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The MP2/6-31G** potential energy surfaces (PES) of the hydrogen sulÐde molecule and of the formaldehyde
molecule, as well as the MP2/3-21G** PES of the hydrogen selenide molecule are used as qualitative models
to locate curves of valley ridge inÑection (VRI) points. Crossing points between VRI curves, or VRI manifolds,
and approximations of the reaction path allow the identiÐcation of a symmetric bifurcation of an assumed
reaction path. The recently proposed method of following the reduced gradient is used to calculate reaction
path approximations together with their possible bifurcations. The VRI points are calculated with the help of
BraninÏs method, the desingularized global Newton method. The results achieved for the three-atom andH2S

are further extended to the four-atom formaldehyde molecule, being a six-dimensional problem, whereH2Se
the directions of symmetrical unimolecular isomerization and dissociation are treated. We discuss the
signiÐcance of VRI curves.

1 Introduction
The branching of reaction paths is a frequently discussed
event in chemistry, but the calculation of branching points still
remains a challenge for theoretical chemistry. We seek to
understand branching in terms of the PES, which also forms
the basis for the conventional transition state theory.1 Branch-
ing of a reaction path leads to the formation of alternative
reaction channels on the PES describing the chemical reac-
tion. Some aspects of the bifurcation have already been dis-
cussed in earlier publications.2h4 The methods of the PES
analysis5h7 form the tool to identify the branching of the reac-
tion path. Furthermore, the choice of the path deÐnition is
important. The reaction path is an assumed curve in the con-
Ðguration space of the PES connecting the reactant with one
or more products passing the corresponding saddle point (SP)
along the so-called minimum energy path (MEP). This way,
the MEP is the leading line characterizing the reaction
channel in which the trajectories, or, in terms of quantum
mechanics, the wave packets should move.8 However, the
term MEP is not yet sufficiently speciÐed to determine a curve
uniquely for the reaction path. There are several possibilities
to deÐne a reaction path mathematically. The most important
deÐnitions are either the steepest descent from the saddle or
the gradient extremal, which follows the least ascent.9 Path-
ways corresponding to di†erent deÐnitions usually branch at
di†erent points of the conÐguration space.

On the other hand, the PES shows points, which we intu-
itively connect with the branching of the reaction path, but
which do not depend on a reaction path deÐnition. They are
deÐned by the characteristics of the PES itself. Such points are
the VRI points.10h12 The traditional deÐnition is that a VRI
point is that point in the conÐguration space where, orthog-
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onally to the gradient, at least one main curvature of the PES
becomes zero. We di†erentiate between two kinds of points :
branching points of diverse path deÐnitions, or VRI points.
The ability to reliably calculate the VRI region would provide
insight into the stability of vibrational modes and the bifur-
cation of reaction paths.

As already reported,13 the VRI points may form a manifold
in the conÐguration space of the molecule. This manifold can
have the dimension N [ 2, if the conÐguration space of the
PES has the dimension N.14,15 At the VRI points, we have 2
constraints : (i) the gradient of the PES has to be orthogonal
to an eigenvector of the Hessian matrix of the PES, and (ii)
the corresponding eigenvalue has to be zero. Thus, we lose
two degrees of freedom for the VRI manifold. Hence, in order
to Ðnd such manifolds, test surfaces with a dimension higher
than N \ 2 are needed. In ref. 11 and 13 we have discussed
hypersurfaces over the 3-dimensional conÐguration space.
Now we turn to the PESs of the real molecules H2S, H2Se
and where the latter has an internal dimension ofH2CO
N \ 6 degrees of freedom. The corresponding MP2 ab initio
PES is used to show the existence, the characteristics and the
possible importance of VRI points for locating branching
points along possible reaction channels. A one-dimensional
manifold of VRI points is found in the case of the 3-atom
examples, however, in the case of the manifolds of VRIH2CO,
points are found to be at least two-dimensional. It is obvious
that the level of the quantum chemical method used is not
sufficient to obtain a globally correct surface of the molecules.
Especially, dissociations like cannot beH2S ] S] H2described adequately without using CASSCF or related
methods. It is not the objective of this paper to result in an
exact description of the high-energy parts of the PES.
However, the methods used should be qualitatively correct in
the interesting region of the VRI points.

