow oscillates by a fixed. but low frequency.

The profile repeats the MEP of Fig. 18 however, on a

higher energy level. The minima and maxima of the

profile are TPs but not stationary points of the PES.

To (b): after less than 500 t-steps (nodes) the chain

slides ’down’ the tilted effective PES by a stable flow

with a much higher frequency than in case (a). However,

the amount of the vibration decreases. The projected

profile on the original PES is much higher than the

MEP.

To (c): a giant settling takes place for the large Fdc.

But after less than 1 000 t−steps the vibration flattens

out and ’stays’ without a vibration at 17.847 units.

5 Structures of the FK Chain for M=3 to

M=10

The stationary structures of the chain for M = 3 are

shown in Fig. 20. The MEP for M = 3 is similar to for-

mer cases, compare Figs. 2 and 18. Energies are 26.805
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Fig. 20 Minimum left and SP1 right of the FK chain with
N=10 PDs under the ring condition (5) with M=3 fluxons.
There exits a mirror symmetric structure of the minimum
(not shown).
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Fig. 21 Minimum left and SP1 right of the FK chain with
M=4 fluxons.

units for the minimum and 26.81 for the SP1, so the

MEP between the stationary points becomes very flat.

Langevin solutions exist for the depinned chain sliding

’downwards’ similarly to Fig. 19.

The stationary structures of the chain for M = 4 are

shown in Fig. 21. The MEP for M = 4 is similar to for-

mer cases, see Figs. 2 and 18. Energies are 40.852 units

for the minimum and 40.885 for the SP1. Langevin so-

lutions exist for the depinned chain sliding ’downwards’

similarly to Fig. 19.

The stationary structures of the chain for M = 5

are shown in Fig. 22. Although 5 PDs are on the tops

of the site-up potential at the SP, it has indeed index

one. The character of the PES changes if the bound-

ary conditions are removed (but a0 = π is used). Then

the same SP structure has the SP index 2. Besides the

given SP structure exits a mirror symmetrical SP. The

MEP for M = 5 is similar to former cases in Figs. 2 and

18. Energies are 58.123 units for the minima and 59.348

for the SP1. The left minimum goes over 5 wells with a

length of 27.789, but the right minimum is longer and

extends over 5 hills with a length of 28.76. The two SPs

have the exact length of 9π=28.274 being in between.

The example again demonstrates that the average dis-

tance of the chain, ã0, is not constant at 2πM/N [24].

The PBC goes into the potential energy ansatz (5) as

a part of the potential energy. It is ã0 ≈ 2πM/N only

approximately realized. The reason is that the PBC de-

mands that φN+1 − φ1 = 2πM , however, the distance

φN+1 − φN is variable for the forces of the FK model,

as well as all other distances of the chain.

For an M = N/2 case an experiment notes a small

depinning current [9]. It corresponds to the larger differ-

ence of the two energies of 1.225 units in this case, the

Peierls-Nabarro barrier [49], being higher in comparison

to the cases of former M > 0. Langevin solutions ex-

ist for the depinned chain sliding ’downwards’, see the

Table 1 MEP levels to different fluxons

M 0 1 2 3 4 5
V(Φmin) 0 7.87 16.17 28.8 40.85 58.12

right pannel in Fig. 22. The force amount Fdc must be

higher than the critical force at the barrier breakdown

point (BBP) [2] of the PES. If the 5 fluxon chain moves

along the MEP then it has to alternate from the ’long’

minimum to the ’right’ SP (where the 5 top PDs are at

the right hand side), to the ’short’ minimum, and then

to the ’left’ SP, and so on. It is clear that this process

does not take place by a ridgid chain, a ’ridgid fluxon’

[27] which is claimed to represent a quasiparticle. No,

the chain always changes its length. It is not rigid.

The case of M = N/2 has already been discussed in

part I [1] for an additional ac-excitation of the chain.

Then Shapiro steps emerge.

