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Abstract
We combine the Heisenberg uncertainty principle with the Maxwell equations.
It results a generalized wave equation. An approximate wave solution shows
a redshift of the wavelength over huge period of time. It indicates a redshift-
distance relationship, besides the well known redshift-velocity relationship by the
Doppler principle.
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1 Introduction

Huygens’ principle applies both in three-dimensional Euclidean space and in many
three-dimensional curvilinear spaces [1, 2]. It allows us to see the light from cosmologic
objects with quasi-sharp spectroscopical lines. For example, the James Webb Space
Telescope (JWST) observes Lyman-« lines [3] from objects that are thought to be
located at a distance of 13.5 billion light years with a redshift of z > 14 [4]. It means
that a wave equation governs the propagation of light at all observable distances.

The background is that light is an electromagnetic wave described by the Maxwell
equations [5]. To investigate a field propagating in space, we start with the classical
electromagnetic equations in vacuum

V-B=0 (1)
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where E is the electric field and B is the magnetic field, which are orthogonal to each
other. V is the operator of the spatial derivatives, and ¢, and u, are the constitutive



parameters, the electric permittivity and the magnetic permeability of the free space.
They combine to €,u, = 1/c%. ¢ is the constant speed of light. This constancy of ¢
is therefore assumed from the early beginning of Maxwell’s theory [6]. The Maxwell
equations (1-4) combine to the wave equation
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for both fields. We use w/k = ¢ for the initial frequency and wave number of the
observed wave, with the time period T' = 27/w and the wavelength A = 27/k. A
harmonic wave in one spatial dimension, say x, that satisfies the wave equation is
given for the two special components of the electromagnetic fields, £, and B,

E,(t,x) = E, cos(wt — kx) (6)
B.(t,z) = B, cos(wt — k) (7)

with the impedance V, of the free space relation [7]

E,=V,B, =,/%B,. (8)
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The vacuum impedance V, = p, ¢ is connected with the fine-structur constant [8, 9].
A general wave for the electric field can be represented, for example, by a Fourier
series

Wy(t,2) = Encos(n(wt — kx) + ¢n) (9)

with the possibly different phase parts ¢,,. With time ¢ the wave moves along the x
axis. Eq.(9) can be used to describe wave packets [10].

The Doppler principle [11] applies for the observation of moving stars [12], and
especially for the rotation of galaxies. A deeper discussion of exact values with a
comparison of the Doppler effect and other effects is given in ref.[13]. However, the
JWST observations raise profound questions about the application of ’only’ Doppler
shifts, as assumed by the standard cosmological model [14]. In contrast, some kinds
of ‘tired’ light are coming back into the discussion [15-19].

A redshift is an increase in the wavelength, and corresponding decrease in the
photon energy, of electromagnetic radiation. Redshifts are measurable quantities in
cosmology. In this work, we assume that observed redshifts can arise from a combi-
nation of a Doppler shift and a shift caused by a generalized wave equation. This
equation we develop here. To start with we simplify a static cosmos in Euclidean space,
Minkovski space-time, and no ’cosmic expansion’.

In section 2 we introduce the model used. It revisits an argument for a generalized
wave equation according to the Heisenberg uncertainty principle. Section 3 is a short
general discussion of the meaning of the result. Finally we give some conclusions.



2 The generalized wave equation

We assume a homogeneous, isotropic, and flat universe, which is confirmed by
observations of the cosmic microwave background (CMB) [20, 21]. Relativistic and
gravitational properties of the cosmos will be postponed to later studies. Light travels
through the cosmic vacuum via the electro-magnetic process ’hand over hand’. The
two fields cross with each other.

In Maxwell equations (1-4) one assumes an exact relation of the two fields. However,
we cannot beat the Heisenberg uncertainty principle [10]. It states for uncertainties §
of E and B in a volume 6V and a length L along the wave direction [10]

he
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(10)

h is the Planck constant, and dL must be greater than the wave length A\. We choose
dL = 1[m)] for simplicity, and the interesting volume by a cube with side length JL as
well; it should be larger than F,. Because it is
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we can move the two constants /i, and /€, to the other side of the approximation
(10), and if we use Eq.(8), we can assume the best case of the so-called states of
minimal uncertainty [22, 23], in which both weighted uncertainties are equal

Viia 6B = /&, 6E = q (12)

with a common constant, ¢, taking symmetry between the electric and magnetic part.
We get with (10)

CcC =

(11)

q>Vh. (13)
We propose incorporating this fundamental relationship into the Maxwell Egs.(3,4)
where Eqs.(1,2) are unchanged. First, we assume that we have an uncertainty factor
for each part of length 6L = 1 over the wave, which needs a time of 6T = §L/c, by

(1+6T¢q) = (u%\/ﬁ) (14)

for both time derivatives. It was a suggestion from G. Lemaitre [24, 25] to include
time in an uncertainty relationship. For n periods, we then have a correction factor

1
(ligx/ﬁ)”%(li%\/ﬁ—&-...). (15)
With n/c ~ t and with the symbol ¢ = vk we obtain the ‘uncertainty’ Maxwell

equations

Vx E = —(1:|:qt)aa—]t3 (16)
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The lowest value for ¢ is vVh = 2.58 ¥ 10717 /[sec]. We must exclude the minus sign for
qt because it can lead to a singularity.
Solving the new equations can be difficult. However, the modified equations are
approximately satisfied by the wave

u(t, ) = cos( (wt—kx)) (18)

14qt

compare above Egs.(6,7), and also Eq.(21) below. Note that the speed of light, ¢, is
not changed. However, the wave undergoes a redshift at very long times. With typical
short local times, the additional action of the extra factor on this equation is almost
zero. The factor which determines the redshift in Eq.(18) is illustrated in Fig.1.
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Fig. 1 Redshift factor 1/(14+qt) over billions of light years for ¢ = Vh.

