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Abstract

If one applies mechanical stress to a molecule in a defined direction then one gen-
erates a new, effective potential energy surface (PES). Changes for minima and saddle
points by the stress are described by Newton trajectories on the original PES [Quapp
and Bofill, Theor. Chem. Acc. 135, 113 (2016)]. The barrier of a reaction fully breaks
down for the maximal value of the norm of the gradient of the PES along a pulling
Newton trajectory. This point is named barrier breakdown point (BBP). Depending
on the pulling direction, different reaction pathways can be enforced. If the exit saddle
point (SP) of the chosen pulling direction is not the lowest SP of the reactant valley,
on the original PES, then the SPs must change their role anywhere: in this case the
curve of the log(rate) over the pulling force of a forward reaction can show a deviation
from the normal concave curvature. We discuss simple, 2-dimensional examples for this
model to understand more deeply the mechanochemistry of molecular systems under
a mechanical stress.

Keywords: Reaction rate, Effective potential energy surface, Mechanochemistry, Newton
trajectory, Barrier breakdown, Saddle, Intermediate.

∗Department of Mathematics, University Leipzig, PF 100920, D-04009 Leipzig, Germany
quapp@uni-leipzig.de
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Assume a pulling along the direction of the Newton trajectory from minimum R to minimum
P. Shown is an overlay of the stationary points of diverse effective surfaces under the pulling.
Used are 16 equidistant loads. The red point is the final barrier breakdown point of the
direction. An upper saddle moves downward, but a lower saddle moves uphill: so, the
common rate of a forward reaction can become abnormal. Level lines of the original PES
are shown as background where around the minimums dense lines are used.
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INTRODUCTION

Considerable interest is attached to the problem of a mechanical stress applied to a molecular

system. In theoretical chemistry there are two basic concepts underlying many widely used

models, namely, the potential energy surface (PES) and the reaction path (RP). The RP

is a one-dimensional description of a chemical reaction through a sequence of molecular

geometries in an N -dimensional configuration space. We use N = 3n − 6 for the number

of non-redundant internal coordinates, and n is the number of the atoms of the molecular

system. An interesting type of RP models is the Newton trajectory (NT).1–8 For this type

of RP holds that at every point of the curve the gradient of the PES points into the same

direction, a direction of a prescribed search vector. On the other hand, this property is the

central idea of models of mechanochemical stress applied to a molecular system where the

search direction is now the direction of the stress vector. This is the reason why NTs should

be taken into account as the basic model of a great variety of mechanochemical problems.9

The present study is a follow-up of a first investigation of the realm of mechanochemistry

with the NTs tool.10

In the last years, the phenomena of the action of a mechanical stress over a molecular

system have motivated experimental and theoretical research,11–19 and see further references

therein. We will quantify molecular stress geometrically. Basically, the model was created

by Ong et al.20 and it was treated independently by Ribas-Ariño et al.21 and Wolinski

and Baker.22 Now it is the generally accepted model.14,18,23,24 It consists in a first order

perturbation on the associated PES of the unperturbed molecular system due to a stress or

pulling force, f, by

Vf (r) = V (r)− fT (r− ro) , (1)

where the symbol T means transposition of a vector or a matrix. The scalar product with

the force, f , ensures that only the part of r− ro in the direction of f acts on the system. The

subtrahend in Eq.1 is a hyperplane in the space IRN+1 which is sloped in the direction of

the force, f ∈ IRN . Vf is named the force-modified PES,20 the force-transformed PES,14,25

or the effective PES. A similar model was discussed by Thornton26 for the prediction of the

effect of substituent changes on the transition state (TS) geometry. It can also be thought
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as the change of the PES of a reaction under catalytic conditions. In this case, the direction

and the magnitude of vector f are fixed for every special catalyst. A combination of both

aspects is mechanocatalysis.27

METHODOLOGY

For a given force, f , we have an effective PES, Vf , which has a new inherent chemistry

with respect to the unperturbed PES, V , such as other reaction rates and other chemical

properties. Of course, the linear perturbation in Eq.1 is the simplest model.28 Meanwhile,

time was used to derive new basic ideas of mechanochemistry.14,28–33 The force f in Eq.1 may

be determined by the change of a distance between two pulling points of the molecule,34 or by

any other experimental setup. Formerly it was associated with one of the N = 3n−6 internal

coordinates34 or a linear combination of them.20 Throughout the present work we assume

that the plane of two intrinsic coordinates (x, y) is the stage where the pulling works. These

coordinates may describe the weakest point of a molecule where it breaks preferentially.35

We note that the theory and the use of NTs can be applied to N -dimensional systems.2,36

All formulas in this section hold for the N -dimensional case.

Due to the external force, the stationary points are located at different positions on the

effective potential, Vf (r),32 with respect to the unperturbed potential, V (r), where it holds

∇rV (r) = g(r) = 0. The stationary points on the effective potential have to satisfy the

analogous condition, ∇rVf (r) = 0. Since Vf (r) is the one given in Eq.1 it follows that the

new minimums or SPs should satisfy

∇rVf (r) = 0 = g − f . (2)

One searches a point where the gradient of the original PES, g, has to be equal to the

mechanochemical force, f, being the force that induces the chemical process. If the mechan-

ical stress in a defined direction is f = F l with a fixed unit vector, l, then it is l = g/|g| and

F = |g| is the magnitude at the stationary points since from Eq.2 we have, 0 = l (|g| − F ),

being satisfied if the former equality is also satisfied. Eq.2 means that the tangential hyper-

plane to the original PES, characterized by the gradient, g, is equal to the hyperplane of
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the pulling force, fT r, in Eq.1, see Fig.1, and compare Fig.12a in ref. 14. The case F = 0 is

named the thermal limit.14 It is the case without a mechanical load.