We add the Table 1 with the minimum energies on

the MEP to different fluxon numbers, M . These ener-

gies are not linear in M . It is claimed that in an ex-

periment the M fluxons are set by a magnetic field of

’about M flux quanta Φ0 corresponding to exactly M

vortices of the ring’ [9]. This cannot be exactly correct

in view on the nonlinear dependence of the energies of

the floors on the number M , see Table 1.

In contrast, workers in ref. [50] write that they could

not experimentally determine the exact number of flux-

ons in the ring. So, there is no universal agreement

among different experiments.

The stationary structures of the chain for M = 6

are shown in Fig. 23. The MEP for M = 6 is similar to

former cases, see Figs. 2 and 18. Energies are 80.33 units

for the minimum and 80.363 for the SP1. The structures

are a kind of mirror picture to the M = 4-case. It is

known that due to symmetry the average distance ã0
can be restricted to the interval [0,π] without loss of

generalyty [24]. One has to contract here all φi by the

factor 4/6. We get a formula for the single PDs (by N

even) with

φj

∣∣∣∣N2 −k (
N

2
+ k) = φj

∣∣∣N
2 +k (

N

2
− k) (12)

for j = 1, ..., N, 1 ≤ k < N
2 . On the left hand side

we have real structures of the chain, but on the right

hand side we find only artificial structures. For M = 6

distances between the PDs are much more stretched,

thus the energy levels would be much higher. Equiva-

lently to the symmetry treatment [12], in experiments

[9,50] is reported that the steps with M = N/2 + k

give equal I/V curves like the steps with M = N/2− k
for k = 1, .., N/2 − 1. Thus these steps with M > N/2
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Fig. 22 Minimum left, SP1 centre left, and second minimum centre right, of the FK chain with M=5 fluxons. Both minimums
have the same energy, but a different length. There exits a mirror symmetric SP (not shown). The right panel is the energy
profile over the MEP through minimums and SP1 calculated by a Langevin equation with unitary direction (1,...,1).
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Fig. 23 Artifical minimum left and SP1 right of the FK chain with M=6 fluxons.
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Fig. 24 Artifical equilibrium structures of the FK chain with M=10 fluxons. Left to right: minimum, SP1, SP2, and SP3.

do not emerge, at all. The much higher energy of the

’overstretched’ structures is not realized. The spring

formulas (4) and (5) allow for M > N/2 an artifically

overstretched solution. Nature, however, does not re-

alise this solution.

Energies for M = 7 are 105.762 units for the artifi-

cial minimum and 105.766 for the artificial SP1. Again

the structures are a mirror picture to the M = 3-case.

One has to contract all φi by the factor 3/7. Eq.(12)

here also applies.

Energies for M = 8 are 134.609 units for the arti-

ficial minimum and 134.672 for the artificial SP1. The

structures are a mirror picture to the M = 2-case. One

has to contract all φi by the factor 2/8. Eq.(12) here

also applies.

Energies for M = 9 are 165.782 units for the arti-

ficial minimum and 165.808 for the artificial SP1. And

the structures are a mirror picture to the M = 1-case.

One has to contract all φi by the factor 1/9. Eq.(12)

here also applies.

The artificial stationary structures of the chain for

M = 10 are shown in Fig. 24. Energies are 197.392 units

for the minimum, 212.648 for the SP1, 212.686 for the

SP2, and 217.392 for the SP3. The difference of SP3 to

the minimum is 20 units like in the case M = 0. A com-

parison with the folded structures of the SP1 and SP2

of the M = 0-case shows that here the structures are

unfolded, like in the other cases for 0 < M < 10. How-

ever, the unnecessary ’overstretched’ structures are not

realized in experiments, there is an energy penalty. For

the minimum, one can see the ’impossibility’ because

all φi ≡ 0mod 2π. The case M = N (winding number

ω = 1) which is discussed in reference [44], is an ab-

straction which has no realisation for the PBC (3). It

is a mathematical extension to play with.