This paper is subdivided as follows : First we repeat the so-
called global Newton method, or the Branin method. After
that characteristics of VRI points generated by this method
will be examined and the manifold of VRI points of the PES
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of and will be speciÐed. The possible signiÐ-H2S, H2Se H2CO
cance of those curves or hypersurfaces and of certain points
on them is discussed.

2 Reduced gradient curves and their branching
points
The idea to follow a reduced gradient has been introduced in
ref. 13 and 16. The ““ reductionÏÏ is realized by a projection of
the gradient onto the (N [ 1)-dimensional subspace which is
orthogonal to the one-dimensional subspace spanned by the
search direction r. A curve belongs to the search direction r, if
the gradient of the surface, g, always remains parallel to the
direction of r at every point along the curve x(t)

P
r
g(x(t))\ 0, (1)

where projects with the search direction r. This meansP
rBased on the explicit deÐnition, we can follow thisP

r
r \ 0.

curve along its tangential vector. This is the reduced gradient
following (RGF) method. In contrast to the conventional dis-
tinguished coordinate method (cf. ref. 17), a reduced gradient
curve passes possible turning points without jumps.18

There are two di†erent methods to get a reduced gradient
curve : the RGF method and the Branin method.19 These
methods are based on several ideas and have di†erent applica-
tions in the examination of the PES. The method of RGF is
described in ref. 13 and 16. RGF uses the derivation of eqn. (1)
to obtain the tangent x@ to the curve

P
r
Hx@\ 0. (2)

The matrix H is the Hessian. The projector does notP
rdepend on the coordinates x or on the curve parameter. In

general, the search direction, r, and the tangent, x@, are di†er-
ent. The algorithm is realized by the predictor-corrector
method.13,20 It is appropriate to detect unknown stationary
points, for instance saddle points of index one (transition
states). The method starts at a stationary point, e.g. a
minimum, and follows an arbitrarily selected direction of the
gradient on the PES. This may be a chemically interesting
direction, a reaction path.

Because the gradient directions of the PES are uniquely
determined, curves calculated by RGF to di†erent directions
cross if and only if the gradient vanishes at the crosspoint, i.e.
the crosspoint has to be a stationary point. However, di†erent
branches of the solution of the same reduced gradient curve
may also cross each other. These points are characterized as
the branching points of the reduced gradient curve, being the
VRI points of the surface. Whenever a reduced gradient curve
reaches a VRI point, the curve branches, and at every VRI
point of the PES the solution of a reduced gradient curve
branches.13 The characteristic attribute of a VRI point is the
zero eigenvalue of the Hessian. At least one eigenvalue
changes its sign when going along the gradient,10,12 where the
corresponding eigenvector is orthogonal to the gradient. This
means, a valley changes into a ridge or vice versa.

The RGF method is related to the well-known mathemati-
cally theory of Branin,19 the so-called global Newton
method.14 Its application to the PES analysis has been
described in ref. 13. The procedure uses the adjoint A of the
Hessian H. It is deÐned by the equation AH \ Det(H)I, where
I is the unit matrix and Det(H) is the determinant of H. The
global Newton method deÐnes an autonomous system of dif-
ferential equations for the curve x(t), where t is a curve length
parameter :

x@\ < A(x)g(x), (3)

applied as

x
m`1 \ x

m
< *tA(x

m
)g(x

m
).

The sign in eqn. (3) determines the index of the stationary
point which we search for. The negative sign stands for sta-
tionary points of an even index, i.e. minima or second-order
SPs. The positive sign stands for stationary points of an odd
index, among them SPs of index one (transition structures).
The step length of the Branin method depends on the adjoint
of the Hessian, A, and the gradient, g. If the product of adjoint
and gradient becomes a zero-vector, the step length becomes
also zero. This happens either near stationary points, where
the gradient vanishes, or at VRI points. In the second case the
determinant of the adjoint of the Hessian vanishes. Hence, sta-
tionary points and VRI points are the limits of the Branin
method. In mathematical terms, the VRI points are singular
points of the Branin method.14

