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Abstract. Newton trajectories are used to calculate low energy pathways for a series of Frenkel-Kontorova
models with 6 and up to 69 particles thus up to a medium chain, and an expedition to 101 particles.
The model is a finite chain with free-end boundary conditions. It has two competing potentials and an
additional, external force. We optimize stationary structures and calculate the low energy paths between
global minimums for a movement of the chain over its on-site potential, if an external tilting by a push-
and/or pull direction is applied. We propose to understand a low energy path for a possibility of a super-
lubricity of the chain. We compare different misfit parameters. The result is that the minimums differ only
little, however, the critical length of the chain, Ncr, depends on the misfit parameter. Ncr describes the
end of a ’good’ calculability of the Newton trajectory which follows the low energy pathway of the chain
through the potential energy surface, for a movement of the chain along the axis. We discuss reasons for
the boundary of an Ncr. However, we assume that the low energy paths exist beyond their calculability
by NTs.

PACS. Frenkel-Kontorova model – misfit parameter – critical length – tilting and sliding – Newton
trajectory – superlubricity

1 Introduction

We select a subsystem on an axis in solitary confinement
from a larger example of particles for solid-state Physics.
The subsystem consists of interacting elements, and one
considers the remaining part as a substrate. The substrate
acts by a fixed potential on the extracted subsystem. One
example of such a model is the Frenkel-Kontorova (FK)
model [1,2] introduced in 1938 by Yakov Il’ich Frenkel
and Tatyana Kontorova. The subsystem is represented by
a discrete chain of atoms harmonically coupled with their
nearest neighbours, while the impact of the fixed substrate
on the one-dimensional subsystem can be described by a
sinusoidal form. It can be a standing wave of light, an
optical lattice [3,4], if the chain consists of ions. One sup-
poses that the equilibrium distance associated with the
inter-particle interaction may or may not coincide with
the period of the substrate potential.

The concept has subsequently been involved in many
applications of the model: tribology [5,6] charge-density
waves conductors [7–10], charge transport in solids and
on crystal surfaces [11], magnetic or ferro- and antiferro-
magnetic domain walls [12], magnetic superlattices [13],
superconductivity [14–16], vortex matter [17–19], fractal
spin glasses [20], Josephson junctions [21,22], quantum al-

gorithm [9], and H-bonded chains [1], just to name a few.
Sliding friction forms a broad interdisciplinary field of in-
terest that often involves the application of the FK model
[5,23,24] but for quite more particles than those which we
treat here.

Here we understand static structural properties of this
model of condensed matter. One can find recent applica-
tions of the Newton trajectory (NT) theory to the FK
model in Refs. [25,26]. In many applications, one particu-
larly interesting aspect of the FK model is its driven form.
The FK model additionally exhibits a very rich behaviour
when it is subjected to an external tilting force. NTs de-
scribe the curve of the force displaced stationary points
(FDSPs) for every tilted potential energy surface (PES)
under the increasing external force which is applied to
move the chain over the substrate. NTs are mathematical
tools. They are curves on the given PES where at every
curve point the gradient of the PES points into the same
direction called the search direction [27]. Of course, it is
the direction of the external force. NTs are static proper-
ties of the geometry of the PES.

We compare here by means of NTs the FK models
for N=6 to 101 particles with different relations of the
two main parameters of the model, the natural spacing of
the chain, a0, and the periodicity of the on-site potential,
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as. We treat the values, MF= a0/as= (1, 2/3, 0.61803,
1/2). MF is named the misfit parameter. The value 1 is
the ’trivial’ one where every atom has its own well of the
on-site potential, 2/3 is used in Ref. [28], 1/2 makes very
symmetric structures of the chain [29,30], and the value
0.61803 is the reciprocal golden mean, an often used value
to demonstrate the “incommensurability” - especially for
the FK model [31]. Compare also Ref.[25] for a theoreti-
cal reasoning. In contrast, we do not find large qualitative
differences for stationary states of the PES. Low saddle
points (SP) emerge for all values of the misfit parameter
where MF=1 plays an extra role. For the calculation of
NTs over the corresponding PESes of the FK model, we
often use the pull- and push direction (1,0,...,0,1)T inN di-
mensions. Thus, the first particle is pushed into the chain,
but the last, the Nth particle is pulled off the chain. Then
all other particles may move by the spring forces between
them. The two edge-driven forces are given, but the inter-
nal movement of the chain is a black box. This direction
is sometimes ’quite better’ for NTs than others, like the
only push direction, (1,0,...,0)T , or the only-pull direction,
(0,...,0,1)T , or an equal force [30,32] to all particles, the
direction (1,1,...,1,1)T , making a tilted washboard poten-
tial. ’Quite better’ here means the property of the corre-
sponding NT to find a minimum energy pathway (MEP)
through the PES mountains, or at least a similar low en-
ergy path (LEP). Unfortunately, the only-pull version is
often applied in atomic force microscopy experiments, and
the full force is often applied for usual tribological experi-
ments [5,6], as well as for charge-density waves [7–11]. So,
our result may be somewhat besides of current experimen-
tal results.

Given the case that an NT describes an MEP, or an
LEP, as a deep valley with a low SP through the PES
mountains, for a full movement of the chain over a pe-
riod of the on-site potential, as. Then we propose to think
about the path through the surrounding very higher PES
mountains for a way where an external tilting force along
the direction of the NT can move the chain with very low
resistance of the on-site potential, thus, the direction is a
’lubricated’ direction.

Note: the so called superlubricity [33–38] is the Holy
Grail of tribology.

We propose to understand a low energy pathway of the
PES for the full movement of the chain along a period of
the on-site potential as a

definition of 1D-superlubricity.
As it is already known, superlubricity does not mean that
we have zero resistance of the on-site potential. But if one
can find a direction of the external force which uses the
low energy path for the movement of the chain under a
tilting then this may be named superlubricity. The special
NT which describes the LEP delivers the tilting direction
in the N -dimensional space of the chain. This NT is the
key for the keyhole of the LEP. Note that the usually

treated ’natural’ direction (1,1,...,1,1)T is not the key! See
subsection 5.4 below.

This paper is meant as a short, and certainly not ex-
haustive, review to more than 115 of such low energy
paths. We try to determine an approximate number Ncr

of a critical chain length up to which a complete NT de-
scribes a successful tilting path. We use a model calcu-
lation where the spring forces of the chain and the sub-
strate potential are equal (see equation (1) below with
v = k = 1). The push- and pull direction is best for small
chains, but we also have to look around. Here the dif-
ferent MF parameters come into play. In the case of no
misfit between as and a0, so to say, the push- and pull
direction does not work, at all, from the beginning of low
dimensions. We have only critical dimensions N . And we
do not get a really low energy path. For the next maxi-
mally symmetric case, MF=1/2, we obtain Ncr ≈ 20, for
MF=2/3, we get Ncr ≈ 30, but for the reciprocal golden
mean, 0.618034..., we find Ncr ≈ 50. There are nice com-
plete, unique NTs for the low energy path for N up to 64,
however, in between are gaps for single numbers N where
we did not find a unique, useful NT. We discuss different
reasons why we can lose the ’goodness’ of an NT over the
PES.

The paper has the following Sections. In Section 2 we
report on the FK model which is additionally tilted. A
short review of the theory of NTs is added in Section 3 and
it is explained how NTs can be applied to the FK model.
Beginning with Section 4 we enrol a gallery of examples for
different misfit parameters, and different small chains with
6 to 101 particles. For MF=2/3, the cases N=2 to N=5,
and N=23 particles are discussed elsewhere [25,26]. Here
we first continue this case MF=2/3 in Section 4. We get
symmetric and asymmetric minimums and saddle points
(SPs) of the PESes [39], as well as a full continuation of
the existence of the LEPs for all N . The misfit parameter
1/2 is discussed in Section 5. In Section 6 we treat the
reciprocal golden mean which we push along the series
to 69 atoms, and calculate a runaway of 101 atoms. The
last case of study is the case of no misfit, thus MF=1, in
Section 7. A comparison of the different cases is done in
Section 8. A Discussion in Section 9 and a Conclusion in
Section 10 form the end of the paper. Data of the discussed
cases are collected in diverse Supplementary Materials.

2 The FK model

2.1 Model formula

x = (x1, ..., xN ) is a linear chain of N discrete atoms. The
positions xi are on an axis. For all atoms holds xi < xi+1.
They are sorted in a fixed order. We treat a finite chain,
thus N is less than infinity [40–47], it goes up to 101.

A spring force acts with a force constant k between
the atoms which results in a constant natural distance
ao of the atoms. Without the side force, the end points
of the chain are such that the average distance is ao =
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(xN−x1)/(N−1). A fixed on-site potential with a period-
icity, as, acts on the atoms in concurrence with the springs
between them. The on-site potential mimics a rigid non-
deformable substrate. The ratio ao/as is named the misfit
parameter. The PES for the variable changes of the xi is
the Frenkel-Kontorova model

V (x) = v

N∑
i=1

(
1− cos(2πxi

as
)
)

+

N−1∑
i=1

k

2

(
xi+1 − xi − ao

)2
.