Figure 1: PES with an NT, and a tangential plane to direction l of the NT. The tangential

plane touches the PES at a point of the NT which moves with a changing F along the NT.

We also use the alternate mathematical form for the solution of Eq.2 by the projector

equation1,2,5 [
U− l lT

]
g = 0 (3)

where U is the unit matrix. The equation has to hold unattached from the uncomfort-

able norm, |g|, and it means nothing else that the vectors g and l are parallel. It holds

g = f = lF = l|g|. Note that at the stationary points of Vf (r), Eq.3 is fulfilled, because

|g| − F = 0, and from this it is (g − f) = 0.

Now we treat a fixed direction of l, but different magnitudes of the forces, F . For point-to-

point changing forces, F , we should get a curve of the ’reaction path following force displaced

stationary points (FDSPs)’.23 The minimums and the SPs of index one of the effective PES

are on the FDSPs curve, because at these points holds |g| = F . The FDSPs are a solution of

Eq.3, but this equivalently means that they are on the solution of the differential equation

of Branin37 which we can use in N = 3n− 6 nonredundant coordinates9,10

dr

dt
= ±A(r)g(r) . (4)
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t is a curve parameter and the matrix A is constructed as a product of the determinant of

the Hessian, H, with the inverse Hessian,

A = Det(H)H−1 . (5)

The determinant is a scalar. Its zero removes the singularity of H−1 emerging on the way to

the SP. The matrix A is named the desingularized inverse Hessian, or the adjoint to H. The

signs ’±’ are used to allow the curve to go uphill from a minimum, or downhill from an SP.

Curves r(t) satisfying this expression are called Newton trajectories (NT). A property of Eq.4

is that the gradient at every curve point always points into the same direction, l, if it had

this direction at an initial point. Then holds the parallelity of the vectors, l||g, throughout

the path.1,2 It also means that the solution is a distinguished coordinate path,1,2,38 as well

as a solution of the projector Eq.3.

The solution curve of the Branin equation is a regular curve from a point near the

minimum to an SP if no valley-ridge inflection point is crossed.2 The Branin Eq.4 is a

well-known model for RPs.1,2,5,8 This RP model is especially used here for the FDSPs: for

every special magnitude of the force, F , we get a moved stationary point of the new effective

potential, Vf (r) with f = F l and g = l|g|, but this point can be represented on the NT of the

original PES, V (r), where this NT is used for the pulling direction. The reason is that this

special pulling direction does not change the description of this special NT on every effective

PES under the pulling. An NT can start near both kinds of stationary points, minimums

or saddle points in every direction. And it goes (usually, if no valley-ridge inflection point is

met) from a minimum to an SP of index one, or vice versa (the last is the ’index theorem’39).

In ’higher’ regions of the PES regular NTs exist which connect SPs of index k and (k + 1),

with 1 ≤ k ≤ N − 1, or vice versa.

If one moves on the path of FDSPs one has to increase the norm of the force, F , beginning

at the original stationary points with F = 0 in the thermal limit: there is a part of the

pathway from the minimum uphill, and a part from the SP downhill. Anywhere, if the force

increases further and further, the two parts meet. Here the norm of the gradient has its

maximum. Thus, the curvature of the PES along the corresponding NT is zero, because at the

meeting point of the effective minimum and the SP we have dVf (r)/dt = lTAl(|g| − F ) = 0.
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As a consequence, the barrier of the original PES disappears. In other words, on the effective

PES, Vf (r), with the maximal rupture force,40 the SP disappears, and the pulling force

realizes the reaction. (This may happen somewhat earlier because of the existence of the

zero point energy of the former minimum.) We propose to name the point the barrier

breakdown point (BBP). Its necessary mathematical formula is10,41

Det(H) = 0 . (6)

Note that H is always the Hessian of the original zero-force PES, V (r), because the model

Eqs.1 and 2 do not influence the calculation of the Hessian.26 The idea of the proof of

condition Eq.6 is that the BBP is a turning point of the function |g| along the NT. A proof

of Eq.6 is given in ref. 10. The definition of an optimal pulling direction10 is also derived: the

mechanical force to be applied to the molecule of interest is f = F l where F =
√

gTg. To

each NT belongs the corresponding l-vector, and by varying it we have different NT curves.

All the regular NTs, that leave the minimum and arrive at the same SP, cross at least once

a Det(H) = 0-line. The first Det(H) = 0-line that each NT crosses gives the BBP of this

NT, the maximal rupture force, Fmax. This is due to the fact that at the BBP point of a

regular NT, the gradient norm |g|, takes its maximum value along this NT curve. If we

compare all NTs of such a set, then the NT which gives the lowest value of Fmax is named

the optimal NT. It coincides with a gradient extremal (GE) exactly at the intersection point

with the Det(H) = 0-line.10 In this special BBP, the Det(H) = 0-line, the GE and the

optimal regular NT meet. The optimal BBP is a stationary point on the function |g| crossed

by the optimal NT. (In higher dimensional PESs, the condition Det(H) = 0 may describe a

manifold, but the GE and the NT are always one-dimensional curves.)

