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Abstract

There are works of the Maeda-Morokuma group which propose the artificial force
induced reaction (AFIR) method [J. Computat. Chem 2014, 35, 166, and 2018,
39, 233]. We study this important method from a theoretical point of view. The
understanding of the proposers does not use the barrier breakdown point of the AFIR
parameter which usually is half of the reaction path between the minimum and the
transition state which is searched for. Based on a comparison with the theory of Newton
trajectories, we could better understand the method. It allows us to follow along some
reaction pathways from minimum to saddle point, or vice versa. We discuss some well
known two-dimensional test surfaces where we calculate full AFIR pathways. If one
has special AFIR curves at hand, one can also study the behavior of the ansatz.
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AFIR points on a 2D surface are blue. In black color are drawn minimums and saddles
of index one. The AFIR points explore quite good the reaction pathways from a reactant
minimum over an intermediate to a product minimum. Only near the intermediate minimum,
the connection has a gap. Red points depict maximums of the AFIR-parameter.

INTRODUCTION

Considerable interest is attached to the search of reaction pathways in chemistry, especially

the points which govern these ways: minimums and saddle points of index one (SP1) on

the potential energy surface (PES) of a reaction system. The reaction pathway is defined

as a one-dimensional description of a chemical reaction through a sequence of molecular

geometries in an M -dimensional configuration space.

The AFIR method is an ansatz which disturbs the given PES by an external force.1,2 It

is a generalized case of the treatment in mechanochemistry.3–5 It has some similarity with

the SEGO method (standard and enforced geometry optimization).6 By the disturbance

one moves the stationary points of the former PES to new locations. By following the

successive force-displaced stationary points one gets a curve which can, in good cases, connect

a minimum and a SP1 by a kind of reaction path. The AFIR path has analogous properties.

This paper has the following Sections: next we refer to the AFIR method, and we cal-

culate a reaction path by pieces of a curve by consecutive AFIR points. A more theoretical

tool is obtained by a variational formula for full AFIR curves. Further special properties like

dependence of the AFIR curve on the coordinates, and avoided crossing (AC), are discussed
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separately by examples. At the end we add a Discussion and some Conclusions.

THE AFIR METHOD

The proposal of the Maeda-Morokuma group is to use an effective PES1,2,7–10 with internal

coordinates r

Veff (r) = V (r) + α

∑N
i<j

(
Ri +Rj

rij

)p

rij∑N
k<l

(
Rk +Rl

rkl

)p . (1)

Here V (r) is the original PES, α is a factor which plays the role of a numerical parameter

which drives the calculation, Ri and Rj are covalent radii of atoms i and j. The vector r

with the components rij contains the distances between the corresponding atoms i and j

of the studied chemical system. The dimension of all rij is maximally M = N(N−1)
2

for a

molecule with N atoms. It is possible to include a lower number of distances only.1,11 Of

course, all rij > 0. To imagine the external force, f, directly, we write the components with

numbers i, j

fij =

(
Ri +Rj

rij

)p

∑N
k<l

(
Rk +Rl

rkl

)p , (2)

and the effective PES is

Veff (r) = V (r) + α f(r)T · r , (3)

thus the force, f, acts on the current point, r. If the force is zero, α=0, then we have the

original PES. Interesting are the cases with increasing amount of α.

Eq. (2) controls the relation between different bonds. It means that the larger distances

nearly disappear in the extra force for p > 2 but only the smallest distances make a contri-

bution to the resulting direction of the force. So, eventually, the small distances of H-atom

bonds, which do not react in the system of question, should not be used in f.7

Of course, if the extra force moves all stationary points of the PES out of their former

places then a minimum and an SP can coalesce, and a former barrier can disappear. Such

a situation occurs in a point labeled barrier breakdown point (BBP) with α=αmax, and it

is instructive to compare it for Newton trajectories (NTs).12,13 So a new valley opens for
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a contact between former distant minimums. Thus, one can use the ansatz to detect reac-

tion valleys.1,2,9,11,14–21 To the purpose, one has to chose α ≥ αmax. The important relation

is not discussed in the AFIR papers. If it holds then the former initial minimum disap-

pears and a new minimum exists on the corresponding effective PES which may be near a

searched minimum of the original PES. Many examples are drawn recently for NTs.4,5,13,22–25