(1)
v is the corrugation parameter of the on-site potential.
Here we put the factor at the sinusoidal potential, v=1,
as well as the spring constant, k = 1, throughout the pa-
per. The ratio of the strength of the on-site potential to
that of the spring potential is 1. Because v >0, the on-site
potential will modulate the chain [48], and we will gener-
ally get another average spacing, ão. All quantities referred
to in this work are dimensionless. Derivations of the PES
(1) are reported elsewhere [25]. The calculation of station-
ary points of the FK model is done by the application of
NTs. For control reasons, we also use the optimization in
Mathematica.

2.2 Tilting of the FK model

Additionally to the two forces of the FK model, we use an
external, linear force in the ansatz [1,2,28,30,43,49–57].
We name the resulting PES an effective PES

VF (x) = V (x)− F (l1, .., lN )T · x . (2)

The multiplication point between the N -dimensional nor-
malized force direction vector (l1, .., lN )T and the N -vari-
able x means the scalar product. F is the factor for the
amount of the force. The new term with the force F is of-
ten named dc driving (dc: direct current) [2,58]. In many
applications it is further subdivided in the dc-part, Fdc,
and an ac-part (alternating current) [30,32]. It is Fac cos(c t)
with a constant c and a time variable t.

The force tilts the former on-site potential with the in-
cline F . If F=0, then a minimum structure for the chain
will exist. But if all li > 0 and F is large enough there a
minimum does not exit, at all [25,43]. It means that no
global pinning can take place. Interesting is the so-called
pinning-depinning transition, as well as the backward pro-
cess [44].

For computational reasons we can use any directional
vector, l=(l1, ..., lN )T with |l|=1, of the N -dimensional co-
ordinate space for a search along a special NT. This we
will really do, see the next Section 3, and the applications
below.

3 Newton trajectories

3.1 The Definition

The stationary points on the effective potential with the
general force vector f = F (l1, .., lN )T satisfy the condition

∇x VF (x) = 0. Its minimums and SPs satisfy the vector
equation

∇x VF (x) = g(x)− f = 0 . (3)

One searches a point where the gradient of the original
PES, g(x), has to be equal to the force, f. Such an ansatz
is named Newton trajectory [59,60] to the force, f. The
gradient of V (x) is the inner force of the chain, x, against
changes of its structure. This force has to be equal to
the external force, f. Then the new chain is again in an
equilibrium. We are at a stationary point of VF (x). The
NT describes a curve of force-displaced stationary points
(FDSPs) of the tilted PES under a different load, F [27,
59–64]. Usually, the energy of minimums is increased, but
the energy of SPs is lowered. This means that the barriers
become lower. A very nice property of every effective PES
(2) is that the NT to the search direction, f, is the same
on all VF if the directional vector, l, is fixed.

Of course, an NT can be treated without the treatment
of the physics of the external force in equation (2). One
only needs an abstract search direction. Then any NT de-
scribes a connection between different stationary points of
an index difference of one [65]. Following numerically an
NT is a method to search a next SP if a minimum is given,
or vice versa. Equation (3) can be written in a projector
form [59,60] (

U− l lT
)
g(x) = 0 (4)

where U is the unit matrix and the l-unit vector is the
normalized direction of f . Equation (4) means nothing else
than that g and l are parallel. If we differentiate the pro-
jector equation (4) with respect to the parameter that
characterizes the FDSPs curve, s in x(s), we obtain with
the Hessian, H, [60,62]

(
U− l lT

)
H(x)

dx

ds
= 0 . (5)

This is an expression of the tangent of the FDSPs curve.
For the calculation, the continuous NT is approximated by
L node points. They should not be interchanged with the
N atoms of the chain. The N atoms form a point in the
N -dimensional configuration space. A curve of such points
is the NT. And it is numerically treated by its L nodes.
Because we have the Hessian of the FK model at hand
[25] then equation (5) is a way to generate the NT of a
successive tilting. We use for the calculations a predictor-
corrector method. For the predictor we use the tangent of
the NT with equation (5).

3.2 Application of NTs to the FK model

We search for a minimum of the FK model in three steps:
(1) We build a chain with spacing ao. Set, for example,
x1=0 for the initial atom, so it is in the first well of the
on-site potential, and set xi = (i− 1) ao for i = 2, .., N .
(2) We put the natural chain into the PES of equation
(1), V (x), and calculate the gradient g(x) [25].
(3) We form the normalized direction l along the nega-
tive gradient. It is the search direction of an NT which
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Fig. 1. Chain with 6 particles and misfit parameter 2/3. Top line: schematic picture of the global minimum at the left panel,
the Pre-SP at centre panel, and the right panel shows the intermediate minimum. For a better imagination, the particles of
the linear chain are artificially set on the curve of the on-site potential, 1-cos(x). Bottom line: the post-SP and the next global
minimum which is moved by 2π on the axis. The right panel shows the profile of the energy over the MEP along the NT to
direction (1,0,0,0,0,1)T . The calculation is continuously done from the start left to finish at the right hand side. The global
minimum is bottom left, then the pre-SP is surmounted, and at the centre the intermediate minimum emerges. The NT goes
further to the post-SP, and finishes at the next global minimum. The stationary states are depicted by black bullets.

goes through the surface point V (x). We follow the NT
downhill to the next stationary state which usually is a
minimum. However, sometimes it is not the global mini-
mum, but only an intermediate, in contrast to a conjecture
in Ref. [66].

Such a minimum will always exist [67]. Each of the N
atoms of the chain will ’look’ into (at least) one minimum
well of the on-site potential. In the trivial case that ao = as
one is finished. The natural chain is the global minimum.
Usually, it is ao 6= as. Then the minimization of the PES,
equation (1), will move the atoms a little into their corre-
sponding wells of the on-site potential down to an equilib-
rium with the spring forces, and the average spacing will
become a value ão near the former ao (if k > 0 what we
always assume). The natural minimization excludes the
assumption of periodic boundary conditions [21,44]

xN = x1 + 2asM (6)

with an appropriate integer M . The latter ansatz will fix
ao. However, in experiments with several tens of ions in
a chain an inhomogeneous spacing was observed, in par-
ticular at the edges of the crystal [68]. But of course, the
free ends of the chain are locked by the springs.

The boundary conditions are important for the global
minimums of the chain. The periodic boundary conditions
are often used, insteed of the free ones. Other boundary
conditions change the global minimums of the chain. Why
periodic boundary conditions are used? They allow to han-
dle an ’infinite’ chain [69,70], they are a trick to treat an
’infinite’ chain using a calculable finite part of the chain.
However, in this paper we treat a finite chain from the be-

ginning. Thus we can leave the boundary conditions free.

If some of the atoms, say xj for some j, are at the
beginning on top of the on-site potential, then the other
atoms left, or right from xj will pull them down to one
of the both wells below the top. In some special cases one
can finish at a symmetric SP, for example, if a0=as/2.
Here one can give to one, or two, or all distances ao a
tiny distortion. Then the NT finds the way downhill to
the minimum.

The minimum is a point in the N -dimensional coor-
dinate space. If the chain is here, it is fixed if no other
outer force moves it out of its state. No sliding or so can
happen. The same applies if N becomes larger and larger,
compare Ref.[71]. Because each of the N atoms sits in its
own minimum well of the on-site potential. And so each
of the atoms must be moved out of the global minimum –
for a hypothetical sliding.

4 Examples of FK chains for commensurate
misfit 2/3

4.1 Low Dimensions

First we use as=2π, a0=4π/3, v=k=1, thus the misfit pa-
rameter MF is 2/3. The case N=6 can be explained by
Figure 1. Starting at the left global minimum, one can
come to the ’pre-SP’ of Figure 1 by moving the particles
1 and 4 to the right hand side over the peaks of their on-
site potential. It is the pathway along the NT to direction
(1,0,0,0,0,1)T . In the next step, the SP structure can re-
lax by a movement by all particles to the right hand side,
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N gMin iMin SP1 barrier hMin∗∗

6 4.603 5.062 5.532 0.929
7 5.336 6.157 6.607 1.271
8 6.240 7.601∗ 7.674 1.434
9 7.250 7.671 8.272 1.022
10 8.040 8.609 9.262 1.222
11 8.969 10.221∗ 10.373 1.404
12 9.937 10.315∗ 10.994 1.057 11.872
13 10.748 11.210 11.957 1.209
14 11.687 12.639 13.044 1.357
15 12.639 12.992∗ 13.710 1.071 14.269
16 13.459 13.841 14.659 1.2
17 14.400 15.345 15.750 1.35
18 15.347 15.679 16.422 1.075 16.677
19 16.170 16.514∗ 17.368 1.198 18.311
20 17.112 17.986 18.459 1.347

N gMin iMin∗ SP1 barrier
21 18.059 18.38 19.134 1.076
22 18.883 19.196 20.069 1.189
23 19.825 20.656 21.17 1.345
24 20.769 21.082 21.846 1.076
25 21.593 21.892 22.790 1.197
26 22.536 23.339 23.881 1.345
27 23.479 23.789 24.557 1.078
28 24.304 24.591 25.501 1.197
29 25.247 26.024 26.592 1.345
30 26.191 26.499 27.269 1.078
31 27.015 27.304 28.212 1.196
32 27.959 28.722 29.299 1.341
33 28.902 29.209 30.393 1.491#

