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Abstract

Recently, valley-ridge inflection points on the potential energy surface for
the ring opening of the cyclopropyl radical have been determined using New-
ton trajectories (NT) [Quapp, Bofill, Aguilar-Mogas (2011) Theor Chem Acc
129:803]. This letter is the report about the utilization of NTs for the search
for conical intersection (CI) points. These points play a main role in the
understanding of intersections of different electronic surfaces which open the
door for photochemical reactions. We explain the reason why Newton trajec-
tories can find CI points, and report a CI seam on the CASSCF(3,3) surface
of the allyl radical ring closure.

Keywords: Conical intersection point, Newton trajectory, Ring closure of
allyl radical, Valley-ridge inflection point

1. Introduction: The Theory of Newton Trajectories and the
Attraction of NTs by CI Points

The concept of the Potential Energy Surface (PES) is the basic ground
of many theoretical chemistry models [1]. It is here an n-dimensional surface
over the n internal coordinates (n = 3N − 6) for an N -atomic molecule.
Intersections of two or more electronic PES play a main role in the under-
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standing of photochemical reactions. The key here is the event of a conical
intersection (CI) [2, 3]. Up to date, the calculation of CI points is a difficult
job which has to include all the involved electronic PESs for a constrained
optimization, see references [4, 5, 6] and further references therein. From a
general point of view, the methods to locate CI points can be classified ac-
cording to the type of the objective function used for this task. Whereas in
reference [4] the restrictions are imposed through a set of Lagrange multipli-
ers, in the references [5] and [6] the restrictions are given implicitely by using
the energy difference or its square form between the electronic states of the
energy as objective function that are assumed to have at least a contact point.

Usually, CI points are not directly connected with the concepts of a Re-
action Path (RP) and its more restrictive definition minimum energy path.
On the ground state PES, the RP is defined as a continuous curve in the
coordinate space, which connects two minimums of the PES by passing
through a first order saddle point (SP), also called transition structure (TS).
One special definition of an RP is the reduced gradient following (RGF)
[7, 8, 9, 10, 11, 12, 13, 14] and its equivalent definition, the so-called Newton
trajectory (NT) [15, 16]. In this letter, we extend the application of NTs to
search a CI point on the ground state PES.

An NT can be calculated by an Euler-Branin-step method following along
the direction of the vector field Ag of the so called Branin differential equa-
tion [17]

dx(t)

dt
= ±A(x(t)) g(x(t)) , (1)

where A is the adjoint matrix to the Hessian, its desingularized inverse, and
g is the gradient of the PES. t is a curve length parameter, x is the current
point. A second definition of the NT is given by the projector equation

Prg(x(t)) = 0 . (2)

The projector can be defined by a dyadic product with a normalized search
direction, r

Pr = E − r rT , (3)

where E is the unit matrix. Then the curve can be calculated numerically by
the derivation of the projector equation along the curve parameter t giving
also the tangent of the NT [9]. The eq. (2) means that along an NT the
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gradient always points into the r-direction.

Include Fig.1 near here!

Stationary points of the PES have a zero gradient. Thus, NTs into all
directions can start from here if one adequately selects the sign of eq. (1)
according to the index of the stationary point [8, 9, 18]. This means that the
search direction of an NT, r, is optional from here. Thought inversely, this
is the reason why stationary points are attractive points for NTs from all
directions. An SP of index 2 on a PES is also the crossing point of infinitely
many NTs, see Fig. 1. It is an attractor if we take the positive sign in eq. (1).
There on the left hand side the summit surface -x2-5 y2 is shown, on the
upper left hand panel, and on the lower line the field Ag is shown. The
summit is at the point (0,0); it is an SP of index 2. Starting an NT uphill
anywhere around the summit it will find the summit itself. Analogously, a
funnel surface of a typical peaked (n − 2) CI event [2, 3] is shown on the
right hand side of Fig. 1. It is the surface -sqrt(x2+5 y2). Here, an analogous
vector field Ag emerges. At this point it is important to emphasize that
both types of problems, finding an SP of index two, a summit, or a peaked
(n − 2) conical intersection point, are quite close, both conceptually and
computationally. This is a hint that the NT method too finds CI points as
well as summits. However, there are differences to the summit case:
(i) The two components of the gradient in the branching subspace do not go
to zero around the peacked (n − 2)-CI point, but hold any slope, and their
direction is indefinite at the CI point. In Fig. 1 right panel the gradient is

1√
x2 + 5y2

(x, 5y)T . (4)