Here, in contrast, we propose to calculate the full ’reaction path’ between the initial

minimum and the next SP of index 1 by AFIR. The aim will allow us to better understand

the behavior of the AFIR method and its possible improvement. One starts at a known

minimum with α = 0. Like for NTs,4,5,26 a continuous increase of the strength of the force,

α, will move the stationary points of the effective new PES. In the first papers to AFIR,

Meada et al. only searched for an increase of the force.1,10,11,14 In the last great review2 they

propose to use only one fixed value of α. We first remark that in the case the value should

be larger than αmax because then the optimization on the effective PES does not go back

near to the original minimum.

Here we propose to improve the method by two alternating pieces of the curve of new

stationary AFIR points. We propose to use an increase of the parameter, α, up to the BBP

at αmax of the AFIR curve, and a decrease of the parameter, α, after the BBP. Then the

obtained curve points could fully describe the curve between two original stationary points

over a BBP, like in the case of NTs.4 The maximal α determines the BBP. Note that the

BBP is not an approximation of the original SP of the PES. The BBP is usually anywhere

between the initial minimum and the next SP, see some instructive discussions for NTs.4 At

the next stationary point the parameter α has again to converge to zero.

Since in the AFIR method only one test-α is used2 this has to be greater than αmax. Be-

cause then the optimization can jump along a new valley to a minimum near to the searched

one. If it is test-α < αmax then the optimization of the effective PES will get a minimum

before the BBP, near to the original initial minimum.

Figure 1 shows the result of calculations for changing values of α for the Rhee-Pande test

surface.4,22,27 We use (x, y) for only two abstract coordinates, thus dimension M=2, and
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the exponent p=6 in Eq. (1) and put formally R1 = 1/2 and R2 = 1/2. Thus the equation

becomes

Veff (x, y) = V (x, y) + α

(
1

x

)6

x+

(
1

y

)6

y

1

x6
+

1

y6

.

The calculation goes step by step. We put a value of the parameter α near zero, and search

the next stationary point of the effective PES, Veff . This point is used for the next α-step

as the initial value for the optimization. We proceed in the same way after the convergence

is reached.

-2 0 2 4 6
-2

0

2

4

6

8

x

y

Figure 1: Test surface of Rhee and Pande27 with AFIR points (blue). The minimums and

saddle points of index one are indicated in black . The BBPs are shown in pink color. The

level lines start from zero level at R. They increase in 1-steps up to a value of 15, and after

that in 5-steps up to a value of 60.

The AFIR points start at the right minimum, R at (4.03, 0.97) at zero energy, and

they go with negative values of α up to αmax=-9.98 at the BBP (pink) at point (4.7, 2.35).

Then the parameter is again decreased (in absolute values). With the decreasing amounts

of the parameter after the BBP, the curve at least correctly finds the rightmost SP at (4.25,
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2.96). The same can continued in direction of the intermediate minimum, however, at the

corresponding next BBP, the curve ends. There is a small gap to the intermediate where no

AFIR points exist. An explanation of the fact comes below in the next Section.

The other half of the reaction path from the product minimum, P at point (1.0, 4.0) and

energy 3.64, is analogous. Up to a values of α = −6.5 at the leftmost BBP (pink), at (2.8,

5.15), we increase the parameter, but the way to the SP before the intermediate, at (3.0,

4.56), is again get by a decrease. And the piece between the leftmost SP of index 1 and the

intermediate minimum at (3.76, 4.03) at energy 5.96 is a next ordinary part of an AFIR curve.

The procedure to go up by small steps for α and optimize the corresponding stationary

point, up to a BBP, and then go back to zero for α to find an SP1, this procedure will work

in every dimension M .