34 29.727 30.018 30.928 1.201
35 30.67 31.426 32.016 1.345

Table 1. Energies of the N -chains for misfit parameter 2/3 at stationary points. gMin is the global minimum, iMin is the
intermediate on the LEP, SP1 is the saddle in between. ∗It is a flat double minimum. **Here a higher energy minimum, hMin,
outside the MEP is known. #The barrier is too high, in comparison to other N . The second possibility with two NTs, one part
pull-only, the other part push-only goes over a still higher barrier of 1.567. Note that the barriers can generally be somewhat
over the lowest possible value if another MEP exists there, compare the case N=23 in Ref.[26]. If we had found ’any’ LEP, we
would have stopped the calculation.

forming the intermediate minimum of Figure 1, top right
panel. It is compressed by nearly 2π against the global
minimum, thus, its energy is higher. It can be seen in
Figure 1 in the right bottom panel for the intermediate
minimum (iMin) by the black bullet in the centre of the
curve, at node 125. The next two steps are again a move-
ment over a ’post-SP’ with a mirror structure to the given
pre-SP, and a next movement to an analogous global min-
imum, but moved by 2π to the right hand side on the axis,
see Figure 1. Though the N=6 case is simple we discuss it
with Scheme 1 for the wells of the on-site potential.

global minimum
distribution of atoms 1 1 2 1 1
wells I II III IV V
pre-SP
distribution of atoms 2 1 2 1
wells I II III IV
intermediate minimum
distribution of atoms 1 2 2 1
wells I II III IV
post-SP
distribution of atoms 1 2 1 2
wells I II III IV
next global minimum
distribution of atoms 1 1 2 1 1
wells I II III IV V

Scheme 1: Distribution of the 6 atoms of the chain
into the wells of the 1-cos(x) potential.

The saddles as well as the intermediate structure are
compressed. They need one well less. At the pre-SP, the
atoms 1 and 4 move into the next well, and the first two
atoms form an anti-kink in the new first well which was
before the second well. For the intermediate, the 4 internal

atoms then form two neighbouring anti-kinks. They need
more energy than the ground state. The post-SP is the
mirror picture of the pre-SP: here the last two atoms form
the anti-kink.

In Table 1 we report the data of minimums, SPs, and
intermediates, iMin, on a full pathway through the PES
mountains along the corresponding NT to direction
(1,0,...,0,1)T . The path always starts with x1 in the valley
of the on-site potential near zero, and ends with x1 moved
by 2π, the parameter as of the on-site potential. Along
the path, the energy has to be lower than the energy of
the SP1. It has to be surmounted. Then the full chain is
moved by approximate as along the NT. The existence
of such a path does not mean that it is the MEP over
the lowest possible SPs through the mountains, as was
already obtained in the case N=23, discussed elsewhere
[26], but it should be an LEP with SP1 energy near the
other MEP. The iMin can be a compressed structure, or,
contrary, a stretched structure, compare again the case
N=23 in Ref. [26]. In the cases N=17 and N=20, other
lower iMin exist. One could assume that a better LEP will
emerge there as well. But in this case if then it will belong
to a more complicated search direction of the correspond-
ing NT. The low energy barrier of all cases in Table 1, for a
movement of the full chain along its axis, comes from the
opposite forces which different particles experience [25].
If one particle has to overcome the next peak of the on-
site potential then another particle before it, or after it,
slides down the slope of its well of the on-site potential.
Of course, this property depends on the overall density of
the particles of the chain, thus on the misfit parameter.
But note: we never found a case where the lattice forces
compensate totally. We always found a remainder of an
amount to overcome the low SP1 of our low energy path-
ways on the PES of equation (1). It is in contrast to a
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Fig. 2. Schematic picture of the global minimum structures for misfit parameter 2/3 up to N=20.

special statement of Ref. [3] “that friction force on a two-
ion system could be made vanished by placing the two ions
at positions where they experience opposite lattice forces.”

In Figure 2 we represent the global minimums of the
chains from N=6 to 20. The energy profiles of NTs which
start in these minimums to the used push- and pull direc-
tion (1,0,...,0,1)T are given in Figure 3.

The ground state structures, as well as the energy pro-
files over the NTs to direction (1,0,...,0,1)T , follow a trend
modulo 3 with N . The ground states are symmetric for
N ≡ 0, 1 mod 3, where they are asymmetric for N ≡ 2
mod 3. Of course then a corresponding asymmetric mirror
structure still exists here. The ’modulo’-trend depends on
the simple misfit parameter of 2/3 used here. The higher
the number of particles in the chain is the more turning
points (TPs) emerge for the corresponding NTs. TPs are
points at the slope of the PES mountains where the NT
changes its way from uphill to downhill, or vice versa [59].
But the more rugged the PES becomes, for higher N , the
more TPs emerge. It becomes more dramatic in the next
Subsection.

4.2 Chains with critical length

We further use the misfit parameter 2/3. Figure 4 depicts
the profiles over the NTs to the push- and pull direction.
Here the TP problems of some NTs strengthen. Many TPs
cause numerical problems for N=28. The given NT could
only be gotten by some tests with the parameters of the
programme.

However, for N=30, the diverse parts of the NT go far
over the height of the SP1. This NT will become unusable
for the push- and pull force for a driving. Note that NTs
describe the way of moving stationary points under an ex-
ternal force. So N=30 may be the first critical length of
the FK model with MF=2/3 with a breakdown of the ’su-
perlubricity’, compare Ref. [72]. In the panel for the case

N = 30 in Figure 4, an NT emerges which loses the prop-
erty to be a good device for a tilting: here a TP exists with
an energy which is somewhat higher than the next SP. It
means that the corresponding tilting moves together with
the former minimum and the former SP1 on an higher en-
ergy than the SP1 itself had before. Such a transition is
possibly inhibited, but not enforced, by the tilting. We try
to understand what causes the strong swing in the energy.
Like in the simple case N=6 above, we treat the distri-
bution of the atoms in the wells of the 1-cos(x) potential
in Scheme 2 for different structures of the chain along the
NT in the left side of panel N=30 up to iMin.

The ground state of the case N=30 is symmetric, the
atoms are distributed into 21 wells with a regular pattern,
see Figure 5. At a low energy left before the left maximal
TP of the profile, the atom 19 of well XIII moves over the
right top. It is depicted in line 2 of Scheme 2 by the symbol
1/2 which means that the atom is distributed to both
wells, left and right from the top of the on-site potential, to
wells XIII and XIV. Then the NT increases to the maximal
TP, shown in the next row. Here the top atom has moved
back to the wells XII and XIII, however, at the left edge,
we find two times two atoms in one well. This is a very
energetic anti-kink. It makes that the number of wells,
which the chain occupies, is reduced to XX. It may explain
the high energy of the TP. If the NT relaxes from this TP,
the anti-kink at the left hand side resolves, but the top
atom moves to wells XI and XII. This top atom is now
the number 16 in the chain. Then the NT again increases
up to the pre-SP1 of the PES. It is again a quite regular
structure, however asymmetric, with the first atom in a
near top position. This may cause the high energy of the
SP1. Further relaxation gives the intermediate minimum,
the last line in Scheme 2. The top position in the wells
XI and XII is now held by atom 17. This top may cause
the relative higher energy of the iMin in comparison to
the global minimum. All in all, one may speculate that
the instable anti-kink at the maximal energy TP could
destroy the ’goodness’ of the NT to serve as a leading line
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Fig. 3. Misfit parameter 2/3. Energy profiles over the NTs to direction (1,0,...,0,1)T . The particles of the chain range from 6
to 20. Black bullets depict stationary points of the PES like minimums and SPs of index 1; however, other peaks are turning
points of the NT.

for a tilting. The instable anti-kinks of the atoms 1 to 4 at
the maximal TP are a kind of traffic jam [28] of the atoms
of the chain on their way along the axis caused by the
tilting along direction (1,0,...,0,1)T . One may speculate
that such a traffic jam is the beginning of the end of the
superlubricity of the chain, at least for the used tilting
direction. The cases N=31 to 35 show many small peaks
from ’local’ TPs. The case N=33 has a multitude of flat
SPs of index one, beside the ’usual’ SPs with an ordinary
barrier. The NT to push- and pull direction does not seem
to follow a single LEP, however, it splinters to a pathway
over different valleys. Additionally, the first pre-SP1 is too
high, in comparison to other barriers. We guess that the
NT does not follow an MEP, and that this search direction
comes to its final possibility here, at least for use as a
tilting direction.

Note that the usual LEP consists of four parts: gMin to
pre-SP1, pre-SP1 to iMin, iMin to post-SP1, and post-SP1

to the new gMin which is moved by as on its axis. In the
most general case, one can assume that ’good’ NTs which

follow the four valley grounds, have four different search-
directions. Here, up to N=32, we have one and the same
search-direction for all four parts of the LEP of interest.
It is a very special property of our kind of LEPs.