The starting point for the Branin method may be any point
of the PES, except stationary points or VRI points, whereas
the search direction is the gradient. If the search direction of a
Branin curve does not exactly coincide with the direction of
the gradient at the next VRI point (which we search for), then
the curve does not meet this VRI point. A curve is followed
where a turning point occurs in front of the VRI, and we
cannot grasp the VRI point going along the solution of eqn.
(3).13 Hence, we have to start at a point where the gradient
has the same direction as the gradient at the VRI point, see
the example of such a search direction in ref. 13. This can be
realized for manifolds of VRI points in symmetric subspaces
of the conÐguration space. Therefore, a systematic search for
VRI points is possible in symmetry hyperplanes of the PES. In
this case, along the pathway of a Branin curve, the eigenvalue
of an eigenvector, being orthogonal to the gradient, converges
to zero.

3 The potential energy surface of H
2
S

Topography and reaction channels

Fits of the PES of have been reported.21 The Ðts are onlyH2Swell adapted to the region of the minimum. However, we use
the MP2/6-31G** method of the Gamess-UK program
package22 for the calculations on the PES of the mol-H2Secule in a more extended region. Internal mass-weighted coor-
dinates were used, where r denotes the symmetrical distances
SÈH and a the angle HÈSÈH. Since the complete 3-
dimensional potential energy hypersurface of cannot beH2Svisualized, we use a section for the visualization : the sym-
metric plane a). The sectional submanifold of the(r1\ r2 ,
PES is a 2-dimensional surface calculated by single-point
MP2 calculations over grids of 41] 41 points in the conÐgu-
ration space. Interpolations are done by Mathematica.23

Fig. 1 shows the symmetric section of the PES of TheH2S.
global minimum is signed with MIN (MP2/6-31G** :
r \ 1.327 and a \ 94.37¡, E\ [398.820 966 76 TheA� Eh).level lines di†er by *E\ 0.01 The SP of inversion is atEh .
a \ 180¡ at the upper part. The reaction valley related to the
dissociation channel symmetrically forming can beS ] H2seen at the bottom on the right-hand side. (Note that a MP2
level calculation is not able to represent the whole dissociation
process sufficiently. Note also, that the representation of the

PES in the Ðgure is in curvilinear coordinates, thus, it isH2Sdistorted.)

The set of valley-ridge-inÑection points on the PES of H
2
S

In ref. 13 a test surface is used to show that VRI points may
form a manifold in the full conÐguration space. To Ðnd this
manifold, we constrain the search to a symmetry subspace.
The symmetry constraint used is In this plane wer1 \ r2 .
have automatically realized that the gradient of the full PES is
orthogonal to the eigenvector of the antisymmetric stretch
mode which stands orthogonal on the plane Thisr1 \ r2 .
third dimension of the antisymmetric stretch mode of the con-
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a)-section of the PES of (MP2/6-31G**). MIN isFig. 1 (rsym , H2Sthe global minimum. Level lines begin at [398.8205 with aEhspacing of 0.01 The VRI manifolds are two curves depicted byEh .
VRI.

Ðguration space is not shown in Fig. 1. The Ðrst condition (i)
for a VRI point is automatically fulÐlled in the symmetric
plane. The search for a VRI point has to look for condition (ii)
only, the zero eigenvalue of the antisymmetric mode. Using
the Branin method, it is possible to search systematically for
VRI points of the PES of symmetric conÐgurations of H2S.
The resulting curves of VRI points of the PES of areH2Sshown in Fig. 1. The curves ““VRIÏÏ are two distinct manifolds
of VRI points. The method of calculation is an interactive
point by point calculation, and it can be described as follows :
In order to Ðnd a point, we Ðrst Ðx a starting point. After
convergence of the Branin method eqn. (3) to a VRI point, the
next initial point is selected, for example by changing the
angle coordinate of the upper VRI curve by 5¡. Again, we look
for convergence. The used convergence criterion is an eigen-
value of wavenumber \1 cm~1. The sign used in the Branin
search depends on the side of the VRI curve where the initial
point is located (relative to the global minimum MIN). If
necessary, we have to restart the procedure with the opposite
sign. The calculated points are also listed in Table 1 of the
supplementary data.¤ The visualization of bifurcating curves
of an assumed minimum energy path at the corresponding
VRI point is outlined in ref. 11. There the water molecule has
been used, but here the relations are analogous.