At x = 0 and y approximates zero, then the gradient points into the y-
direction with value ±

√
5, but at y = 0 and x approximates zero, then the

gradient points into the x-direction with value ±1.
(ii) The two lowest Hessian’s eigenvalues are indefinite values at the CI point
because of the kink in the energy of any pathway passing the CI point. The
Fig. 1 right panel is a simplified case. The two eigenvalues of the Hessian are

(

0,−5 (x2 + y2)/
√

x2 + 5y2

3
)

. (5)

The first eigenvalue belongs to the x-axis and concerns the points outside
the apex; because the sign of the gradient direction jumps at the apex, the
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eigenvalue here is indefinite as well. If the point (x, y) moves to (0, 0) then
the second eigenvalue tends to minus infinity. In practical calculations, like
the one reported here in this letter, the two lowest Hessian’s eigenvalues are
large negative values near putative CI points. (The Hessian is computed by
finite differences.)
For the left summit case, on the other hand, the two negative eigenvalues
describe the curvature transversally, as well as longitudinally to the summit.
In a neighbourhood of the CI point, this may also hold for the PES around
this point. But at the peak, the usual differential calculation breaks down.
In a path calculation on the PES, we can follow an NT uphill to a CI point.
The indicator to arrive at the CI region is the increase of the value |Ag|
which itself becomes very large at the CI point. We find factors of 105 and
larger against ”normal” NTs. The reason is the eigenvalues, µi, of the A
matrix, which go with the eigenvalues of the Hessian, the λj, j=1,...,n [18]

µi =
n

∏

j 6=i

λj . (6)

The stopping criterium of the CI search, for the simple 2-dimensional case,
would be a zigzagging of the predictor at the CI point. This can be indicated.
In the high-dimensional praxis on the CASSCF surface, indefinite eigenvalues
of the Hessian do not emerge. The quick increase of the |Ag| value is a first
sign that the NT is attracted by a CI point. Then anywhere happens a
saturation. The CI seam is reached. Of course, a second indicator is a bad
convergence of the CASSCF calculation. (We stop the calculation by hand.)
(iii) For an SP of any index, the gradient has to be zero. Thus, the SP is
an NT-attractor in all dimensions if we take the appropriate sign in eq. (1).
The CI kink concerns a two-dimensional subspace of the configuration space.
For higher dimensional problems it is recommended first to estimate the two
vectors, vd,vc, that define the linear subspace called branching subspace,
Sb, and its orthogonal complement called the tangent intersection subspace,
Sti [4]. The two basis vectors of the Sb subspace are the difference vector,
vd, and the coupling vector, vc,

vd = ∇x(W1,1(x) −W2,2(x)) (7)

vc = ∇x(W1,2(x)) (8)

where Wi,j(x) is the ij element of the matrix L(x) of the corresponding
Lagrange problem [4]. The set of vectors that defines the basis of the Sti
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subspace is taken orthogonally to the vd and vc vectors [4]. If the lat-
ter two vectors are collected in a rectangular matrix, Tb = [vdvc], and if
the set of vectors of the Sti subspace is collected in a Tti submatrix, then
both rectangular submatrices build the transformation matrix, T = [TbTti]
which transforms the given x coordinates into new ones. Notice that T it-
self depends on the x coordinates. The process is summarized through the
transformation [4],

∆q = [TbTti]
T ∆x . (9)

One could apply the NT method in the new coordinate space. However,
following NTs which lead to a CI point on the seam, automatically also lead
to vectors in the subspace Tb. Because these are two negative eigenvalues
of the original Hessian of the ground state at, or near the crossed CI point.
The mathematical proof of the statement is based on Löwdin’s partitioning
technique [19] and will be outlined in a next paper.

A technical problem is the following: Near CI points the Newton-Raphson
method for corrector steps often fails, if we use the derivation of eq.(2). Then
we only work with predictor steps along eq.(1), and we omit the corrector
steps. The resulting NT is named quasi-NT, because it can deviate a little
from the true one, especially if it is strongly curved. Such predictor-only
steps work properly, because the A matrix is the desingularized inverse of
the H matrix. It is calculable if the H matrix is given.

Configuration interactions can take place in a sloped kind [2, 3]. Such
events are not found by the funnel search which we report here, because
they do not show the pattern of the A g vector field which we need here.
However, a quasi-NT search can also do well for sloped CI seams. If a
seam is crossed then the vector A g usually jumps to another direction. The
corresponding quasi-NT will show a sharp kink. We can study such nodes
and do a corresponding control calculation for upper surfaces. Examples can
be found in Figs. 8,9,11 and 12 of reference [20].