A second possibility for N=33 is shown in an addi-
tional panel in the last line of Figure 4. We used for the cal-
culation two different directions: pull-only, or push-only.
One part up to the central iMin is the pull-only NT, the
other part the push-only NT. Again we get a pathway
which does not correspond to the pattern of another chain
length. Again further intermediate minimums emerge. The
steepest descent from the global SP1 at node 4620 is con-
nected to the central iMin, and to the ’pre-iMin’ structure
with SP and minimum at nodes 1592 and 1722. However,
both profiles are quite symmetric and if we combine both
NTs then the path leads to a correct movement from the
first global minimum structure to an as = 2π moved ana-
logous structure.

Another bad result we get in case N=34. The NT to
the push- and pull direction climbs up a maximal TP
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which is much higher than the usual SP of index one on
the LEP. The height of such TPs may forbid the use of the
push- and pull direction for a tilting, though we assume
that the corresponding LEP exists through the PES. In
case N=34 we find a further speciality: near the nodes
2500, and 15 000 in the panel two additional SPs emerge.
They are flat SPs near a shoulder, in the promontory re-
gion. The obtained NT can be accepted if we sort these
two SPs as shoulders [26]. A connection of two SPs of
index one is forbidden for regular NTs by the NT theory.

The problem becomes still more complicated with the
next case, N=35. Here the NT to the push- and pull di-
rection turns after the first SP1 somewhat uphill and leads
over two further SPs, one of index 2, one of index 1, before
reaching at least the region of the iMin. In contrast, the
steepest descent from the first pre-SP1 leads directly to
the iMin. It is proof that a correct LEP exists, however,
the used NT cannot directly follow it. We can compare the
value of the chain length with the definition of a critical
Ncr-value in Refs. [72,73]. Different parameters for the FK
model are used here, thus the critical Ncr becomes quite
higher in those references. We may assume that a critical

global minimum
distribution of atoms 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1
in well I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII XVIII XIX XX XXI
minimal energy before maxTP
distribution of atoms 1 1 2 1 2 1 2 1 2 1 2 1 1+1/2 1/2+1 1 2 1 2 1 2 1
in well I II III IV V VI VII VIII IX X XI XII (XIII XIV) XV XVI XVII XVIII XIX XX XXI
maxTP
distribution of atoms 2 2 1 2 1 2 1 2 1 2 1 1+1/2 1/2+1 1 2 1 2 1 2 1
in well I II III IV V VI VII VIII IX X XI (XII XIII) XIV XV XVI XVII XVIII XIX XX
minimal energy after maxTP
distribution of atoms 1 1 2 1 2 1 2 1 2 1 1+1/2 1/2+1 1 2 1 2 1 2 1 2 1
in well I II III IV V VI VII VIII IX X (XI XII) XIII XIV XV XVI XVII XVIII XIX XX XXI
SP_1
distribution of atoms 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
in well I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII XVIII XIX XX
intermediate minimum
distribution of atoms 1 2 1 2 1 2 1 2 1 2 1+1/2 1/2+1 2 1 2 1 2 1 2 1
in well I II III IV V VI VII VIII IX X (XI XII) XIII XIV XV XVI XVII XVIII XIX XX

Scheme 2: Distribution of 30 atoms of the chain into the wells of the 1-cos(x) potential.
The distribution in the first and in the last line is symmetric, but asymmetric in the other lines.

critical Ncr for misfit parameter 3/4 is around 30 to 35.
The emergence of an NT with higher TPs than the correct
SP1 of the LEP may destroy its model character of a good
tilting path for a movement of the chain through the PES
along a period of the on-site potential. In many cases one
can assume that the usual LEP exists but the push- and
pull direction may not be the appropriate direction for a
tilting.

5 Comparison for FK Chains with another
misfit parameter

We further use v=k=1 in equation (1). In this Section we
test the commensurate case, MF = 1/2, and in the next
Section we study the often celebrated incommensurate re-
ciprocal golden mean, MF=2/(1 +

√
5), for the misfit pa-

rameter of the FK model, in contrast to the former value
MF=2/3. Results for MF=1/2, the global minimums and

N gMin SP1 barrier
7 5.6929 7.2106 1.5177
8 6.608 7.9023 1.2943
9 7.463 8.8964 1.4334
10 8.3546 9.7071 1.3525
11 9.2235 10.629 1.4055
12 10.1063 11.4798 1.3735
13 10.9814 12.3747 1.3942
14 11.86 13.244 1.384
15 12.7371 14.1257 1.3888
16 13.6145 14.9988 1.3843
17 14.4936 15.8786 1.385
18 15.3751 16.7546 1.3795
19 16.2483 17.6336 1.3853*
20 17.1243 18.5099 1.3856

Table 2. Energies of some N -chains for misfit parameter 1/2
at stationary points, and the barrier. *Beginning with the case
N=19, the former ’cape’ becomes higher than the path over
the former iMin, thus we get here a global barrier of 1.751 over
the SP1 of the cape, compare Figure 8, last panel.

SPs of index one, are reported in Table 2.

5.1 Case N=8, MF=1/2

TheMF=1/2 is quite more problematic for someN values
than the former case of 2/3. First we discuss the case
N=8 which is actually not totally normal. To make the
problems clearer, we will go deep into the details of the
chain with a small number of atoms where we can study
the PES. The NT to direction (1,0,...,0,1)T leads over an
SP2 which, however, maybe not explicitly involved into a
tilting in this direction.

Figure 6, left bottom panel, shows a 2-dimensional
PES section over axes along the two negative eigenvectors
of the SP2. A tilting along the direction of the NT will
move together the starting minimum, below left, and the
first SP1 on the right hand side. This pathway is enhanced
by the tilting, compare the right panel. At the same time,
the SP2 and the left SP1 move towards each other: the
second path over the left SP1 will be inhibited. For the
’reaction path’ of a tilting only counts the height of the
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Fig. 4. Misfit parameter 2/3. Energy profiles over the NTs to direction (1,0,...,0,1)T (with the exception of the last panel).
Black bullets depict stationary points of the PES. Note that for N=25, 28, and extremely for N=30, and 34, some TPs are
higher than the SPs. The NTs for N=30 and 34 possibly cannot serve for a model of a successful tilting. In the case N=33 we
calculated two different pathways, both are probably not the correct LEP. For N=33 to 35 we could find the NT after some
shortenings of the predictor step length. Here many TPs emerge in the cape, and also in the inner well of the intermediate
minimum. A further difficulty we find in the cases N=33 and 35, see text.

corresponding right SP1. The SP2 is in every case circum-
vented. Thus, the NT which describes the inner parts of
the FDSPs curve is not a model for a ’reaction path’ here,
at least not on the part which includes the SP2. In the left
bottom panel of Figure 6 we have included further NTs
to the axis-directions (thin black) for comparison, and a
singular NT (red) which meets the valley ridge inflection
point of the PES [25]. The set of points which fulfills the

relation det(H) = 0 (green curves) describes the ’static
frictional force’ [5] as the minimal force needed to initi-
ate sliding for the corresponding crossing NT. Under the
tilting, corresponding neighbouring stationary points can
coalesce here, and the barrier of an SP1 can break down.
In chemical papers, the force is named ’critical force’, and
the point on the PES is the barrier breakdown point.
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Fig. 5. N=30 and misfit 2/3 (compare the panel N=30 in Figure 4 and Scheme 2). Top: schematic picture of the global
minimum, the structures with minimal energy before the maxTP, and the maximal TP. Bottom: the structure with minimal
energy after the maxTP, the SP1 and the iMin.

Fig. 6. Case N=8 for MF=1/2. Top three lines: Picture of the global minimum in the first line, the ’left’ SP1, the SP2, and the
’right’ SP1 in the second line, and an intermediate minimum in the third line. The two minimums have the same energy. The
connection over the MEP between the two minimums can go the left, or the right way. Bottom left: 2D PES section around
the SP2. The NT (black) to direction (1,1)T turns up after passing the SP1 to the SP2 and then goes down to the other SP1,
and to the final intermediate minimum on top. The red curve is a singular NT, compare Ref. [25], two thin black curves are
the two NTs to the axes-directions, (1,0)T and (0,1)T , and the green curves depict the det(H) = 0 set [25]. Bottom centre:
energy profile over the NT to direction (1,0,...,0,1)T . The SP at the top at node 150 is of index 2. Bottom right: Tilted VF

with abstract tilting direction −0.2(1, 1) along the fat black NT. The former left SP1 and the summit, SP2, are coalescented,
and from the right SP1 only a small barrier remains. Usual thermic noise will move the chain from gMin at the bottom to the
much deeper new iMin on top along the steepest descent, but not along the ’wavy’ NT.

It is not always correct that the global minimum is
unique as it is stated elsewhere [74]. We found here a spe-
cial new property of the case N=8 with a0=1/2 as. The
chain has two different symmetric global minimums of the
same energy, see Figure 6, first and third line. But the two
different MEPs connecting the two minimums are both
non-symmetric throughout.