Historically, the BBP was named the breaking point distance (for single bonds),14,40,42 and

the corresponding magnitude Fmax was named the rupture force. BBPs for bonds in diatomic

molecules are calculated,14,42,43 as well as the BBPs for single bonds in some polyatomics.

The one-dimensional BBP-problem is also treated by Freund.44 With the present model,

both the BBP and Fmax can be predicted for large molecules, thus in a higher dimension.

In the present study we will use optimal NTs on test surfaces to treat simple rate formu-

las under a pulling force. Recently, there is a paper by Zhuravlev et al.19 where the authors
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report an abnormal behavior of the log(rate)-curve, against the applied force, F . By simple

2-dimensional surface models with parallel reaction pathways representing competing reac-

tion channels, we reproduce such an abnormal log(rate)-curve. By the simplicity of the test

models, we can confirm some former explanations45 for a counterintuitive behavior of some

rate curves. It can emerge if the pulling changes the order of the SP-heights of the com-

peting reaction channels. We emphasize that the present study uses generic PES models,

associated with non-specific reaction mechanisms, to make the results as general as possible.

Nevertheless, these generic surfaces are taken from well tested models of specific chemical

systems.

The results are organized as follows. With 2-dimensional test surfaces we explain the

impact of stress on the topography of the effective PES. First we treat the ’weakly multidi-

mensional case’19 with only one SP on the PES. In the next Subsection we give a possible

explanation of abnormal log(rate)-curves over F in ’strong multidimensional cases’19 with

competing reaction pathways. The paper finishes with a Discussion and a Conclusion.

RESULTS

Potential energy surfaces with only one exit pathway

The skew-Morse minimum

We illustrate the concept of using NTs in more detail, with some test PESs, in the following

2-dimensional examples. The two coordinates used, (x, y), may be the plane of the two most

important dimensions of a chemical reaction.19 All other remaining coordinates are projected

out of the treatment. It is further assumed that an important part of the pulling vector acts

in this (x, y)-plane in any linear combination.10,46 First we use an example of Ribas-Ariño

and Marx14 for a dissociating part of a molecule. The test PES is

V (x, y) = 100(1− Exp[−x/
√

2 ])2 + 50y2 − 25xy . (7)

The Morse potential is assumed with dissociation energy, De = 100, and with force

constant 25 in the neighborhood of the minimum. The y2-term would be associated with
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Figure 2: Surface of the PES of Eq.7 with the optimal NT (blue), the gradient extremal

(thick black), and the BBP-line Det(H) = 0 (green). The red point is the optimal BBP.

Small dashes depict the convexity border of the PES.

an harmonic oscillator with a force constant of 100. The third term represents a coupling

between the x and y coordinates causing a skew PES – skew means here that the SP does

not lie in the direction of the normal modes of the minimum. The minimum is at zero

level, but the SP is at height 49.8 energy arbitrary units. At the beginning we determine

the optimal NT which has to cross the optimal BBP at (0.815,0.278). As explained in the

previous section, it results by the crossing of a GE with the (green) force rupture line with

condition Det(H) = 0 which is here a straight line, see Fig.2. The gradient along the optimal

NT points in the direction lopt=(0.967,0.256)T .

Additionally to the optimal NT we use two further NTs for comparison, one is at the

minimum steeper than the optimal NT, but nearby, with direction lupper=(1,1)T like in ref.

14. The other has an angle of more than 90o to the optimal NT and has a turning point

(TP) near the bottom of Fig.3. Its direction is llower=(0.477,-0.879)T .

However note that there is a limit direction, along a singular NT to a valley-ridge inflection

point (not shown in Figs.2 and 3). Below such a direction a pulling does not exist which

could overturn the minimum over the SP.10 The BBP of the upper NT is at (0.815,0.445)

but the BBP of the lower NT is at (0.815,-0.81). We assume that one can do a pulling
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Figure 3: PES of Eq.7 with the optimal NT (blue), and two further NTs. The red point is

the optimal BBP, two black points are the BBPs of the other NTs. The lower NT crosses

the convexity border (thin dashes) at its turning point TP on the energy surface. Note that

TP and BBP do not coincide in this example.

experiment into the three directions, fupper, fopt, and flower, along the three directions of the

NTs of interest. With different magnitude of the forces, F , along the three NTs, we get

different effective PESs

VF (x, y) = V (x, y)− F (lx, ly) (x, y)T . (8)

For fixed l and f = F l we can slightly change the notation of Vf (x, y) to VF (x, y) with

respect to that employed in the introduction. We use for the upper NT: 0 ≤ F ≤ 33.8, for

the optimal NT: 0 ≤ F ≤ 28.8, and for the lower NT: 0 ≤ F ≤ 115; the upper limit is the

corresponding rupture force of |g| at the BBPs.

We can determine the difference between the corresponding effective minimum and the

effective SP for every F . Rates for forward reactions under the pulling forces are estimated

by a simple Eyring-ansatz14,24,47 for the activation energy on the effective PES

kF = koExp[−(VF (SP )− VF (Min))/kT ] (9)

where ko is the Arrhenius preexponential factor of a reaction attempt frequency. We put
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Figure 4: Semilogarithmic representation of Eyring rates 9 on the VF surfaces of the skew

Morse PES 7 over three pulling directions, see Fig.3. Note the different scaling of the force,

F , which depends on the final BBP. Left panel (a): pulling along the upper NT, center (b):

pulling along the optimal NT, right panel (c): pulling along the lower NT. All curves are

regularly concave.

here the factor ko = 1, and kT = 1, both in arbitrary units, for simplicity. We assume that

the reaction occurs at a constant temperature.