The proposed value for the derivation of Eqs.(16,17) may still be adjusted to the
measured redshifts. The estimate of § = 3.356 10717 /[sec] is a constant motivated by
the quasar JADES-GS-z14-0 [26] with a redshift of 14.32 and an assumed age of 13.52
billion years. The frequency w of the Lyman-a line with 2.47*10'® Hz for a cosmic
event in the past, i.e.a wave with an ultraviolet wavelength of 1 215 A is shifted to
18625 A. If one uses the approximated time of 13.52 billion years then one obtains the
measured line in the microwave region in Eq.(18). This is observed by the JWST [26].

It is unlikely that the entire redshift of the observed lines will originate from
approximation (18). However, it could be an alternative additional effect alongside
the Doppler effect [14, 21, 27] and further effects such as gravitational redshift. For
combined use of the effects, the constant ¢ should of course be further adapted.

On the other hand, if we apply the approach (18) with the minimal ¢ ~ VA
directly to the quasar under investigation with the measured redshift of z = 14.32,
we would obtain an age of 17.58 x 10°Ly, already beyond the celebrated 13.8 * 10°Ly.



The generalized wave equation is then again a combination of Egs.(1,2) and (16,17)

2 2
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In general, u(t,z,y, z) is the shape function of the signal we are trying to observe
by a spectrometer. The distance to the observed cosmological object can be z. We
use this 1D axis. We assume a Cartesian coordinate system, no Lorenz coordinate
transformation, no relativistic time.

If we assume a simplified case of a periodic, trigonometric form of the signal using
the approximation (18), we can immediately motivate the form of Eq.(19). It is

O*u(t,x) k2
02 - (1 T qt)gu(tvx) (20)
and
O*ult,z) w?
- qagnhT (21)
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The second summand on the right-hand side of Eq.(21) is nearly zero for all times of
interest. Because, the values of (1 + ¢t) and (1 + gx/c) are low numbers, and since
q is close to zero. Using Eq.(18) we obtain a good approximation of a solution to the
generalized wave equation (19).

3 Discussion

We do not discuss relativistic effects. And we do not discuss the gravitational redshift
[28-31] and also not the gravitational curved spacetime [32-34]. These effects have an
influence on redshifts. We refer to the search for a theory of quantum gravity [35, 36].
The aim of this paper is to propose the principle of a generalized wave equation (19).
The proof of principle is the proposed oldness of observed objects with a redshift
z > 14 which could be older than ‘the time itself’.

The Doppler effect [11] is a fundamental principle of physics. Via Woldemar Voigt
[37] and Hendrik Antoon Lorentz [38] and others, it inspired the special relativity
theory of Albert Einstein [6]. The Doppler effect is usefull, of course, for describing the
motion of galaxies relative to each other and detecting the rotation of galaxies [39].
However, linking all the measured redshifts to the Doppler effect may not be entirely
correct [27, 40].

The combination of the Doppler part of ’'velocity-redshift’ and the component
of ’distance-redshift’ proposed here, will lead to another constant ¢ than the one
adjusted above, § = 3.356 * 10717 /[sec]. Balancing this relationship will be a task for
the near future.



We assume that the electromagnetic waves of light are excitations of the quantum
vacuum [41-45]. Heisenberg’s uncertainty principle [10] has the known consequence
that the commutation relations in quantum electrodynamics imply zero-point fluc-
tuations of the electromagnetic field even in the quantum vacuum [46, 47]. So, the
‘vacuum’ is not empty [48-58]. We assume that the light waves require energy to travel
through the quantum vacuum. They transform electromagnetic energy in heat: the
uniform thermal energy on average 2.725 Kelvin [59]. It would explain the energy loss
under the observed redshifts if one accepts a redshift-distance relationship.

Where ever does the energy go? We suspect that it feeds the cosmic microwave
background radiation [60] which could be understood to be in an equilibrium flow
with the temperature of the quantum vacuum. The spectrum of the CMB is an almost
perfect Planck spectrum for the black body radiation [59] — the quantum vacuum is the
‘black body’. The CMB is very smooth and uniform, but there are small temperature
variations [61, 62]. The anisotropy structure is influenced by various interactions of
matter. Note that a part of the CMB disappears to other energy reservoires such as
rotational excitations of cosmic molecules [63]. The proposed energy transfer from the
quantum vacuum could give rise to yet again another reasoning for the CMB, compare
[64—69] and references therein.

4 Conclusions

We propose a generalized wave equation for a phenomenological description of a
redshift-distance relationship. It results from a perturbation of Maxwell’s equations
by the omnipresent Heisenberg uncertainty principle. An approximate wave solution
shows a redshift of the wavelength of light over huge periods of time. This suggests
a redshift-distance relationship, in addition to the well known redshift-velocity rela-
tionship through the Doppler principle [11, 70-72]. The question of the origin of
the redshift, put forward here, has the consequence that the average cosmological
parameters must be recalibrated.
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