5.2 Further series to MF=1/2 with N=10, ..., 19

In this subsection we increase the number of particles
for the misfit parameter MF=1/2. Some minimum struc-
tures, as well as the energy profiles over the NTs, are
shown in Figures 7 and 8. The minimum structures de-
velop regularly, however, the NTs show more and more
TPs on their ways. Beginning with N=14, N even, an SP
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Fig. 7. Misfit parameter 1/2. Top line: three minimum chains for N=10, 11, 12. Bottom left: structure of the labile SP2 of the
12-chain. An MEP will circumvent this point. Bottom right: minimum for N=14. The cases of even N=10, 12, and 14 are quite
similar. However, the case N=11 is asymmetric. There also emerges an SP of index 3 with a structure like the SP2 of the case
N=12.
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Fig. 8. Misfit parameter 1/2. Energy profiles over the NTs for N from 10 to 19. NTs usually go to direction (1,0,...,0,1)T ,
however, the second case N=14 is the NT to the SP-direction. But this NT also turns up to the SP2 and an SP3, and does not
represent an MEP here, either. For N=13, 15, 17 and 19 we draw a combined profile for first an NT to push-only-, and second
a part to pull-only direction, see text.

of index 3 on the NT additionally emerges here. Again,
the ’inner’ parts of the NT over these SPs of higher index
are not the pathways of the sliding of the chain after a
tilting. On such parts of the NT moves the other SP of
index 1 which is not involved in the tilting.

The odd N cases of misfit parameter 1/2 all have
an asymmetric global minimum. Then one has the cor-
responding mirror structure with the same energy. The
profile on the transition from one minimum to its mirror
is a kind of promontory for the global profile. However,
these foot-hills increase with N , and for N=17 the pro-
file over the NT for the ’promontory’ becomes higher than
the transition to the usual intermediate minimum for the
’breakthrough’ through the PES mountains.

Beginning with case N=13 and N odd we still find a
strange, new situation: the NT to push- and pull direction
is a singular NT which follows a direct pathway after the
global minimum to an SP of index 2 with energy 13.7207

for N=13 (and then still to a peak over an SP of index 3
for N=13, 15, and of index 4 for N=17). An example of a
singular NT can be studied in Figure 6, bottom left panel,
the red curve there. The singularity is characterized by
a bifurcation point of the NT at a valley-ridge inflection
(VRI) point of the PES. Starting at the minimum, the
singular NT follows the minimum bowl up to the VRI
and then it can follow straightforwardly the branch to the
SP2 on a ridge. Of course, in the neighbourhood of the
SP2 usually (at least two) SPs of index one exist. If the
NT to push- and pull direction has found the SP2 then
we assume that an NT to another direction will find a
corresponding SP1.

To avoid the pathway of the singular NT to SPs of a
higher index, we changed the search direction of the NT
to find the SP1 for the low energy path through the PES.
From the start we used the only push, (1,0,...0)T , up to the
intermediate, at node 128 for N=13, and from there the



12 Quapp and Bofill: Low Energy Paths for FK Chains

N=14

SD

0 50 100 150 200 250 300 350

12.0

12.5

13.0

Node

P
E
S

10 20 30 40
x

-4 -2 0 2 4

-4

-2

0

2

4

EV1

E
V
4

Fig. 9. Left: steepest descent for N=14, misfit parameter 1/2, from SP1 to the ’next’ minimum moved by as along the axis.
A ’direct’ NT from the original minimum to the moved one, without the passage of the higher index SPs, could not be found.
Center: Schematic picture of iMin for N=14, misfit 1/2, at the end of the SD from SP1. It has the same energy like the ’global’
minimum. Right: 2D section around SP2: the one extra iMin right below is artificial. Only the two other minimums lead to the
former gMin or iMin.
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Fig. 10. Misfit parameter 1/2, N=16, Schematic picture of the stationary points global minimum and an SP2. There also
emerges an SP of index 3.

only-pull direction, (0,...,0,1)T . The first direction leads
from the intermediate minimum further, and ’false’ up
into the mountains to energies of 15 units, but the second,
the pull-only direction, correctly finds the way out of the
PES along the low energy path. Of course, for a tilting
experiment one has to search a common direction for both
parts of the pathway. So, N=13 may be the first critical
value of the dimension, Ncr, here.

For N=17, the important SPs of index one for the low
energy pathway are at nodes 517 and 720, in the panel
bottom left in Figure 8. The SPs of index one on the left
hand side are on some ’pre-mountains’. The NT to push
direction here additionally leads also over SPs of a higher
index. This NT is followed up to the intermediate mini-
mum at node 618. The end of the pathway is the NT to
the pull-only direction starting at the intermediate mini-
mum. Because the ’pre-mountains’ increase and increase
for odd N , one can suppose that that it will cause more
difficulties for a tilting of the chain.

The case N=14 is further discussed in Figure 9. If we
imagine the NT along the push- and pull direction to the
SP1 then we have the pathway where the two stationary
points, the global minimum and SP1, move towards each
other and coalesce at least, for a height enough external
force. Then the way to the next moved minimum, shown
in the centre panel of Figure 9, is free. But this way is
not represented by the former NT; only a steepest descent
describes it. A coarse 2D projection of the relation is given
by the right panel of the PES around the SP2.

Here for N=14, we additionally tested another search
direction, the eigenvector direction along the SP1 valley.

The corresponding energy profile is shown in a central
panel of Figure 8. The many small TPs of the former NT
at the left panel, near the SP1, disappear, but near the
central SP3 new TPs emerge. The global shape of the
profile is, however, similar to the push- and pull direc-
tion. This NT also leads over the SP3.

The case N=16 is shortly discussed in Figure 10. In
contrast to case N=8, now the SP2 has a more complicated
structure.

5.3 Case N=20, MF=1/2

We still discuss the ’abnormal’ case N=20, MF=1/2.
Some structures of this chain are shown in the first two
rows of Figure 11 where one can imagine a movement of
the chain along its axis through the different intermedi-
ates. In contrast, if we fixed the natural chain with spac-
ing a0 = as/2, what is numerically possible, and if we
abstractly moved it over the on-site potential, it had to
surmount a barrier of 10 energy units. It is exactly the
value of N/2. This is in strong contrast to the barrier of
the case of misfit 2/3 where usually barriers are less than
or equal 2, shown elsewhere [26]. Here again the tilting
along the push- and pull direction is possible up to the
former SP1, but the relaxation must again be described
by steepest descent, compare Figure 11, right panel at the
bottom row. The NT describes the movement of the higher
SPs together with its inner parts. It is not of interest for
the tilting of the chain.
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Fig. 11. Misfit parameter 1/2, N=20. Top: schematic picture of the global minimum, the ’left’ Sp and an iMin in the first
line, and a high iMin, the ’right’, mirror SP and the 2π moved global minimum in the second line. Here again an SP3 emerges.
Bottom left: energy profile over the NT to direction (1,0,...,0,1)T . Black bullets depict stationary points of the PES. Here we did
not find a deep valley with a global pathway through the mountains. The NT leads after the SP1 over a pass of the mountains
with barrier 3 being also an SP of index 3. Right: energy profile over the two SD paths from SP1. The two parts are combined
together. Left is the global minimum, right emerges an intermediate with equal height which is not met by the former global
NT.

It seems that a critical Ncr ≈ 13 to 20 for misfit 1/2
will be somewhat before that one of the other parameter
2/3 with Ncr ≈ 30 described in the former Section.

5.4 Comparison with the external force F (1, 1, ..., 1, 1)T

The global minimums for the misfit parameter 1/2 are
highly symmetric. An additional excitation with the highly
symmetric force F (1, 1, ..., 1, 1)T [29,30,32] takes place
along a singular NT in a symmetric subspace of the co-
ordinates. This NT usually crosses the ’global’ SP of the
PES where half of the atoms are in the minimum well
of the (1 − cos x)-function, but the other half is on top
of the on-site potential. More exactly, if either N is even
then N/2 atoms are on top, or if N is odd then (N + 1)/2
atoms are on top. The energy of this SP is 2

[
N+1
2

]
and so

the barriers are very higher than in Table 2. And the bar-
riers increase with N . Additionally, the ’global’ SP is an
SP of an index higher than one. Thus, the corresponding
singular NT does not describe an LEP.

6 Misfit reciprocal golden mean
MF=2/(1+

√
5) – series N=6 to 69

We further use v=k=1 in equation (1). The ’structural
mismatch’, or the ’lattice mismatch’, by the reciprocal
golden mean [72] causes an non-periodic behaviour of the
different chains to the tested length N . First we report on
the profiles of NTs to the push- and pull direction for N
from 6 to 30 in Figure 12. All the NTs are obtained with-
out numerical difficulties. Some ’mild’ TPs emerge which

are near the saddles on the NTs. Only the case N=23 has
TPs which are a little higher than the SP1 which gov-
erns the barrier height. Figure 13 reports on the cases
beginning with N=31. The first case with a rocky road
for the NT is N=36. The profile is calculated with the
usual push- and pull direction. Additionally, we had to
sharpen the usual corrector threshold, which is in other
dimensions 10−8, to the new value 5.5∗10−12. The profile
shows a further problem in higher dimensions. The three
points of the intermediate minimum between nodes 500
and 750 are three times the same structure. The NT pro-
gramme is turned back after a TP two times, but in the
third try it finds the way to the outgoing SP1 and to the
moved global minimum. Here we meet a numerical prob-
lem which is not relevant for an experimental tilting: The
chain will slide through the LEP under a tilting, if such
an LEP exists. If one has found the SP1 for the barrier to
the intermediate minimum, and this is iMin itself, then it
is very probable that the full path exists.