Because of the different height of the three BBPs of this example, we need different scales

for F . The result is shown in Fig.4. We get three ’normal’ concave log(k) curves increasing

over F , independent on the pulling direction. ’Only’ the F -scale is very different, in a ratio

of 1:4, depending on the clever, or not so clever choice of the pulling direction. The effect

of an increase of F on the effective stationary points, Min and SP, of the effective potential,

VF , results in a continuous decrease of ∆VF = VF (SP )−VF (Min), for every allowed pulling

direction. We remark that the log(rate) curves are concave over F , thus they are regular as

one expects it. The direction (1,1)T of ref. 14 is well guessed near the optimal direction.

The skew double-minimum PES6,10

We continue to use example 4 of ref. 10 We use a product of two quadratic forms

V (x, y) = (x−1, y−1)

 1 −1.11

−1.11 3

 x− 1

y − 1

 (x+1, y+1)

 1 0

0 12.5

 x+ 1

y + 1

 .

(10)

The minimums lie at zero level, the SP is at level 24. We have the simplest case of two

minimums, connected by one SP, compare ref. 23. The minimum at (-1,-1) be the reactant.
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Figure 5: Surface of the norm of the gradient, |g|, of the skew double-minimum PES of Eq.10.

Included are the optimal NT (blue), two further NTs (thin black) with TPs, the gradient

extremal (thick black), and the BBP-line Det(H) = 0 (green), as well as the stationary

points of the original PES of Eq.10. The red point is the optimal BBP. It is an SP of the

|g|-surface.

The minimum at (1,1) be the product. The optimal NT10 crosses the minimal BBP at point

(-0.338,-0.588). It is the crossing of the gradient extremal with the Det(H) = 0 line. Here

the surface of the norm of the gradient has an SP; see Fig.5. The BBP-line Det(H) = 0 is a

ridge on the surface |g| =
√

gTg of the squared gradient, compare ref. 48. The lowest value

of |g| on the ridge manifold in between the two valley-ridge inflection points is the optimal

BBP. In the general case of an N -dimensional PES, the condition Det(H) = 0 determines a

manifold: the ridge manifold of |g|.

We chose three NTs for an estimation of rates for three different pulling directions: one is

the optimal NT (blue), and two NTs are side ways which are clearly not optimal, see Fig.6.

(Compare also Figs. 5, 6, and 7 of ref. 10.) The constant gradient directions along the three

NTs chosen are for the left NT lleft=(-0.357,0.934)T , for the optimal NT lopt=(0.259,0.966)T ,

and for the right NT lright=(1,0)T . As in the preceding example, with Eq.8 we use for the

left NT: 0 ≤ F ≤ 94, for the optimal NT: 0 ≤ F ≤ 32, and we use for the right NT:

0 ≤ F ≤ 177; where the limits are again the corresponding rupture forces, Fmax = |g|max,
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Figure 6: Surface of the skew double-minimum PES of Eq.10. We use different distances

between the level lines: below, the distance is 4 levels (9 lines), then 10 steps follow with a

step of 10, and the outer shell of level lines has steps of 25 levels (12 lines). The last shown

level is at 450 units. Included are the optimal NT (blue) and two side NTs. The red point

is the optimal BBP. The TPs of the side NTs are the BBPs of these NTs. They are at a

height of 204 and 37.8 levels, correspondingly.

at the corresponding BBPs. Additionally, we assume no back reaction. Because of the very

different heights of the three BBPs of the present case, we need different scales for F . The

result for rates is shown in Fig.7. Representing log(k) in front of F we obtain concave curves

in the three cases. We note that this behavior is irrespective of the pulling direction. The

F -scales are very different.

A conclusion for this Section is:

If model Eq. 1 is convenient for the pulling experiment, and if we have only one SP around

the reactant valley, so to say, if it is a ’one-dimensional’ problem on a higher-dimensional

surface, then the overcoming of the SP is an intrinsic one-dimensional process along every of

the possible NTs driven by the pulling. The pulling directions can point over a broad range.10

The pulling can move the SP on the effective PES uphill into the original PES mountains, if

the NT has a TP, however, because the minimum on the effective PES also moves uphill on
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Figure 7: Semilogarithmic representation of Eyring rates of Eq.9 on the VF surfaces of

the skew double-minimum PES of Eq.10 over three pulling directions, see Fig.6. Note the

different scaling of the force, F , depending on the final BBP. Left panel (a): pulling along

the left NT, center (b): pulling along the optimal NT, right panel (c): pulling along the

right NT. All curves are regularly concave.

the original PES, nevertheless, the differences of both energies usually become smaller. The

behavior is named transition state stabilization in enzyme catalysis.49 So to say, for a fixed