4 The PES and VRI points of H
2
Se

There are known PES Ðts.24 We use the MP2/3-21G**
method of the Gamess-UK program package22 for the calcu-
lations on the molecule, because the Ðts are only wellH2Se
adapted to the region of the minimum. Internal mass-
weighted coordinates have been used, where r denotes the
symmetric distances SeÈH and a the angle HÈSeÈH. We use
the analogous visualization to the case of Again, theH2S.

a)-section of the PES of (MP2/3-21G**). MIN isFig. 2 (rsym , H2Se
the global minimum. Level lines begin at [2389.6790 with aEhspacing of 0.01 The VRI manifolds are two curves depicted byEh .
VRI.

section is the symmetric plane a). Fig. 2 shows the(r1 \ r2 ,
symmetric section of the PES of The sectional sub-H2Se.
manifold of the PES is a 2-dimensional surface calculated
by single-point MP2/3-21G** calculations over grids of
41 ] 41 points in the conÐguration space. Interpolations are
done by Mathematica.23 The global minimum is signed
with MIN (MP2/3-21G** : r \ 1.4883 a \ 92.277¡,A� ,
E\ [2389.679 419 61 Again, the SP of inversion is atEh).a \ 180¡. The region of a reaction valley related to the disso-
ciation channel forming is in the lower right cornerSe] H2of the Ðgure. (Note that the MP2 level of the calculation is not
able to represent the whole dissociation process sufficiently.)
Using the Branin method, we calculate the VRI points of the
PES of symmetric conÐgurations of The resultingH2Se.
curves of VRI points of the PES of are shown by theH2Se
curves ““VRIÏÏ and are reported in Table 2 of the supplemen-
tary data.¤

5 The potential energy surface of H
2
CO

We use the MP2/6-31G** method of the Gamess-UK
program package22 for the calculations of the mol-H2CO
ecule.

Visualization by cross sections

The dimension of internal coordinates for the description of
is N \ 6. We use distances to the C atom: andH2CO r1 r2are the distances between the and C, and corre-H1/H2 r3 ,

spondingly, is the distance OÈC. The angles HÈCÈO are a1and thus, correspondingly, the angle HÈCÈH is (in plane)a2 ,
The out-of-plane angle of theb \ 2p [ a1[ a2 . H1ÈCÈO

plane to the plane of the atoms is d. It is the ““bookH2ÈCÈO
modeÏÏ angle of the molecule. As in the previous cases, we are
interested in the VRI points of the bowl of the global
minimum at r3 \ 1.219 A� , r1\ r2 \ 1.099 A� , a1 \ a2\
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with an energy of E\ [114.191 015 72 The com-122.23¡ Eh .
plementary angle is 115.54¡. The Ðrst section used forb \bsymvisualization is the plane for Ðxed(r1, r2) a1 \ a2\ 122.23¡
where again d \ 180¡ is Ðxed, as well as which is Ðxed atr3the value of see Fig. 3. The next sections forr3 \ 1.322 A� ,
several further possibilities of visualization are symmetry
planes with whereR\ Rsym\ r1 \ r2 , b \ bsym\ 360¡ [ 2a,

and Ðxed d \ 180¡. These conditions are three sym-a1\ a2 ,
metry constraints. Finally there is the CO distance Forr3 .
Fig. 4, the CO distance is optimized, point by point over ar343 ] 43 raster, as is often done in quantum chemistry. For
Fig. 5, is Ðxed to the equilibrium length of the minimum,r31.219 but for Fig. 6, we use the Ðxed distance ofA� , r3\ 1.460

These sectional submanifolds of the PES with Ðxed giveA� . r32-dimensional surfaces calculated by single-point MP2/6-
31G** calculations over grids of 43] 85 points in the con-
Ðguration space. Interpolations are done by Mathematica.23