The peak of the red part of the shown profile in panel
N = 36 is not a TP of the NT, however, it is a numeri-
cal error where the NT also turns back its direction and
goes back the former uphill way, now downhill. Such pu-
tative TPs are sometimes caused by the inaccuracy of the
numerical programme. To detect such a case one has to
control the movement of the chain along its axis. One can
overcome the problem by shorter predictor steps, see some
of the following panels where more and more numbers of
nodes are used. (For the explanation of the problem, we
used this not fully correct profile in the N = 36 case.)
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Fig. 12. Energy profile over NTs for the misfit parameter reciprocal golden mean. Black bullets are stationary points of the
PES. The NTs are calculated to pull- and push direction (1,0,...,0,1)T . Beginning with N=12, here ’mild’ TPs emerge which
are near the saddles on the NTs. For N=23 two TPs increase stronger over the SP1.

Some remarks, or comments are in order to special
dimensions. First, the Fibonacci numbers 13, 21, 34, 55 for
N do not play any special role, in contrast to a statement
of Ref. [75].

The case N=44 is the first for the reciprocal golden
mean where we did not find a single NT along the LEP.
We had to split the calculation into two parts like in some
cases for MF=1/2. The profile for panel N=44 is a com-
bined curve from the two NTs to two different directions.
First up to the iMin region between node 350 and node
550, we use the only-push direction, and from the last
iMin-structure we use the only-pull direction. So we ob-
tain a profile which may describe a nice LEP. But possibly,
a tilting experiment with one of the used search directions
may go wrong. We have to leave it open that here exists a
unique NT to a common direction. From the point of the
theory of the NTs, such a common direction does not need
to exist! We only know that every NT connects stationary
points; however which points is open, of course.

For the case N=47 we present two panels. The red
profile belongs to an NT to the unique push- and pull
direction starting in the intermediate minimum. The NT
finds a usual SP1, however then it turns uphill to a higher
SP2, and it then goes further to the different ’post’-SP1.
Here no further iMin is on the path. This path would be
not a good device for a tilting because the second part
after the SP2 can act as an inhibition of the movement of
the chain. There the two different SPs can coalesce and so
increase the barrier. But, nevertheless, here exists a LEP.
We find it by an analogous trick like in case N = 44. The

blue profile of the next panel, also for N=47, is a com-
bined curve from the two NTs to two different directions.
First up to the iMin in the centre, we use the only push
direction, and from the iMin we use the only-pull direc-
tion. So we obtain a profile which may describe an LEP
through the 47-dimensional mountains of this chain. But
possibly, a tilting experiment with one of the used search
directions may go wrong.

For N=49 we again have to use two numerical steps
for the NT to only-push- and only-pull direction, one up
to the iMin, and one from there. The threshold for the
corrector is set to 10−11.

For N=50 the threshold for the corrector is set to
10−11, and the predictor steps are strongly shortened.
Besides the numerics, here again emerge quite high TPs
which may disturb the tilting.

The next case, N=51, is also a ’good’ case where a
nice low energy path emerges. In all cases we could find
the main SP1 for the barrier of a sliding.

The problems continue with N=54 and uphill: the NT
to the push- and pull direction usually only finds the ’pre-
SP1, and then it goes ’wrong’ uphill in the mountains.

The last case where the push- and pull direction gives
the LEP is the case N = 64. However, its calculation was
very difficult, as one may see by the number of nodes which
we needed. Single push or single pull NTs find here another
intermediate minimum anywhere in the PES mountains.

In the casesN=66, 67, and 69 we get three times nearly
the same SP. Here the NT turns around, probably after the
SP1 it passes an SP2 and then goes back to an equal SP1.
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N gMin SP1 barrier
6 3.8832 4.6331 0.750
7 5.3799 6.8042 1.424
8 6.8032 7.4083 0.605
9 7.2797 8.7663 1.487
10 8.2028 9.3504 1.148
11 9.2923 10.2197 0.927
12 10.0009 11.4389 1.438
13 11.0443 12.0459 1.002
14 11.956 13.0573 1.101
15 12.7878 14.0209 1.233
16 13.9565 14.8160 0.925
17 14.6509 15.9034 1.253
18 15.5944 16.7041 1.110
19 16.6279 17.6168 0.989
20 17.4038 18.753 1.339
21 18.4242 19.4457 1.022
22 19.3119 20.4393 1.127
23 20.196 21.3674 1.171
24 21.2576 22.2225 0.965
25 22.0468 23.2731 1.226
26 22.9971 24.0926 1.095
27 23.9753 25.0196 1.044

N gMin SP1 barrier
28 24.8127 26.1138 1.301
29 25.813 26.848 1.035
30 26.6967 27.8337 1.137
31 27.6048 28.7486 1.144
32 28.6408 29.6278 0.987
33 29.4465 30.6591 1.213∗

34 30.4031 31.4908 1.088
35 31.3553 32.4238 1.068
36 32.2131 33.4906 1.278∗

37 33.2117 34.2534 1.042
38 34.0945 35.2334 1.139
39 35.0087 36.3278 1.319∗

40 36.0146 37.0334 1.019
41 36.8529 38.0517 1.199
42 37.8065 38.8914 1.085
43 38.7465 39.8285 1.082
44 39.6182 40.8776 1.260∗

45 40.6126 41.6584 1.046
46 41.4924 42.6359 1.144
47 42.4180 43.5391 1.121∗

48 43.4007 44.4387 1.038
49 44.2527 45.45 1.197∗

N gMin SP1 barrier
50 45.2149 46.2940 1.079∗

51 46.1418 47.2337 1.092
52 47.0269 48.2705 1.244
53 48.0158 49.0632 1.047
54 48.8921 50.0416 1.150∗

55 49.8206 50.9372 1.117
56 50.7889 51.8448 1.056
57 51.6572 52.8504 1.193
58 52.6154 53.6243 1.008∗

59 53.5372 54.6408 1.103∗

60 54.4333 55.5855 1.152∗

61 55.4200 56.4701 1.050∗

62 56.2949 57.4450 1.150∗

63 57.2250 58.3443 1.119∗

64 58.1858 59.2488 1.063
65 59.0616 60.2314 1.170∗

66 60.1032 61.0599 0.957∗

67 60.9369 62.1532 1.216∗

68 61.8335 62.9810 1.148∗

69 62.8227 63.8740 1.051∗

..
101 92.4273 93.6346 1.207∗

Table 3. Energies of the N -chains for misfit parameter 0.618034 at stationary points, and the barrier. The ∗ means that no
unique NT could be found for the LEP, thus one NT to only one direction. In contrast for every half way we used either only-pull
or only-push direction. Note that the reported barriers can be somewhat over the lowest possible value if there exists another
MEP, compare the case N=23 of MF=2/3 in Ref.[26]. If we found ’any’ LEP, we stopped the calculation.

Such a behaviour is allowed by the NT theory. Compare
Figure 6, panel left below for an 8-dimensional chain.

We have worked out, after a jump in N , the ’over-
whelming large’ case N = 101. As one can see in the last
line of Figure 13, the case is similar to the last former di-
mensions. Here are again many small peaks with TPs on
the two NTs, but we meet a usual barrier, and the TPs
are not too high. The case speaks for our feeling that the
LEP will exist also for further dimensions. However, the
complexity of the behaviour of the NTs with the many
small extra peaks with their many ’useless’ TPs will ex-
plode with increasing N .

7 No Misfit between as and a0

For comparison we still treat the case that as = a0 = 2π,
thus the MF parameter is 1. We study the ’most com-
mensurate’ case [76,77]. It is quasi trivial, on a first sight,
because every atom is in one well of the on-site potential,
xi = (i−1)∗2π for the global minimum, gMin. The FK po-
tential energy is V (xgMin) = 0 for all N . The general gra-
dient vector is gi(x) = ∂V (x)/∂xi = v sin(xi)+k(−xi+1+
2xi − xi−1) for i = 2, . . . , N − 1 and g1(x) = v sin(x1) −
k(x2−x1− a0), gN (x) = v sin(xN ) + k(xN −xN−1− a0).
Finally, the general Hessian matrix is Hi,j = ∂2V (x)/∂x2i
where Hi,i−1 = Hi,i+1 = −k and Hi,i = v cos(xi) + k(2−
δi,1−δi,N ) for i = 1, . . . , N . The gradient at gMin is equal
to the zero vector, and the Hessian is positive definite in
gMin. Further we continue to use v=k=1.

However, for a movement of the chain along its axis,
the ’trivial’ structure of gMin becomes a problem. Here

the structures for a really low energy path do not exist.
First we treat the pull- and push direction for an external
force. Because of the high internal symmetry of the chain,
in relation to the on-site potential, we get a singular NT in
a symmetry subspace which leads over SPs of higher index,
see the left panel of Figure 14. The involved structures of
the 10-chain are depicted in Figure 15. Usually, besides an
SP2 emerge lower SPs of index one. So, it is clear that the
pull- and push direction is not a good choice for a LEP
for an external force.