AFIR curves by a variational formula

We use a first variational structure28 of the AFIR model

g(r)− α ϕ(r) = 0 (4)

where g(r) is the gradient of the PES, α is the Lagrange multiplier and ϕ(r) is the derivation

of the extra term, ∇r(f(r)
T ·r). If we assume that ϕ(r) 6= 0 we can write the variation ansatz

in another form (
U− ϕ(r)ϕ(r)T

ϕ(r)Tϕ(r)

)
g(r) = 0 (5)

where U is the unit matrix. Here the task would be to derive the implicit tangent from

the given term. However, the problem in the model ansatz Eq. (1), is the quite complicated

expression of ϕ(r). To make an attempt to achieve an expression, we execute the following

derivation. First we rewrite Eq.(1) in the form gT (r) − α(r)ϕT (r) = 0T, where α(r) =

ϕT (r)gT(r)[ϕT(r)ϕ(r)]−1. Now we define H(r) := ∇rg
T (r) and G(r) := ∇rϕ

T (r). After

some mathematical manipulations we obtain[
H(r)− α(r)G(r)−ϕ(r)∇T

r α(r)

]
dr

dt
= 0 (6)
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where ∇rα(r) has the form

∇T
r α(r) =

gT (r)

ϕT (r)ϕ(r)

[
U− 2

ϕ(r)ϕT (r)

ϕT (r)ϕ(r)

]
G(r) +

ϕT (r)

ϕT (r)ϕ(r)
H(r) . (7)

We note that if ϕ(r) is independent of r then Eq.(6) reduces to the tangent of the reduced

gradient following (RGF) model26,29 which is another version of the NT model. From this

point of view we can say that the AFIR method is a generalization of the NT-model.

Figure 2: Test surface of Rhee and Pande27 with AFIR curves (blue). The minimums and

saddle points of index one are shown in black, the BBPs in red.

In the case of M = 2, we can use Eq.(5) for a numeric search of a solution of the AFIR

curves. We employ a Mathematica contour plot in Figure 2 for the zero contour of the square

of the norm of the left hand side of Eq. (5). The point by point optimized AFIR points of

Figure 1 fit well in the resulting curves. The gap between the rightmost SP of index 1 and

the intermediate is an avoided crossing of two AFIR curves.

A next problematic property is, at the other side of the minimums, for positive α values,

that the AFIR curves escape into the mountains. They do not converge to the upper SP1 at

(1.59, 1.45). This SP is very higher in energy, it is 24 units, than the pathways through the
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intermediate where the left SP1 is at 12.84 energy units. Thus a reaction will proceed over

the lower reaction path, and not over the upper one, however, from a theoretical point of

view, one would like to know also the higher energy pathway. But the AFIR points from the

two global minimums do not converge to this SP. An AFIR curve can start in this SP, but

it connects the SP to the summit of the surface, an SP of index two. In contrast, steepest

descent from the SP at (1.59, 1.45) will find the two global minimums.

Note that here the origin (0, 0) of the plane of the coordinates plays an exceptional role

which is an artifact of this 2D test surface. (The origin was also excluded for the application

of Eq. (5).) It seems that not all AFIR curves through the zero point have a geometric sense.

In the AFIR ansatz of Eq. (1) are used only atomic distances of the chemical system which

cannot be zero. Thus in real chemical calculations the zero of the distance coordinates does

not appear.

Coordinate dependence of AFIR curves

Figure 3: (a) KAM test surface12 with AFIR curves (blue). Green lines are the Det(Heff )=0

points of the surface. The crossing with an AFIR curve is a BBP of this curve. (b) The

same surface but all coordinates moved by (2, 2). By this transformation we avoid the point

(0, 0) in Eq.(1). The new set of AFIR curves is different with respect to the previous set of

AFIR curves.

Because of the nonlinearity of the AFIR ansatz, Eq. (1), the resulting curves do not only
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depend on the PES, however, they also depend on the used coordinates. We demonstrate

it with a very simple test surface with one minimum and two SP of index 1, the Konda-

Avdoshenko-Makarov (KAM) surface.12,13 It is a surface with two reaction pathways between

a reactant and the exit. Across to the exit it has a very flat ridge. Unfortunately, the

minimum is the zero of the coordinates system. Nevertheless, an AFIR curve in Fig. 3(a)

connects the minimum and the lower SP region, but near the lower SP it suffers from a small

avoided crossing. Another AFIR curve follows nicely the flat ridge. Near point (0.9, 0.8) this

part of an AFIR curve has a turning point (TP). In this example, all AFIR curve directions

through the minimum are different from the eigenvalues of the Hessian. It seems that not

all AFIR curves through the zero point have a geometric sense.