In Fig. 4 we draw thick lines for the equipotential lines of
the PES, but thin lines for the optimized values of the dis-r3tance which changes noticeably. Note : at the right upper
corner of Fig. 4, and still more at the right lower corner, draw-
backs of the MP2 perturbation procedure emerge : it jumps
between two very di†erent values of The result is a stranger3 .
““ saddle point ÏÏ region. A site of fracture is seen, and the
““valley of the SPÏÏ has an edge at the side of the dissociation
to The MP2 method used does not work correctlyH2 ] CO.
(cf. ref. 25 and 26) at this site of fracture at the transition to
shorter values. The symmetry constraind ““SPÏÏ of Fig. 4rCOmay be in the region of and at anRsymB 1.5 A� , bsymB 43¡,
energy of B[113.94 This SP of higher index is not ofEh .
practical interest.

Fig. 3 shows one single VRI point at the Ðxed anda1 \ a2 ,
Ðxed in the plane of the two di†erent HÈC distances. Thisr3suggests that the normal modes of stretching, and of them1 m5 ,
two H atoms could become unstable at the VRI region, cf.
Table 1 and Fig. 7 for the normal modes of TheH2CO.27,28
VRI point is obtainable if we start at the minimum and if we
go uphill exactly along the symmetry axis This also isr1\ r2 .
the way to calculate the VRI points of the next Ðgures : we
hold the symmetry exactly, but it is possible to change the
relation between the distances andR\ r1\ r2 b \ 2p [ a1where the angles (The calculated VRI points of[ a2 a1 \ a2 .

of the PES of (MP2/6-31G**). MIN isFig. 3 (r1, r2)-section H2CO
the minimum of the section. The VRI point is near r1\ r2B 1.57 A� .
The CO distance is Ðxed at 1.322r3 A� .

of the PES of (MP2/6-31G**). TheFig. 4 (Rsym , bsym)-section H2CO
level lines begin at [114.1909 with a spacing of 0.02 MIN isEh Eh .
the global minimum. The CO distance is optimized at every pointr3of the 43 ] 43 point raster. The system of level lines is underlinedr3in gray tone under the PES level lines which are drawn as usual bold
lines. The levels of begin at 1.159 at the lower corner of the rightr3 A�
hand side, and they have a spacing of 0.010 (Note : at the rightA� .
corners, the MP2 procedure ““ jumpsÏÏ.)

Fig. 6 are listed in Table 3 of the supplementary data.¤) Under
the given symmetry constraints we obtain that the gradient is
orthogonal to the three out-of-symmetry modes, the anti-
symmetric stretch, the antisymmetric bend and the out-of-
plane mode. The Branin method has to search ““only ÏÏ for the
zero eigenvalues of those modes, to localize their VRI points.
In comparison to the former molecules, we have an addi-H2Xtional out-of-plane mode in this 4-atom molecule (curvem4and a second antisymmetric mode, the antisymmetricVRI3),bending However, the ““ inner ÏÏ curve is quite similarm6 . VRI1to those of the former 3-atom molecules. The reason may be
that the symmetry constraint of two equal angles forces the
““diatomÏÏ part, CO, of the molecule to act as a single entity,
from the point of view of the two symmetric H atoms.

But now, an additional characteristics emerges : the bifur-
cation of the corresponding RGF curves at the corresponding
VRI points from the plane of Fig. 5 or 6 can take place along
3 degrees of freedom, into 3 di†erent antisymmetric directions,

Table 1 Fundamental transition wavenumbers, symmetries, and
motions for H2COa

Normal Wavenumber
mode /cm~1 Approximate motion

m1(A1) 2944b Symmetric CÈH stretch
m2(A1) 1764 C2O stretch
m3(A1) 1563 CH2 bend
m4(B1) 1191 out-of-plane bend
m5(B2) 3009 antisymmetric CÈH stretch
m6(B2) 1287 CH2 rock mode

a See Fig. 7 for illustration of the normal mode motion. b Ref. 27 and
28.
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of the PES of (MP2/6-31G**). TheFig. 5 (Rsym , bsym)-section H2CO
level lines begin at [114.1909 with a spacing of 0.02 The COEh Eh .
distance is Ðxed at 1.219 the equilibrium distance of the globalr3 A� ,
minimum MIN. By the dotted special curves we draw the calculated
VRI points. The section of the Ðrst VRI manifold with this PES
section is depicted by curve Correspondingly, the next VRIVRI1.points form the manifolds and The latter are the bifur-VRI2 VRI3 .
cations of the out-of-plane mode.