The second possibility is a half-NT to push-only direc-
tion, and from a reached (symmetric) intermediate min-
imum a start with a pull-only NT. The combined profile
is shown in the right panel of Figure14. The pathway is
lower in energy than the NT to push- and pull direction
in the left panel, however, it is still not a path with such
low energy like in the cases of the other misfit parameters
in the former Sections. Because of the full regularity of
the global minimum of the chain, it needs quite more en-
ergy to move a kink, or an anti-kink through the PES. The
reached stationary points of the 10-chain on the combined
NT are shown in Figure 16. The barrier for a movement of
the chain is 7.894. It is an exorbitant value in comparison
to chains with real misfit relations, in the former Sections.
The high effort for the NT may come from the property
of the chain that already the ground state has a kind of
’standard traffic jam’ for its single atoms [28]. There is
no simple possibility to move one atom into a next gap.
Because here are no gaps. Here we cannot create a critical
Ncr. The small dimensions are already critical.
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Fig. 13. Energy profile over NTs for the misfit parameter reciprocal golden mean. Black bullets are stationary points of the
PES. Peaks without a bullet are TPs. The NTs in the lower dimensional cases are calculated to pull- and push direction
(1,0,...,0,1)T . ’Mild’ TPs emerge again. For N=31, 39, and 50, two TPs increase stronger over the SP1. Red profiles (for N=36
in part, and N=47) describe degenerated NTs, see text. Profiles for the higher dimensional cases are obtained by two different
NTs to pull- or to push direction only. See the arrows in the corresponding panels. Note the nice symmetry of the profiles even
though different directions are used.

The kind of flat intermediate minimums like in the
central panels of Figure 16 come in for the first time in
dimension N=8. Before that, up to N=7, ’only’ an SP1

forms the barrier on the MEP for a full movement of the
chain. Compare the first seven atoms in the first panel top
left of Figure 16. However, the push- and pull direction for
an NT is too symmetric. The corresponding NT is singu-
lar. It leads over a ’global’ SP of higher index where all
atoms are possibly on top of the on-site potential, like in
the central panel of Figure 15. There for N=10, the SP

has index 4. The energy is 20, and in general case the en-
ergy of this ’global’ SP is simply 2N . For the ’global’ SP
we guess that

if N ≡

1
2
0

mod 3 the index is

 [N/3] + 1
[N/3] + 1
N/3 + 1/2

 (7)

where 1/2 means that here is an additional zero eigenvalue
in the list, the point is a shoulder in the corresponding
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Fig. 14. Energy profiles for NTs for chain length N=10 and the MF=1. Left panel to push- and pull direction, right panel to a
combined use of first push only, and second only-pull direction. The row of stationary points on top of the right profile consists
of alternating flat SP1 and iMin, compare Figure 16.
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Fig. 15. Structures of the 10-chain with MF=1 on the NT to push- and pull direction. The left panel is an SP2, the centre is
an SP4, and the right panel is again an SP2, the mirror image of the left one. The SP4 is here the ’global’ SP for MF=1. All
atoms are on top of the sinusoidal function.
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Fig. 16. Structures of the 10-chain with MF=1 on the combined NT to push- or pull direction. The panels alternate the 4 SP1

and the 3 iMin structures. The latter depicts an anti-kink which moves through the chain.

direction. Such SPs of an higher index should be avoided
by the moving chain.

To explore the MEP, one has again to use two differ-
ent search directions. It works for only-push direction up
to the SP1, and only-pull direction downhill to the next
global minimum. The barriers are 7.647 for N=5, 7.778
for N=6, 7.858 for N=7, 7.873 for N=8, and so on. In
the last case, as it was already reported, the barrier is
formed by quasi a line of alternating SP1 and iMin. This
pattern seems to continue for all N .

In Figure 17 the energy profile for two combined NTs
in the case N=20 is shown. Like on a straight, flat line,
the consecutive stationary points are ordered and form
the barrier: N -6=14 SP1 and N -7=13 intermediate min-
imums, iMin. Their energy differs only minimally. The
Peierls-Nabarro barriers on the flat pathway from the first
pre-SP1 to the last post-SP1 are near zero. The consecu-

tive SP1 and iMin change between 7.892 and 7.869 energy
units. The barriers are 0.023 units. The stationary points
of this flat way describe the movement of an anti-kink
through the chain under the corresponding external force.
However, the NT deviates more and more from the flat
MEP between the stationary points. Compare Figure 14
right panel, and Figure 17. The external force pushes the
chain at the first atom. So, the inner atoms represent
’other’ directions. The NT to push only consists of more
and more peaks with high TPs. Here for N=20, the TPs
reach 16 energy units. At least, on the last arc before the
central iMin, the NT ’escapes’ over two further high sta-
tionary points, an SP2 and an SP1, both are near neigh-
bours, but both are far away from the structure of the
SP1 before and the central iMin next. All these arcs are
roundabout ways, and their energy increases to twice the
value of the barrier, but of course the energy is less than
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Fig. 17. Energy profile for the 20-chain with MF=1 on the combined NT to only-push- or only-pull direction. The alternating
SP1 and iMin structures form the barrier. They are the lower spikes of the NTs. They describe an anti-kink which moves
through the chain on a really equal level, here at maximally 7.892. However, the NTs which explore the stationary points do not
lead along the valley floor, they do not directly connect the consecutive saddle-sink sequence, but they escape to much higher
energies with TPs at the top of the peaks, and additional SPs of index 2 and 1 (red bullets). The MEP itself leads over all the
black bullets.

the 40 units of the fully symmetric central SP of index 7
here, where xi = (2i−1)π, i = 1, ..., 20. The barrier of the
MEP of the moving anti-kink through the chain is on a
nearly equal level 7.9. However, the problem that a single
direction for the push of the long chain is not really well
adapted, cannot be avoided. We get the unnecessary, large
peaks of the NTs.

Anyhow, the NT to only push goes up to the central
iMin. If we follow it further, then it turns up, and it crosses
anywhere other SPs of higher energy and higher index.
So, the stationary points of the MEP are well described
by the combined two NTs to first push direction only, and
second pull direction only. One may wonder that the pull-
and push direction itself does not lead along the path.

It is allowed to speculate that for an external force
in only-push direction, since the amount is large enough
to surmount the barrier breakdown point [25,26] between
the global minimum and the first pre-SP1, at an energy of
7.674 with a gradient norm of 0.517, being the static fric-
tional force, Fc, then the anti-kink may start to slide, and
slide further along the MEP through the PES. The flat
barrier looks like an invitation to superlubricity. However,
the speculation will not be correct. Note that the NT de-
scribes the movement of the diverse stationary points on
the PES under the external force. The way along the pro-
file of the course of the corresponding NT describes the
energy to surmount the current next SP1. This will in-
crease the value near 16 energy units. And it holds only
for the first half of the barrier, up to the central iMin.
Then the only-push NT still more deviates from the flat
barrier. The full pathway from the left global minimum at
zero energy to the right global minimum at zero energy is
only one step of the movement of the chain along its axis.
A sliding would need many such steps. It is so complicated
because the structures of the chain along the LEP are no
uniform sliding, in contrast to an assumption of Ref. [44].

No, the anti-kink which moves through the chain changes
continuously the inner structure of the chain.

If N increases to larger and larger values, and at least
to infinity, one could ’forget’ the first step of an exitation
from the global minimum of the chain to the pre-SP1 at
’N = −∞ + 4’, for the first anti-kink. Then anywhere
on the flat barrier one could move the anti-kink along
the chain without a Peierls-Nabarro barrier, and this may
emerge like a ’ground state’ of the chain. The movement
could emerge like a superlubrical sliding.

Another speculation may concern a dynamical beha-
viour of the atoms of the chain after a single large exter-
nal push to the first atom, x1. Here may emerge the first
anti-kink in the first flat iMin in the well 4 of the on-site
potential. How can the induced anti-kink wander by the
impulse through the chain, if the first atom is shifted over
the flat barrier with all the SP1 and iMin? Such a moving
dislocation would not need to go along the peaks of the
NT to pull-only-direction to atom x1. It could go like a
wave along the flat barrier. We leave open the question for
further studies, see for example also the former Refs. [72,
76,78,79].

8 Comparison

We compare the three cases of the true misfit parameter.
For the stationary states no trend can be detected; also for
the ’most’ incommensurate ratio of the reciprocal golden
mean the barrier for a sliding does not disappear for higher
N , either. But all barriers are less than 2, in contrast to
what was approximated in an older work [42]. In Figure 18
we compare the different barriers of any obtained low en-
ergy path for the three misfit parameters and the different
chain length. The slight reduction of the barrier for the dif-
ferent misfit parameters comes from the fact that different
particles experience more opposite forces of the on-site po-
tential. If one atom has to overcome a peak then another
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neighbouring atom slides down the next slope of its well.
This property, however, depends on the overall density of
the particles of the chain in the on-site potential. Note: the
lattice forces never compensate totally, in contrast to an
assumption in Ref. [75]. The Fibonacci numbers 13, 21,
34, 55 for N , with exception of 8, do not play any spe-
cial role for the red points, in contrast to a statement of
Ref. [75]. Clear differences between the misfit parameters
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Fig. 18. Barriers of the calculated NTs for different chain
length and the misfit parameters 1/2, reciprocal golden mean,
and 2/3. For no misfit, MF=1, we find an equal barrier at
≈7.9, which we assume to hold for all N .

emerge if we try to test a maximally possible chain length
for useful NTs for a tilting of the FK model. Reasons are
discussed in former Sections: large arcs of the NTs describ-
ing roundabout ways with high lying TPs, or the NT of
interest becomes a singular NT and leads to SPs of higher
index, on the PES quite over the searched LEP.