6 Impurities

We have seen in Section 4 that some ’theoretical’ prob-

lems emerge if we deal with the symmetric array of JJs

under a fully symmetric excitation. The pathway of the

chain of PDs will then hold the symmetry, being usually

a way on a ridge on the PES, but it does not find the

quite lower, unsymmetric region of the corresponding

MEP. However, if the chain is disturbed, from the early

beginning, by any kind of impurity then the symmetry-

’problem’ come off by itself.

7 The Folding Problem

If φ1 and φN have the ’correct’ distance of the PBC,

≈ 2πM(N−1)/N , then nevertheless other φi can be in

a ’false’ order. Thus the distances ∆φi can have positive

or negative values. Compare the folded SP1 and SP2 of

case M=0 in sect. 4.1. The possibility emerges in calcu-

lations of the entry of the ’wormhole’ in sect. 4.4, or of

NTs in higher energy regions of the PES because the

’ordering’ action of an a0 > 0 is missing in the model.
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An example is a VRI point with an energy of 21.96

units for M=1. The PDs are (1.46, 3.65, 4.79, 4.56, 3.14,

1.73, 1.5, 2.63, 4.82, 6.28) modulo 2π. φ1 to φ4 are

ordered correctly, but φ5 to φ7 go backwards, and at the

end φ8 to φ10 are again ordered correctly. The structure

is two times folded.

However we did not find any SP with such a folded

structure for M > 0.

8 Discussion

An interesting question for the imagination is: how one

has to imagine the tilting of the annular chain by the

washboard potential, thus by the unitary external force?

So to say, the externally excited JJs array is a real ex-

ample for M. C. Eschers ’waterfall’ [51]. The explana-

tion is the ’topological constraint’ of Equ.(3) [12] en-

forcing a cycle. “In a cyclic process, the arrow of time

is made circular” [52].

In all cases of M > 0 we have to realise that the

PBC (5) is a strong force in our potential formula. It

dictates the shape of the FK chain, compare the struc-

ture Figs. 1, 4, 16, and 20-24. In all cases 0 < M < 10

we have one deep valley with the MEP over the mini-

mums and the SP1 on nearly the same level. The MEP

crosses all N dimensions and closes to the ring by the

PBC. There is only this one floor, and nothing else. The

remaining PES has only steep flanks tending to vertical

walls. It seems that no further SPs exist, at least not in

a usefull energy region. So to say, we find a very sim-

ple PES, in contrast to part II [2]. Of course, different

floors emerge for different numbers of fluxons, M .

We can explain the ZFS by the use of a Langevin

equation only, for 0 < M ≤ N/2. It is a simplification

but it is sufficient. We do not need the full, more correct

equations of motion with the second derivatives. Thus,

we do not treat the radiation of small amplitude waves

(phonons) of the chain [11,12,18,53]. The PES (6) is

the same for both equations, of first or second order.

Possibly, a further internal vibration of the chain could

make the entry into a ’wormhole’ for the transition from

a given floor of M fluxons to the floor of M + 1 ones

easier. The question deserves further study, compare

ref. [11] which, on the other hand, uses a very larger

N = 50 and a very smaller k-parameter between 0.5

ond 0.25.

The deep minimum well of the PES in case M=0

makes it possible that the chain vibrates along the N

different normal modes. However, in the cases M >0 we

do not find a deep minimum well. The MEP is a very

flat ’floor’ on the PES for spring parameter k = 1. For

M=1 we have the lowest eigenvalue of the Hessian at

the minimum at 0.06 units, and the decay direction of

the SP1 has the eigenvalue -0.058. The barrier is 0.025

units. Here cannot exist a vibration of the chain with a

frequency such that it can be fitted more or less along

this MEP. Here does not exist a ’kink internal mode’

[54] along the MEP. (One can imagine vibrations or-

thogonal to the MEP. They can be named breathers

[47] indicated by a single li = 1, but all other lj 6=i = 0.