2. Attraction of quasi-NTs by CI points on the PES of the allyl
radical ring closure

In Organic Chemistry the prediction of stereochemistry of the electro-
cyclic ring closure reactions has been a long-standing question. For cyclic
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molecular structures in their ground state with an even number of electrons
the reactions are governed by the Woodward-Hofmann rules [21]. The rules
either predict a conrotatory or disrotatory stereochemistry evolution depend-
ing on the orbital diagram associated to the system. For the cyclopropyl
radical, a system with an odd number of electrons, the Woodward-Hofmann
rules predict that both the conrotatory and disrotatory stereochemistry evo-
lution are nominally forbidden [22]. In the study [22] a highly asynchronous
transition structure with C1 symmetry was identified. In a later study at
the B3LYP/6-311G(2d) level of theory [23], the calculation of the intrinsic
reaction coordinate was carried out from the C1-TS to the allyl radical. The
unsymmetric pathway avoids the crossing of CI points which are expected
on the PES [24].

For the purpose of this letter, our consideration of the allyl radical is
purely a test system for a search of CI points. Fig. 2 shows the atom labels
of the allyl radical that will be used. The GAMESS-US program is utilized for
the quantum chemical calculations by the CASSCF(3,3)/6-31G(d,p) method
[25]. The NT-programs (in Fortran) can be downloaded from the web-page
www.math.uni-leipzig.de/∼quapp/SkewVRIs.html. Any tracing along NTs
uses the curvilinear internal coordinates in the full dimension of n = 3N−6 =
18. At every node of an NT, the metric matrix is taken from the GAMESS-
US program to convert co- and contra-variate objects, as well as the energy,
the gradient and the Hessian of the lowest electronic PES. In the z-matrix,
the distances are given in Å, and the angles and the dihedrals are given in
degrees, where in the GAMESS-US part Bohr and radiant units are used.

z-matrix allyl radical

C1

c1

c2 1 r1

c3 1 r2 2 c2c1c3

h4 1 hc1 2 hcc1 3 dih1

h5 2 hc2 1 hcc2 3 dih2

h6 3 hc3 1 hcc3 2 dih3

h7 2 hc4 1 hcc4 3 dih4

h8 3 hc5 1 hcc5 2 dih5

Include Fig. 2 near here!

6



In the foregoing papers [20, 26, 27], we confirmed a valley-ridge inflection
(VRI) point at the allyl radical end of the SP col. It was named VRIca to
characterize the direction from the cyclopropyl bowl, the symbol is the lower
case letter c, over SPca into the allyl radical bowl, the symbol is the lower
case letter a. NTs are the curves which are well adapted to search for VRIs
because they bifurcate there. The method of the search of VRI points is
described in ref. [28].

A VRI system of a bifurcating, singular NT consists of four branches. The
character of the single branches determines the character of the VRI point.
All VRI points can be classified into different main classes. A valley starting
from an SP can bifurcate downhill and the two branches can lead to two
valleys with their corresponding minimums. Between the two valleys a ridge
emerges. However, the VRIca does not have this character. There is another
possibility that a ridge on the PES bifurcates into two ridges, and between the
two ridges emerges a valley. Then the VRI point is a ridge-pitchfork (rpVRI)
bifurcation. The VRIca is of this character. The corresponding ridge from
below is guessed to come from one of the allyl SPs, named SPaa. They have
a turned methylene group at one end, where the other methylene remains in
the plane of the C-atoms [20, 27]. If the methylene 1 group is turned out
off the C-plane then the SP gets the index (2,4) where in the contrary case,
if the methylene 2 group is turned, the index will be (3,5). Additionally to
the VRIca, we found VRI points near the SPs in the allyl radical bowl, the
SPaa. These new VRIs are on the ridge over the SPaa. The are named VRIac

to accentuate their local connection to the allyl bowl. The character of the
points found is either rpVRI or of the mixed type where ridges of a different
index cross [20].

Include Fig. 3 near here!