F , the effective SP and the effective minimum do not move equidistantly. Compare Fig.8,

for at least this representative example. Though the PES may be higher-dimensional, the

pulling process is only ’weakly multidimensional’.19 The form of the log(k) curve over F does

not show indications of a catch-bond behavior, compare ref. 45. Remember: for a catch-bond

behavior the dissociation lifetime increases with the applied force. Here, the probabilistic

chemistry on the current effective PES, VF , ’normally’ goes its intuitive way where a bond

is slipped by the pulling. We underline that both of the examples result with qualitatively

equal log(k)-curves, compare Figs.4 and 7. Fig.4 may concern a dissociation, but Fig.7 may

concern an isomerization. This is not a mathematical proof for such curves. In comparison,

the present results differ somewhat with respect to that reported in ref. 50 for NTs with TPs,

compare Fig.1.B there. It is also not consistent to the ’rollover’-result for a one-exit PES in

refs. 31 and 51. We found that a TP of the pulling NT has only an influence on the rupture

force, Fmax. In the case of the right NT, Fmax is 5 times larger than the rupture force of the

optimal direction. But we find no qualitative change of the pulling process. Generally, it is

known that the reduction to a one-exit model is a huge simplification,30 which may be only

of theoretical interest.
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Figure 8: Pulling along the right NT on the double-minimum PES of Eq.10. Here we use

equidistant level lines of the PES. Included is the right NT from R over a TP and along a

ridge back to the SP. (This NT is clearly not the optimal NT between R and SP.) The red

point is its force rupture BBP. Here it is the TP of the NT. The included sticks represent the

connections between the effective SPs (above on the ridge) and the effective minimums (below

in the valley) at the indicated pulling forces, F , correspondingly. The effective stationary

points are indicated by black points. For comparison, the background PES is the PES in

the thermal limit, F = 0. See the text for a detailed explanation.

Potential energy surfaces with parallel pathways

The Rhee-Pande PES52

The next example is a model for a two-pathway surface45,53 where we assume that the di-

rected mechanical force, f , enables a reaction pathway which is energetically disfavored in the

forceless case.35 Of course, the two-pathway-model is still in the framework of minimal mod-

els31 as well. The example may be understood as topological extract of a chemical example

for pulling scenarios19 where the high molecular dimension of the problem is projected into

two intrinsic dimensions. It concerns a protein folding in a β-sandwich protein, the G-gallus

src SH3 domain from Tyr kinase. Of course, this is a simplified model. Further examples for

a two-pathway surface, thus the existence of catch-bonds, can be found,20,33,50,53–67 to name

just a few. We treat a 2-dimensional test surface of Rhee and Pande52 for the case of com-

peting RPs. Additionally, on the lower path emerges an intermediate minimum, compare
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Figure 9: (a)The Rhee-Pande surface.52 Levels start at zero. The lower, first energy levels

are in 1-steps; but after level 10, the higher levels go in 5-steps. (b) Four NTs: two optimal

NTs for a pulling: NT1 and NT2, and two singular NTs: NT3 and NT4. The dashed curves

give the valley-ridge borders. The green curves are the BBP condition det(H)=0.

ref. 68. The expression of this PES is

V (x, y) = (1− 0.5 Tanh[y − x]) (x+ y − 5)2 + 0.2 ∗ (((y − x)2 − 9)2 + 3 (y − x)) (11)

+15 Exp[−(x− 2.5)2 − (y − 2.5)2]− 20 Exp[−(x− 4)2 − (y − 4)2] + 1.67318 .

There are three minimums (reactant, intermediate, and product), three SPs (the low SPl,

the upper SPu, and the SP behind the intermediate, SPi), and a maximum at the center, see

Fig.9. The relations between the stationary points become clear by the following numbers:

reactant at 0 energy units, intermediate at 5.963 energy units, product at 3.637 energy units,

low SPl at 12.842 energy units, upper SPu at 24.003 energy units, and intermediate SPi at

9.573 energy units. Thus, the upper reaction pathway is approximately twice in energy than

the height of the lower reaction path.

With the result of the former Section, we know that we can restrict our treatment on

the optimal NTs. The two ’optimal’ NTs for a pulling, here named NT1 and NT2, are
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Figure 10: GEs on the Rhee-Pande surface (fat lines). The intersection (red points) with the

green line in the reactant valley gives the two optimal BBPs. The green curves depict the

condition det(H)=0. The two optimal NTs for a pulling: NT1 and NT2 are the NTs which

also intersect these BBPs.

derived by the intersection of gradient extremals (GEs) with a green line, see the red points

in Fig.10. Their two directions are l1=(-0.076,0.997)T and l2=(-0.943,0.333)T . They show

an interesting difference, an asymmetry on this surface: One branch of the NT1 goes after

the start at the reactant to the SPl, crosses the intermediate, and turns after the SPi uphill

through the maximum. Then it leaves the region after crossing of the SPu on a ridge. It

does not reach the product: there is another branch of this NT1 through the product.

In contrast, NT2 connects all stationary points: if starting at the reactant, it goes to

SPu, then to the maximum, after this it steps down to the SPl, turns to the intermediate,

and goes at least through the SPi to the product. Note that both of the optimal NTs lead

over the SP of index two, here a maximum. Thus, when we study the pulling problem by

NTs, we have to include these higher index SPs, compare ref. 71.