However, these we do not need for a sliding. They make

the treatment only more complicated.) A low external

force with F/
√

10 > Fc, the critical force, induces a

depinning and avoids any vibration. The sliding of the

chain is indeet a rotation through the JJs array, by the

PBC. And this rotation will have a ’frequency’ deter-

mined by the velocity of the chain. Note that we never

observed a whirling of parts of the chain [41].

In the FK model with free boundaries [2] kinks and

antikinks have an own length which is determined by

the parameters of the model, (v = 1 here) and k, the

ratio of the parts of the potential energy. Under the

PBC (5) the chain is, for M > 0, stretched over the

full interval, 2πM . This means that the corresponding

fluxon does not have an own length. The chain itself

is the fluxon. The observation is in contrast to ref. [21]

which claims that the 2πM(N−1)/N form is too crude

to grasp the crucial points of the problem, and demands

that the kink is not an ≈ 2πM form. We must deter-

mine here that the ansatz (5) acts in our description;

the mathematics is not negotiable.

We guess that there are not such constructs like an-
tifluxons which can annihilate themselves with fluxons

[6,8]. We guess that there cannot be more than one sin-

gle fluxon in the chain with a different velocity [10]. We

guess that there cannot be an addition of, for example,

two fluxons with 1M , to one fluxon with 2M [10,18]. At

least not in this FK model with the PBC. The reason

is that for every M only one minimum exists, and only

one SP1 structure (besides the numbering of the PDs,

and their ’rotation’). Different fluxon structures for a

fixed M are not compatible with such a simple PES, at

least not for our small N = 10.

In all parts of this series, I, II, and this paper, com-

pare refs.[1,2], we start with an FK model by its mathe-

matical formula, including the corresponding boundary

condition. Using corresponding properties of the mod-

els, we demonstrate how the models allow diverse sta-

tionary states, or flows of the chain of particles, or parts

like the phase differences φi in this paper. We claim that

this simple mathematical analysis, as we did it, is es-
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sential for the decision that the FK formulae can be a

model for the explanation of diverse experiments.

So far the treatment of resonant steps in FK models

has mainly be restricted to describe ’that they emerge’,

but not yet extended to explain ’why they emerge as

they are’. This we try in the series of the three pa-

pers. The main tool is the study, the development of

the old known PES of the current model, its global and

intermediate minimums, and its SPs of an increasing

index, and of possible low energy paths connecting di-

verse stationary points. We resolve that these paths and

their neighbourhoods on the PES are often the sliding

regions of the chain under the external force, which (we

guess so) are also implicitly used by older simulations

of the sliding of FK chains by other groups.

9 Conclusion

By analysing the PES of the FK model with PBC we

can describe the stationary states forming the pathway

for a sliding of the chain. Which in reality is a rota-

tion of one or more fluxons through the annular JJs.

For increasing external forces we get an explanation for

the zero field steps (ZFS) by nearly vertical walls of the

PES. We can assign the different number of fluxons, M ,

to different structures of the chain. We propose a mech-

anism for the jump of the chain from M to M + 1. The

first such jump from M = 0 happens at an SP of index

one quite exactly at the corresponding critical force to

overcome this SP, where a folded chain structure re-

laxes to the M = 1 minimum. However, for higher M

one has to stretch the chain up to a length where it

can relax to the next M + 1. But note that we need an

unsymmetrical force for the explanation, in both cases.

Appendix: Abbreviations

ac-force: alternating current

BBP: barrier breakdown point

dc-force: direct current

GE: gradient extremal

FK: Frenkel-Kontorova

JJs: Josephson junctions

M: number of fluxons

MEP: minimum energy path

N: number of PDs

NT: Newton trajectory

part I: reference 1

part II: reference 2

PBC: periodic boundary condition

PDs: phase differences

PES: potential energy surface

SG: sine-Gordon

SP1: SP of index one

TP: turning point

Veff : effective PES

VRI: valley-ridge inflection point

ZFS: zero field steps

2D: two-dimensional
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