Using the PES of the very floppy allyl radical as an example, we tried
to make relaxed surface scans of diverse dihedrals to generate a 2D surface.
But we were not successful to create the usual, meaningful level lines in
2D subspaces of the configuration space in the past. There are too many
dimensions where the PES changes. However, NTs are curves in the full-
dimensional configuration space. They characterize a skeleton of valley- and
ridge-lines. Their projection into 2-dimensional planes can be used to gener-
ate an imagination of the full PES. This is done in Fig. 3. We report a new
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Table 1 Coordinates of VRIlow, of VRIup, and an adjacent CI point in the
order of the z-matrix (with energy in hartree, Eh)

VRIlow (-116.450 957) VRIup (-116.311 746) CI (-116.333 590)
1.490 1.528 1.486
1.360 113.42 1.413 97.11 1.492 97.78
1.097 98.89 -153.11 1.214 71.52 -142.63 1.113 96.84 -136.00
1.081 114.66 82.02 1.087 108.32 71.24 1.082 112.59 58.68
1.083 118.73 17.00 1.093 117.25 31.86 1.085 113.23 56.29
1.077 124.12 -124.46 1.083 127.45 -149.10 1.079 126.57 -150.24
1.057 123.63 -158.97 1.043 127.57 -131.27 1.081 113.48 -73.34

VRI point of the character ac 2, 4, compare ref. [20] which is here depicted
by VRIlow. Its side branches lead to CI points where the central branch ex-
hausts a valley. A further VRI point, VRIup, is found upwards in the PES
region, which is connected with VRIlow over the central branch. Its central
branch then leads uphill to the CI seam.

The representation is the following. We use the projection of one and the
same full-dimensional quasi-NT to the both dihedrals, dih2 or -dih5, and the
ring closure angle, in the left panel, as well as to the dih3 or -dih4, and the
ring angle in the right panel. So, every panel contains two pictures of the
singular quasi-NT of interest. The abscissae is the ”reaction coordinate”. It
is the angle between the C-atoms, compare Fig. 2, which describes the ring
closure of the allyl radical, from the right hand side to the left hand side. The
singular quasi-NT is a fat curve. In both panels further bullets are included
for dihedrals of the following special points: VRIlow, VRIup (see Table 1)
and the points SPaa, SPca, and VRIca (see ref. [20]). (For the latter all four
bullets are included in every panel.) Their values on the abscissae are also
highlighted by grid lines. All bullets on one upright grid line belong to one
of the special points. Their descriptions emerge once on the grid line. The
order of the bullets for SPca and VRIca is, from top to bottom, dih2, -dih5,
dih3 and -dih4. Note, that the order of the bullets for the special points on
the right hand side is another.

The new VRI points, VRIlow and VRIup, of Fig. 3 (see coordinates in
Table 1) are a very special case where the two outer branches of the lower
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bifurcating quasi-NT were attracted, after the bifurcation and after a long
way over the PES, nearby by a CI seam. The central branch of the upper
VRI also leads to this CI seam. Usually, the three branches of a singular NT
wander after the bifurcation into different regions of the PES; that is even
the character of a bifurcation to create dividing valleys or ridges.

The character of the lower VRIlow point is rpVRI, a ridge pitchfork. The
ridge of index one from SPaa 2,4 bifurcates into two outer forks being also
ridges of index one, and into one central branch being a valley line. All three
branches climb uphill on the energy surface, however the quasi-NTs of the
outer branches later meet the seam at CI points symbolized by a ’*’. One
branch touches the seam and is then ”reflected”, thus goes again downhill
to the SPaa region (the reflected part is not shown in Fig. 3). The other
branch touches the seam and scans then along the seam. The scan-part
is built by the bold nodes in Fig. 3, which are somewhat not smooth. Af-
ter a long piece gliding along the seam, it also turns downhill to the SPaa,
by a turn near 106o of the ring angle. A putative CI point is given in Table 1.