On the other hand, the singular NTs, NT3 and NT4, also represent the slight asymmetry

of the surface. NT3 bifurcates at the VRI point between the two SP-valleys of the prod-

uct side, while NT4 bifurcates at the VRI point between the two SP-valleys of the reactant
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Figure 11: Two cases of VF of the Rhee-Pande PES for two pulling forces, (a) F = 6.625

and (b) F = 10.511 along NT1: first, (a) the SPi coalesces with the intermediate to a

shoulder.69,70 Levels start at -27 units here. The lower, first energy levels are in 1-steps up

to -15 units; but after this level, the higher levels go in 5-steps up to 50 units. Later, in

panel (b), the SPl coalesces with the reactant minimum to a shoulder. There is the final

BBP of the PES. Here the levels start at -50 units at P and they go in in 5-steps up to 50

units. Note that the effective PES changes with F , however, the used NT1 and the lines

Det(H) = 0 (green) survive all linear pullings of model Eq. 1. In this case, a flat SPu still

remains on the PES.

side. Their two directions are l3=(-0.714,0.7)T and l4=(-0.694,0.72)T . (We do not show the

valley-ridge inflection points in Figs. 9 and 10.)

If we assume a pulling along the corresponding direction of the two optimal NTs,

l1=(-0.076,0.997)T or l2=(-0.943,0.333)T , we get the movement of the corresponding statio-

nary points on the new effective potentials. The pulling along NT1 is shown in Fig.11; such

a schematic sequence of effective PESs, VF , is proposed in refs. 21,31.

We get a similar picture for a pulling along the NT2 as is shown in Fig.12.
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Figure 12: Two cases of VF of the Rhee-Pande PES for two pulling forces, (a) F = 2.5

and (b) F = 15.092 along NT2: first, (a) again the SPi coalesces with the intermediate

to a shoulder. The levels are like in the case F = 0. Later, (b) the SPu coalesces with

the reactant minimum to a shoulder. There is now the final BBP of the PES. The former

minimum disappears, but the former SPl still remains on the PES. Levels start at -15 units

here. The lower, first energy levels are in 1-steps up to -5 units; but after this level, the

higher levels go in 5-steps up to 50 units.

Conclusion

If model Eq. 1 is convenient for the pulling experiment, then every of the two competing

valleys for a reaction R → P of the Rhee-Pande PES, Eq. (11), can be enforced by a

corresponding special pulling direction. It is demonstrated here along the optimal NTs to

the two SPs. The intermediate of the Rhee-Pande PES does not play a special role.

The conclusion is consistent with the calculated molecular examples of Lenhardt et al.72

to the ring opening of gem-difluorocyclopropanes, of Ong et al.20 for the ring opening of

cyclobutene, and of Bailey and Mosey34 to the ring opening of 1,3-cyclohexadiene. They

attained that a given force, f , can guide the system along specific cis- or disrotatory reaction

pathways. Other examples are reported elsewhere.73,74
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Figure 13: VF of the Rhee-Pande PES for pulling force, F = 8.5 backwards along NT1: the

SPl coalesces with the intermediate minimum to a shoulder. Levels are like in the F = 0

case. The SPi and SPu remain, but they change their order. None of the valleys totally

disappears, either.

An interesting detail of the NT1 of the Rhee-Pande PES

In the case of this chosen PES, we still find an interesting detail. If one studies the back

reaction, then the contrary pulling along NT1 could be associated to a compression of a

molecule.72,75,76 The process here has to have forces in direction −l1 = (0.076,−0.997),

however, it cannot reach a final BBP, because the branch of the NT1 through the product

minimum does not cross the green line of the product valley, see Figs.9(b) and 11. So to say,

this direction is a forbidden direction for the back reaction. For F = 8.5 the intermediate

coalesces with the SPl, however, the SPi remains in the valley, see Fig.13. The former SPu is

already the lower barrier. At this point, a larger reaction rate for a back reaction will use the

channel over the former SPu. But this picture also remains for still stronger forces: only the

product wanders to the left hand side along the product branch of NT1, cf. Fig.13. Thus, we

can totally overpower the reactant by a strong force into the product, along NT1; however,

we cannot totally overturn the product back by any strong inverse force along NT1. Of

course, under other pulling directions, corresponding NTs exist which allow a full overturn

of the product valley, P, for example, to the inverse NT2.
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Figure 14: Stationary points of diverse VF surfaces of the Rhee-Pande PES, Eq.11, for

pulling forces, F = 0, 1, ..., 15 along the direction of NTup. Compare Fig.12. The red point

is the BBP of this direction. The level lines of the original PES for F=0 are shown as the

background. They indicate the initial stationary points.

Rates for reactions along the two RPs

We calculate the forward rates of a reaction for the optimal NTup=NT2 to the SPup. We

use the simple Eyring-ansatz47 on the effective PES like Eq.9

kF,up = ko,upExp[−(VF (SPup)− VF (Min))/kT ] , (12)

and analogously, it may hold for the rates of a reaction for the SPlow

kF,low = ko,lowExp[−(VF (SPlow)− VF (Min))/kT )] (13)

where ko,up and ko,low are factors of a reaction attempt frequency. We put here the factors

ko,.. = 1 arbitrary units, and kT = 1 arbitrary units, for simplicity. Eqs.12 and 13 mean

that we use the true energy difference of the corresponding effective SP and the effective

minimum. Thus, we go back from an approximative Bell-ansatz77 to Eyring24,47 on VF . Our

use of a simple model-based PES allows an explicitly defined forward rate. Additionally it

is known that the Bell-model fails in the description of rate constants under high forces.78

Note, we assume no back reaction; it is adapted to the reference 19 of comparison of this
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work, where the first passage times of trajectories at the product are counted. No back

trajectories are used.