In Fig. 3(b) we use the same surface but moved symmetrically by a coordinate transfor-

mation by a linearly moved origin with a distance (2, 2). The AFIR curves have a quite

other form! But they reflect well the ridge of the surface. A former direct pathway from the

minimum to the lower SP of index 1 is missing. The AFIR curve now connects indirectly

both SP with the minimum over turning points.

The green lines in Fig. 3 (and in the following Figures) are the Det(Heff )=0 points of the

surface where Heff is the Hessian matrix of the second derivatives of the effective PES with

respect of the coordinates. There the gradient norm of the effective PES has a maximum or

a minimum if one goes along the AFIR curve. The crossing of a green line with an AFIR

curve is a BBP of this curve.

The next example has another set of scaled coordinates. Fig. 4(a) shows the AFIR curves

for a modified three-minimums surface13,30 obtained by the variational formula, Eq. (5). The

modified surface is defined by

V (x, y) =
1

3
(x3 − 3xy2) +

1

40
((x+

7

4
)4 + y4) + 250Exp[−0.15 ((x+ 3)2 + y2)] .

The three minimums may mean one reactant minimum, MinR, and two different product

minimums, MinP1 and MinP2. The corresponding saddles are also so depicted. The example

is chosen because the range of the coordinates is extended by a factor of 10. Nevertheless,

here all AFIR curves suffer from avoided crossings (AC). No two stationary points are truly
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connected. Especially the MinR is far away from the origin, but it has a large AC to the SP2.

AC means that the AFIR method can fail because the stationary points cannot coalesce on

such separated AFIR curves.

( )

0 10 20 30

0

10

20

30

40

x

y

Figure 4: (a) Three minimums BQC test surface with blue AFIR curves. Green lines are

the BBP curves with Det(Heff )=0. (b) The same surface moved by the coordinate pair

(20, 20). By this transformation we avoid the point (0, 0) in Eq.(1). Again, AFIR curves

have strongly changed.

Fig. 4(b) shows the AFIR curves for the same surface but changed coordinates by the

symmetric distance (20, 20). Now the picture again changes totally. The movement of the

coordinates origin out of the global bowl improves the situation. AFIR curves connect one

each minimum with one next SP, but not with the corresponding other SP. The MinR is con-

nected to SP1, the MinP1 is connected to SPP , and the MinP2 is connected to SP2. Between

SPP and SP2 emerges an AFIR arc over the maximum. Again some avoided crossings exist.

No two minimums are truly connected.

Further Examples

Fig. 5(a) shows the AFIR curves for the Eckhardt test surface31 obtained by the variational

formula. The example is used because here the ’forbidden’ origin of the coordinates is the

maximum of the surface reflecting to a certain degree the case of distance coordinates, r of

10



Figure 5: (a) Eckhardt test surface31 with blue AFIR curves. Green lines are the BBP

curves Det(Heff )=0. (b) The same surface where the origin is moved by (3, 3). By this

transformation we avoid the point (0, 0) in Eq.(1). The AFIR curves qualitatively change.

Eq.(1), where the case r=0 is a really forbidden singularity. The Eckhardt surface is again

a surface with two different reaction pathways between reactant and product minimums like

the Rhee-Pande case. Here again all AFIR curves suffer from avoided crossings. No two

stationary points are truly connected. But again the upper SPu seems to be more isolated

than the lower one, SPl.

Fig. 5(b) shows the AFIR curves for a moved by (3, 3) Eckhardt surface. This situation is

not better than under panel (a): the product minimum has no connection to other stationary

points by an AFIR curve, the reactant minimum is connected to the lower SPl by a strange

AFIR curve, but the upper SPu again is isolated.