The quasi-NT of the central branch of VRIlow starts as a valley line up-
hill. Then it forms a repeated circular pathway being more or less inside
the outer branches. At the end of the valley, it meets the second VRI point,
VRIup. The character of the upper VRIup point is also of rpVRI. The central
branch comes uphill as a valley and goes further uphill to the CI seam as
a ridge. If one uses the plus sign in Eq.(1) for the funnel search then the
calculation scans along a seam going uphill in energy. (A minus sign would
repel nodes from the summit.) Thus in this case the quasi-NT scan goes off
from the usually searched minimum energy conical intersection. In the case
of the seam in Fig. 3 we use the other method: we go along Ag direction
in eq.(1) but always use the sign ”forward”, into the same ”halfspace”. It
is the usual strategy to follow a quasi-NT. The ± sign can then be used to
decide to go uphill or downhill on the PES. Using this and sliding along the
seam, the method glides a little along the seam, but then it jumps over the
seam and goes down the other side to the SPca. (The piece of the NT is not
shown in the picture.) One side branch from the upper VRIup also returns as
a ridge line into the valley region as a circular curve. After some circles over
as well as below the central branch, it breaks out and goes down to SPaa.
The other side branch turns up as a ridge and goes directly anywhere into
the PES mountains (not shown further).
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We try to explain first the behaviour of the outer branches of VRIlow,
as well as the central branch of VRIup: they suffer under a quick increase
of the |Ag| value. The two first eigenvalues of the Hessian from an out-
put of GamessUS at the crossing of the central branch with the seam are:
λ1 = −1.75, λ2 = −0.051, so to say, that are moderate values. In the middle
of the seam, there is a point with λ1 = −34.44, λ2 = −2.16 in the internal
coordinates of GamessUS: in Bohr and radiant units. The absolute values
are considerably large values. Usual eigenvalues in these units are ≈ ± 0.1.
A bizarre observation is that also the largest eigenvalue on the seam is very
large: λ18 = 11.44 . We do not have an explanation for this number. The cor-
responding values for the CI point of Table 1 are: λ1 = −24.40, λ2 = −3.182
and λ18 = 6.956, where the minimum energy point at the end of the seam
has: λ1 = −14.61, λ2 = −3.77 and λ18 = 3.55 .

The connection, using VRIlow as a knot, of the SP of index one, SPaa,
and a CI point playing the role of a summit, an SP of index two, by the outer
branches of the quasi-NT of VRIlow shows an index difference by one. It does
not violate the index theorem for NTs [29, 30] that a regular NT (without a
VRI point) cannot connect two stationary points of the same index.

We guess that the CI points of the seam have a peaked topology [31], be-
cause we find two negative eigenvalues of the Hessian there. A further hint for
a peaked topology is the following: different steepest descent pathways from
the putative CI points go into accidental directions. It is a hint that such a
point is like a summit. For a sloped CI, the direction would be fixed. The
found CI points are not symmetric in the dihedrals. However, the distances
r1 and r2 cross near some CI points their symmetry line at r1 = r2 = 1.492 8.
One should compare other symmetric CIs found in refs.[32, 33].

We guess that the growing string of the special branches of the singular
quasi-NT meet the CI seam (by accident) anywhere and then we can jump
over it, or we can scan along the CI seam with the quasi-NT. The condition
for meeting the seam at all is that the search direction of the current quasi-
NT fulfills the equation

1/Norm ∗ ([vc vcT + vdvdT ]g) = r , (10)

being r the selected direction by the actual NT with eq. (1). 1/Norm is a
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normalization constant, and vc, vd are the vectors of the branching Tb sub-
space, see eqs. (7) and (8). Using the ”forward” strategy along the seam by
a search direction with formula (10), we can descend to a putative minimum
energy point on the conical intersection seam at 106o of the ring angle, see
Fig. 3. The energy difference of the first seam crossing point of the three
branches of the singular quasi-NT, and the minimal node, is from -116.28Eh

to -116.37Eh, see Fig. 4. At all, one should keep in mind that a quasi-NT
slips from one true NT to another, step by step, and it can therefore end
up at a different search direction than the NT it started from (though our
predictor step length is very small). Figure 3 suggests that the branch con-
necting VRIup with SPaa does not belong to the same NT as the branch that
connects SPaa and VRIlow. However it emerges to a miracle that the central
branch connects the VRIlow with the VRIup.

Include Fig. 4 near here!

A control calculation at a putative CI point of the seam, see Table 1, was
done. A CASCI calculation of the corresponding first excited electronic sur-
face, Ã2B, at this configuration confirms the conjecture to be at a CI point:
It is based on the natural orbitals extracted from the CAS(3,3) (quartet) set.
The energy difference between the two doublet states is 0.5 kcal/mol, it is an
excellent value. The description of the three states is
state 1: energy=-116.328 448 481, S=0.5,
state 2: energy=-116.327 647 388, S=0.5,
state 3: energy=-116.315 182 186, S=1.5,
and SZ=0.5, space sym=A holds in all three cases.

Include Fig. 5 near here!