Note that all stationary points move with increasing force, F , along the NT chosen, say

the NTup = NT2. To illustrate this movement, we show in Fig.14 all stationary points of the

diverse effective PESs, VF , for lup and F=0,1,...,15, embedded in the original PES, compare

also Fig.12. It is clear that all stationary points on the diverse effective PESs move along

the NT of the pulling experiment.

For a common reaction rate over both SPs we have the linear sum of both rates, thus it

results in

kF = kF,up + kF,low . (14)
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Figure 15: Semilogarithmic representation of Eyring rates on diverse VF surfaces of the

Rhee-Pande PES, Eq.11,52 over the pulling force, F , in the direction of NTup. Left panel

(a): exit over original SPup, center (b): kF with Eq.14, right panel (c): exit over original

SPlow.

Fig.15 shows the result for the pulling direction of NTup=NT2. Fig.16 shows the result

for the pulling direction of NTlow=NT1. In the latter case, the lower SPl is the exit for the

pulling process; it will be the lower SP throughout, down to its disappearance. The very

small rate over the upper SPup (Fig.16(a)) does not play any role. So to say, the overcoming

of the SP is here a one-dimensional process along the NTlow driven by the pulling. Though

the PES is two-dimensional, the process is only ’weakly multidimensional’.19 The second

dimension over the second SPu does not play a role.

However, in the former case, the pulling process will go over the original upper SPu. The

relation of the two SPs can change along the pulling. Here the following happens: anywhere,
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Figure 16: Semilogarithmic Eyring rates on diverse VF surfaces of the Rhee-Pande PES,

Eq.11, over the pulling force, F , in the direction of NTlow. Left panel (a): exit over original

SPup, center (b): kF with Eq.14, right panel (c): exit over original SPlow.

the former upper SP becomes the lower one. At the end it coalesces with the reactant min-

imum. The very low rate at the initial forces, F=0,1,...,5 crosses at F ≈6 the rate of the

former lower SPl (Fig.15(c)). The crossing results in a kink in the log(rate) over all two SPs,

see Fig.15(b). The kink emerges because there are at least two dimensions for the pulling

force: this aspect of a claim of ref. 19 is correct. However, the upward curvature is not caused

by the dimension of the problem alone. We see this in Fig.16(b) on the same PES. The kink

has its reason in the pulling direction which points to a higher SP exit of the reactant valley.

That causes a crossing of the SP heights. ”The slip barrier must be higher than the catch

barrier”.45 The curvature of the log(rate)-curve against the force, f depends on the relation

of f to the currently lowest SP of the PES valley. Of course, this problem can only emerge

for more than a one-dimensional reaction coordinate.

The experimental result with a proteine in Fig.2 C of ref. 19 shows a quite similar shape

of the kink of the log(rate)-curve like our Fig.15(b). Note another spacing in our case which

finishes at log(k) = 0 at the force rupture end.

The modified Eckhardt-PES79

We treat a second two-pathway example. We are interested in a simple template for the

experimental/computational rates of Fig.2 of ref. 25 or Fig.4 of ref. 80. The first is the

enforced ring opening of cyclopropane, the second concerns a pulling experiment for the
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cleavage of a disulfide bond in an immunoglobulin-like domain of titin. There the rate

decreases first with increasing force, up to a certain kink, where it again increases. We treat

a test surface modified after Eckhardt79 for the case of two competing RPs, Fig.17. The

expression is

V (x, y) = 10(
1

2
Exp[−x2 − (y + 1)2] +

3

2
Exp[−x2 − (y − 1)2] + 4Exp[−3

2
(x2 + y2)] (15)

+0.3y2 + 0.002x3 + (x/3)4 − 0.177016) .

There is again an asymmetry for the two minimums associated to the reactant and the

product, the two SPs, the low SPlow and the upper SPup, and a maximum at the center, see

Fig.17. The relations between the stationary points become clear by the following numbers:

the reactant is at zero energy, the product is at 0.228 energy arbitrary units, the low SPl

at 10.244 energy arbitrary units, the upper SPu at 15.845 energy arbitrary units, and the

maximum, the SPindex2 is at 45.86 energy arbitrary units. The upper reaction pathway is

the higher reaction path. Here the intermediate is missing. In comparison to the former

example, the central maximum is much higher.

We chose the optimal NT1 to the upper SP, see Fig.17, for a pulling. It is derived by the

intersection of a gradient extremal (GE) with a green line of the reactant valley, see the red

points in the figure. The gradient direction along the NT1 is (0.663, 0.774). It crosses the

BBP1 of this direction at point (-1.175, 1.668). Pulling along the NT1 leads to the BBP1 at

F=8.257. Here, the upper SP and the reactant coalesce. On the other side of the PES, the

lower SP and the maximum move together, thus, the barrier height of the lower SP increases

under this pulling direction. It causes a strong decrease of the rate over this former lower

SP, compare Fig.18(c).

Other optimal NTs lead to the other minimal BBPs. The BBP2 at point (0.984,-1.33)

is met by the direction (-0.761,-0.649)T of an NT2. The two NTs, NT1 and NT2, are very

similar. They dismiss their diagonal BBP by a small distance only, compare Fig.17 for NT1.

The same holds for a pair of two other optimal NTs which lead to the minimal BBP3 and

BBP4. The points are at (-0.987, -1.325) and (1.163, 1.675); and the directions of the optimal

NTs are (0.772, -0.635)T and (-0.63, 0.777)T .