9 Discussion of the low energy paths

In the ’good’ case when the found NT well adapts the
LEP we will only have little and small extra peaks with
TPs. Say, we treat the case N=48 of MF reciprocal golden
mean, compare Figure 13. Then we can assume that the
NT follows the LEP near its valley ground. The chain
changes along the LEP in a characteristic way. Say, we
start with a pull only of the external force. Then at the
start we cause an anti-kink under the first atoms of the
chain, a compression. By the spring forces between the
atoms, the anti-kink will move through the chain, but it
needs more and more energy, the more atoms it involves.
This continues up to the ’pre-SP’. From there the chain
relaxes to the intermediate minimum, iMin, which may be
now a compressed equilibrium. But usually it has a higher
energy in comparison to the global minimum. The other
half of the LEP may be adapted by a pull-only NT. Here
we start at the iMin, but pull with the external force at
the end of the chain. This causes a kink under the last
atoms of the chain, a stretching of the distances of the
outer atoms. The atoms have a rarefaction. Again, the
kink may move through the chain, but it needs somewhat

more energy, if more atoms are involved. With enough en-
ergy it will reach the post-SP, and from there the kink
from the end, and the anti-kink of the compressed struc-
ture can unite and form the new global minimum moved
by as.

The sliding of the chain over the substrate does not
take place in fixed form. It goes on by a kind of wave of
an anti-kink, or a kink along the chain, a moving disloca-
tion. This is also the case for no misfit between the on-
site potential and the springs of the chain, MF=1. But
because here all wells of the on-site potential are equally
filled by atoms of the chain, in the global minimum of the
chain, one cannot exchange different fillings of atoms in
the wells of the on-site potential like in the former cases.
Any external force must first produce an anti-kink, or a
kink, at the ends of the chain. This causes a larger effort
than for true misfit parameters. However, here we then
can move the produced dislocation with an equal energy
height through the chain. We get an MEP of a very nice
flat kind over a series of alternating SP1 and iMin from one
end of the chain to the other. And this seems independent
of the length of the chain. For our choice of parameters
v=k=1, we have an equal height of the flat barrier of ≈7.9
energy units.

10 Conclusion

We do not discuss any kind of kinetic friction here, be-
cause we only treat static properties of the PES of the FK
model. Our calculations have been mainly developed in
the tens-of-atoms regime. This falls considerably short of
the scales at which one would like to understand energy
trends and structural properties in materials. Recently,
experiments are done with laser-cooled and trapped ions
for insights into friction processes [38,47,68,80]. The sys-
tems try to emulate the FK model (1) for a small number
N , where the chain of the interesting particles slides un-
der an external force over the fixed rigid on-site potential.
The FK model (1) is sufficiently complex for tests of basic
concepts [31]. An only-pull force, for example, is an exci-
tation by a localized point-like contact like in an atomic
force microscope, or in a friction force microscope. How-
ever, we do here not study the dynamical behaviour of the
chain under a push, a pull, or a vibrating external force.
But it seems to be clear that in the cases with MF 6= 1,
where two SPs and an intermediate minimum govern the
low energy pathways, we will not get that an (anti)kink
can propagate freely. This may be possible for the case
MF = 1, compare Figs. 14 to 17, where after an excita-
tion of the chain over the first pre-SP we have a quasi flat
path over all the next iMin and SP1. Note that any kind
of dampings are also not treated here.

We again demonstrate in this paper that the station-
ary states like minimums and SPs of any index of the PES
of the finite FK model (1) can be obtained by NTs (or any
other minimization method [39]). It is not problematic if
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an equilibrium state is asymmetric, and the method is in-
dependent of the relation of the parts of the misfit param-
eter, the periodicities, as and a0. May they be rational or
irrational, commensurable or incommensurable. The ’most
irrational’ case of the reciprocal golden mean may have
some slightly lower MEPs, however, qualitatively, the case
is the same like for rational misfit parameters, at least for
small N .

The PES (1) is directly given in the FK model. We
can execute all calculations of NTs which determine the
diverse properties of the model. The accuracy can be high.
For comparison and confirmation we controlled the results
of NT calculations by usual minimization procedures of
the Mathematica programme because the PES of the FK
model (1) is a usual hypersurface where the known min-
imization procedures work. All NTs over the PES of FK
chains are calculated numerically. Maybe some problems
which we suffer in some cases come from the procedure for
the following of the NTs. – But we are not ’indignant’ by
the necessity of numerical simulations. It is our only pos-
sibility to see the low energy pathways through the high
energy PES of an FK chain. So we can present convincing
numerical data.

NTs are especially appropriate to the driven FK model
by a tilting force. By the calculation of a barrier break-
down point (BBP) on the NT of the driving force direction
we can get the depinning transition [25,26] and the gradi-
ent there is the critical force, the static frictional force. The
critical phenomenon is reducible to a saddle-node transi-
tion [74], or a shoulder on the effective PES. All that are
static properties of the effective PES.

NTs allow us to drive they in very different direc-
tions over the PES. The standard direction (1,...,1)T is
physically well understandable. Our used directions in the
higher dimensional cases, beginning with N=6, usually
have to deviate from the standard direction. The corre-
sponding valleys on the corrugated PES, which may be
also very curvilinear, are better to follow by NTs which
are adapted to the situation. So we work in the general
case with the push- and pull direction, and in more com-
plicated cases with a tilting which concerns only one end
of the chain. However, so the individual peaks and valleys
of the PES open, and so better adapted forces are to get;
and may be experimental workers can construct an exper-
iment where such better forces are applied to the chain,
and with a lower load than it is necessary for a full move-
ment of the chain in standard direction. We hope that
this paper will stimulate further research in this vibrant
research area.

The central finding of the paper is the existence of the
LEP with a barrier of less than 2 energy units through
the PES of all examples of true misfit parameters which
are calculated. For the case of MF=1 we have a ’medium’
path with a barrier of 7.9 energy units through the PES.
Many LEPs are well adapted by the corresponding NT of

the ’numeric’ proof, some NTs have large spikes on the
PES where high TPs emerge. The latter are not so well
adapted. We guess that the LEPs further exist for the
chains with many more atoms, so to say, the LEP is an
intensive property of the FK model, i.e. independent on
the size of the chain. However, a proof of this conjecture
seems far from straight forward. The existence of the LEP
with a barrier of less than 2 energy units is a hint of a pos-
sible ’superlubricity’ of the corresponding one-dimensional
chain. It is a positive contrast to the assumption that such
superlubricity is possible only for 2-dimensional on-site
potentials and chains [81]. But note that our understand-
ing of superlubricity does not mean a frictionless one. It
means that the friction of the chain is much lower than
one would assume with a first knowledge of high energy
SPs of the PES, and high TPs of an NT.

The second, downstream problem is that the NT of
interest can be found with its corresponding search direc-
tion. Every stationary point is connected with some neigh-
bours by NTs, however, one usually does not know the
corresponding search direction of the NT. In our cases we
search a special connection between the global minimum
and the pre-SP, from there to the intermediate minimum,
from there to the post-SP, and then to the next recurrence
of the global minimum. In many cases we have a unique
NT which connects all these points. In other cases we have
two different search directions for two NTs for two parts of
the pathway. But in all cases we have a nice symmetry of
the energy profiles for the two parts of the pathways. The
symmetry allows us to assume that really a symmetric re-
lation between kinks and anti-kinks takes place along the
LEP of interest. The case of two different NTs may be
problematic for a tilting with the force direction in one
of both possibilities. Usually one of the parts of the path
then is enforced by the external force, however, the other
part can be inhibited by the tilting.
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Appendix: Supplementary Materials

The pdf-files are packed in QuBo19epjbSupplMaterials.zip

Supplementary Material 1 MF 2/3, N =6,...,24,
Pages 1-39, FKmodD6toD24mf2by3Suppl1.pdf

Supplementary Material 2 MF 2/3, N =25,...,35,
Pages 1-72, FKmodD25toD35mf2by3Suppl2.pdf

Supplementary Material 3 MF 1/2, N =6,...,20,
Pages 1-81, FKmodD6toD40HalfSuppl3.pdf

Supplementary Material 4 MF reci golden mean, N =6,...,49,
Pages 1-124, FKmod6Dto49DGoldSuppl4.pdf

Supplementary Material 5 MF reci golden mean, N =50,...,69,
Pages 1-166, FKmod50Dto69DGoldSuppl5.pdf

Supplementary Material 6 MF 1, N =5,...,20,
Pages 1-24, FKmodD5toD20mf1Suppl6.pdf

Throughout, node123 means a stationary point at node
123 in a calculation by an NT in a corresponding Fortran
programme. SetX means a set or calculated point in a
calculation by the Mathematica programme.