The central branch of the lower VRI point, VRIlow, needs a second expla-
nation, as well as the existence of the upper VRIup crossed by one singular
NT. The lower central branch circulates five and a half times around a valley
of the PES, up to the upper VRI point. The circular curves implicate the
possibility that an NT can be quite convoluted on a hilly PES. In each case
the uphill pathway is a valley line going up to a turning point, where the
quasi-NT turns and goes parallel downhill. Then this pathway is a ridge line
going down back to the initial region. And so on, five and a half rounds up
to VRIup.
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There is a simplified analogy to a circular NT on a simple 2-dimensional
surface, see the right panel of Fig. 5 which may be compared with Fig. 3.11 of
ref. [30], the so-called dent of a thumb. Maybe that the example can explain
the behaviour of the circular pieces of the NT in Fig. 3. The formula of a
2-dimensional toy surface on the left hand side is

sl(x, y) = x2 (x2 − 2 + 1.5 y) + y2 (y − 4)2 − 25
√

x2 + 3 (y − 2)2 (11)

and additionally, for the right panel a dent is pressed into the ridge on the
y-axis:

sr(x, y) = sl(x, y) − 25 exp(−3.48 x2 − 4 (y − 1.093)2) . (12)

The level lines of the PES are thin lines, where families of NTs are represented
by bolder lines. In the left panel, a ”usual” surface is drawn. Here two
singular NTs of the mixed type connect the two lower minimums with the
CI point at the top crossing one of the VRI points, and the other branches
connect different SPs. On the right panel, an additional dent is pressed into
the ridge which leads from the lower SP to the CI point. Now the VRIs are
moved a little, and new compact NTs emerge. The dent on the slope of the
ridge surface is filled by a pair of families of compact NTs, and a new singular
NT (the dashes on the y-axis) divides the families. The singular NT crosses a
lower VRI point at ≈(0.0,0.2), and a further, upper VRI point at ≈(0.0,1.7).
Both VRIs are rpVRIs. The inner, circular NTs inside the dashed, singular
NT do not cross stationary points or VRIs. They are compact curves. Note,
the molecular case on the PES in Fig. 3 may be a little more complicated.
There are 18 dimensions for the PES. The central branch of the singular
NT is a spiral line which cannot be in a 2-dimensional plane. Note further
that the CI points first found must not be a minimum, or an SP on the
high-dimensional seam, compare the refs.[31, 34].

Conclusion

Up to date, the calculation of CI points is a difficult job, see references
[4, 5, 6] and further references therein. We have ”simply” used the numerical
following along quasi-NTs on the ground adiabatic PES and this leads to
peaked CI points quite in analogy to the finding of SPs of index 2 [8, 9].
The coordinates of a pututive CI point on the allyl radical PES are given
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in Table 1. We think that we did not find the exact CI, however the point
is assumed to be near the apex of the corresponding conoid. In Fig. 3 we
depict the projection of quasi-NTs into 2-dimensional planes. Even though
quasi-NTs are curves in the full-dimensional configuration space, we assume
that we can use their projections for four different, but important dihedrals
to generate an imagination of the PES. NTs characterize a skeleton of valley-
and ridge-lines. They bifurcate where valleys or ridges of the PES bifurcate.
In the case discussed here, we find that a long valley exists on the ridge on the
allyl radical PES (without an intermediate minimum), if one leaves the SPaa

uphill in a corresponding ridge direction. The lower entrance into the valley
goes through a VRI point. The upper departure gate is also a VRI point like
in Fig. 5. On the high-dimensional PES, the pathway of the central branch
leaves the valley and later crosses the CI seam, as well as the two lower side
branches. At the top near the former valley, a long CI seam is placed. The
new avenue to find the structures is the Newton trajectory method.
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Figure 1: Summit surface on the left hand side, and funnel on the right: both have
analogous Ag fields shown below.
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Figure 2: Ring closure of the allyl radical: numbering of atoms in the z-matrix
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Figure 3: Singular NT in the region over the transition state, SPaa, along a ring closure of
the allyl radical. The PES construction is based on the functional energy CASSCF(3,3)/6-
31G(d,p). Bullets with a cross of grid lines are the VRI points, VRIlow and VRIup, see
text. The ∗ symbols indicate the CI seam reached by different branches of the singular
quasi-NT. The bold, but not smooth curve is a part of the seam, scanned by one quasi-
NT. Left: coordinates are the angle between the C-atoms, and the two dihedrals dih2 and
-dih5. Right: the same quasi-NT for the ring-angle and the two dihedrals dih3 and -dih4.
(For comparison the old known VRIca point is added. It is at the end of the SPca col, see
ref. [20].)
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Fig. 3.) Bullets depict the energy of special points, like VRIlow, VRIup, SPca and SPaa.
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