To qualitatively estimate the rates, we use Eqs.12, 13, and 14. We get the expected
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Figure 17: GEs on the modified Eckhardt surface (fat lines). The intersections (red points)

with the green lines give the optimal BBPs. The green curves depict the condition det(H) =

0. The optimal NT for a pulling over SPup, NT1, is the NT which also intersects the left

upper BBP1.

behavior for the log(rate) over the force with Fig.18: however, here we find not only a kink,

but a decreasing curve at the beginning. The decrease holds as long as the former lower SP

does not become the higher barrier. Then the main stream of a reaction goes over the former

upper SP and we approximate a ’normal’ behavior of the reaction rate with a slipping bond.

The emergence of the rate-turnover, compare Fig.4 of ref. 80 and our Fig.18 (b), is a hint of

the existence of the peptide PES with (at least) two competing parallel reaction pathways.

The force of the pulling modulates the behavior of the protein environment surrounding the

cleaved disulfide bond80 in (at least) one further dimension.

DISCUSSION

NTs describe the FDSPs of a pulling. The NTs on a PES are discriminated by the emer-

gence of VRIs, valley-ridge inflection points.10 All directions of regular NTs in between the

singular NTs to two neighbor VRIs are allowed for a pulling scenario. This also holds in the

N -dimensional case of the PES: the VRIs together with the singular NTs compose mani-
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Figure 18: Eyring rates on diverse VF surfaces of the modified Eckhardt PES, Eq.15, over

the pulling force, F , in the direction of NT1. Left panel (a): exit over original SPup, center

(b): kF with Eq.14, right panel (c): exit over original SPlow.

folds which partition the full configuration space for NTs.2,36 The VRI points determine the

pulling channels.39 NTs form a family of dense curves over the configuration space. Around

every stationary point, into all directions of a possible force, l, an NT starts. The range

of all adapted directions for an NT family to a given SP is a range of useful forces of a

mechanochemical pulling scenario for the molecule. Changing from one NT-family to an-

other behind a VRI point corresponds to a reaction mechanism switch.41,81

The mechanical force tilts the PES. The calculation of the corresponding SPs on many

consecutive surfaces VF can be reduced to the curve following along the NT on the original,

zero-force PES, V , in direction l, up to the corresponding force |g|max = Fmax of the final

BBP. To follow an NT in an N -dimensional space is a possible task, using Eq.3, because it

is a one-dimensional curve which we can follow.2,6,7 The NT-tool works well in any number

of dimensions. All stationary points of an FDSP curve of the different effective PESs are

obtained automatically, if one follows the corresponding NT. There is no need for a new

calculation of any SP on the different effective potentials which was already remarked by

Avdoshenko and Makarov.82

If there is more than one SP around a minimum for parallel paths to the product, and if

the pulling direction points to an SP having not the lowest exit barrier, then diverse barriers

of the PES can change their order under the pulling force. The ensemble of SPs undergoes
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dramatic shifts.19 In such a case we can get an abnormal, piecewise convex log(rate)-curve,

seen over the amount of the force, F , of the pulling. For large molecules with many degrees

of freedom it is improbable that a technical pulling direction points to the ’lowest’ SP around

the reactant minimum valley.50 Of course, the used Eqs.12, 13, and 14 are very simple models

for a forward rate. Maybe they oversimplify the reality; but a Smoluchowski equation for

a more realistic behavior of the molecule,80 for example, has also to use any kind of rates

like Eqs.12 and 13 as an input. Then, the result may be a somewhat smoothed rate; but

the qualitative shape of the curve will be conserved. The log(rate) curves show that the

mechanical force and the thermal activation act in concert with each other.76

Note that this work is a theoretical treatment using only the geometry of a projected

PES near an interesting reactant minimum. Elementary chemical reactions rarely exceed

1nm of the movement of the included atoms while mechanochemical models often involve

the directional translation at a lengthscale of up to 1µm.13 Of course, there are much more

dimensions included into the pulling process than the two dimensions of interest treated here.

We only pitch on the part of the pulling in the 2-dimensional plane of interest. One should

compare ref. 83 for a discussion apart from the two-state restriction of our simple model.

Additionally, the mechanism through which the force, f, is transmitted to the molecule12,46,72

is not considered here. We assume that the molecule can sustain a sufficient large force.84

For simplicity, we have assumed that the direction of the force, f , is constant. For nonlinear

angle- and distance-coordinates, this may be an oversimplification. However, a local change

of the direction, l, whould only change the locally used NT, but the theory of its application

in Eq.1 would endure. The used rate model ansatz is very simple, however, it qualitatively

reproduces some found, ’counterintuitive’ experimental results.

CONCLUSIONS

Newton trajectories on the original PES can be used for a model of the ’reaction path

following force displaced stationary points’ of every developed effective PES under a pulling

force, or under the action of a catalytic environment of a molecule with an electrostatic

27



force, f. We continously assume that the model Eq.1 is in accordance with the pulling

experiment. Especially, the kind of curves of Newton trajectories forms an important model

for the treatment of mechanochemistry or catalysis including the reaction rates. Newton

trajectories (NT) and Thom’s69,70 Catastrophe theory for the barrier breakdown point can

be used for the analysis. The theory of NTs is well prepared. We have demonstrated that

competing NTs over different SPs can cause an ’abnormal’ upward log(rate)-curve under a

corresponding pulling direction.
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