Many AFIR curves show an AC. We could not assign any useful property of the PES to

such ACs. It is in contrast to NTs. There the ACs indicate the neighborhood of a valley-ridge

inflection (VRI) point which is crossed by a bifurcating, a singular NT. Singular NTs divide

the ’regions of influence’ of the different stationary points. However here, so to say, ’singular’

AFIR curves with a bifurcation are very seldom because these curves do not form a dense

family of curves. They are unique curves. One cannot try to change the ’search-direction’ of

the AFIR curve to get a nearby ’singular’ AFIR curve like a singular NT. The bifurcation of
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Figure 6: MB test surface32 with blue AFIR curves. Green lines are the curves Det(Heff )=0.

The crossing point between a green line and an AFIR curve is the BBP of this curve.

NTs is quite easier to calculate33 and depends directly on the Hessian of the PES. Because

of the nonlinearity of the ansatz of Eq. (1) the connection to the effective Hessian will be

quite more complicated.

Fig. 6 shows the AFIR curves for the well-known Müller-Braun surface32 obtained by

the variational formula, Eq. (5). Here only the main SP1 and the intermediate minimum

are connected by an AFIR curve. All other AFIR curves suffer from avoided crossings. It

is in contrast to the case of NTs.23 At every stationary point we detect one AFIR curve

which coarsely follows an eigenvector direction of the Hessian. At two minimums they follow

the smaller eigenvalue direction, thus the ’reaction valley’, but at the third minimum the

corresponding AFIR curve follows the larger eigenvalue direction. The rule for this pattern

is not clear. At the main SP1 near point (-0.8, 0.65) the AFIR curve here crosses along the

ridge, not along the reaction path direction.

DISCUSSION

The examples demonstrate that the AFIR method can follow a valley from a minimum to

an SP1, or vice versa, at least in good cases.
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There are some specialties:

(i) There are often gaps by an avoided crossing of the AFIR curves. The hypothetical

bifurcation points inside an avoided crossing seem to have no geometrical meaning. In

contrast, regular NTs connect the minimums with the SP1 of the PES. Bifurcation points of

NTs are valley-ridge inflection points. Additionally, an AC can destroy the planed action of

the AFIR method.

(ii) The AFIR curve can have a turning point. This means that the curve touches a level line.

Such behavior is also known from NTs. If a turning point emerges then the corresponding

curve should not serve for a model of a reaction path because the TP has usually a higher

energy than the next SP1.

(iii) A problematic property of the AFIR method, at least in the example of Fig.2̇, as bad as

in others, is that here an unsatisfactory behavior emerges into the inverse directions of the

two global minimums. The corresponding AFIR curves for positive values of α escape into

the left and right mountains, however, they do not find the SP1 at point (1.59, 1.45). Thus

not every SP1 which is connected to a minimum by a steepest descent is also connected with

this minimum by an AFIR curve.

(iv) Usually one AFIR curve leads through the stationary points, correspondingly, to positive

or negative values of the parameter, α. It is again like for NTs, but there we can chose any

direction which then is the leading direction of the NT. The NTs have a quite greater

variability because around a stationary point all search directions are possible. The NTs

form a dense net of curves on the PES. And the NTs are a linear ansatz, thus very easier to

handle than the AFIR method.

(v) A search for optimal BBPs34 is not possible with AFIR curves because they have their

fixed direction at every point. To determine an optimal direction, the search direction must

be continuously changeable to determine the optimal NT.

CONCLUSIONS

In former applications the AFIR method is handled as a ’black box’. It is not discussed

that the αmax of the BBP plays the decisive role for the planed action. The use of only a
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fixed value of the parameter α for a test calculation2 where then it is hoped to find a next

minimum more or less accidentally, gives away possibilities of this ansatz. In good cases, a

consecutive use of small α-steps can follow a reaction path up to the searched SP1 directly.

But one has to be careful: α has to increase up to αmax at a ’barrier breakdown point’ BBP

and then to decrease back to zero at the next stationary point.

However, the emergence of ’avoided crossings’ of AFIR curves can destroy their exploit-

ability for a full reaction pathway.

The dependence on the coordinates of the external force makes the method somewhat tricky!

The last conclusion is that one should better use the simpler Newton trajectories, thus a

fixed, constant force, f, in Eq. (3). NTs are better adapted to the task of the AFIR method.
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