of the PES of (MP2/6-31G**). TheFig. 6 (Rsym , bsym)-section H2CO
level lines begin at [114.1309 with a spacing of 0.02 The COEh Eh .
distance is Ðxed at 1.460 MIN is the (shifted) minimum of thisr3 A� .
section. By the dotted special curves we draw the calculated VRI
points. points are the bifurcation points of the out-of-planeVRI3mode. Analogous curves are obtained for other distances of the COr3diatom.

Fig. 7 Six normal vibrational modes of formaldehyde, cf. ref.H2CO,
27.

the antisymmetric CÈH stretch at the minimum) as in the(m53-atom molecules, or the antisymmetric rock mode atCH2 (m6the minimum) (both of symmetry), or the out-of-planeB2bend mode at the minimum) of symmetry. Because(m4 B1there are 3 di†erent degrees of freedom for an antisymmetric
bifurcation, we Ðnd 3 VRI curves in Fig. 5 and 6 depicted by

and Note : the corresponding zero eigen-VRI1, VRI2 VRI3 .
vectors point out of the plane of Fig. 5 and 6.

The describes the bifurcation from the symmetryVRI3plane into symmetry where the other two curves are con-B1,nected by the same symmetry So, two of these possibilitiesB2 .
have the same symmetry, and can mix. Consequently, weB2 ,
Ðnd a combination of both directions as the result of our cal-
culations for the eigenvector which belongs to the zero fre-
quency at the corresponding VRI point. This is shown
schematically in Fig. 8 for the case i.e. for ther3 \ 1.219 A� ,

curves of Fig. 5. We use the calculated eigenvectorsB2-VRI
for the zero eigenvalue at the and curves whichVRI1 VRI2belong to the atom The plane of theH1. (r1, b1\ 180¡ [ a1)atom alone is shown, the VRI curves and ofH1 VRI1 VRI2the foot-points of the zero eigenvectors of symmetry beingB2the same curves as in Fig. 5. Only the projection of the eigen-
vectors into the is used ; note also that the(r1, b1)-plane r3component (the CO part) has usually a small, but nonzero
component in these eigenvectors, but the component of the
out-of-plane mode is always zero. The orientation of them4vectors is selected in such a way that for the stretchingVRI1of is chosen negative, and the corresponding is used. Ofr1 b1course, an analogous description of the atom with andH2 r2would start at the same curves and lead tob2 VRI1 , VRI2similar, but complementarily directed vectors.

It comes out that at the pathway into the symmetric stretch
mode of the CÈH bonds in Fig. 5 in a horizontal directionm1,starting at the minimum, the VRI eigenvector is mainly the
antisymmetric stretch see Fig. 8. Whereas starting at them5 ,
pathway into the normal mode direction of the symmetric
angle mode (in Fig. 5 the vertical direction starting at them3minimum, the bend) causes the VRI eigenvector to beCH2mainly the antisymmetric rock Of special interest are them6 .
two regions where the VRI curves 1 and 2 are in close
contact : these contact areas are at 1.18 and andA� bsym\ 50¡,
at 1.43 and If the two VRI curves 1 and 2A� bsym\ 195¡.

Phys. Chem. Chem. Phys., 2001, 3, 2735È2741 2739



Fig. 8 The eigenvectors to the zero eigenvalue at the curves VRI1and of Fig. 5 which act at the atom Only the projection intoVRI2 H1.the antisymmetric direction is shown. The length of the vectors(r1, b1)is normalized. The equivalent vectors of along directionH2 ([r2 ,
and the direction of the distance change of are not shown.[b2) r3

cross, their zero eigenvalues degenerate ! The calculation of
eigenvectors becomes non-unique, and this can be seen in Fig.
8 : the eigenvectors near the two crossing points become
erratic.

The out-of-plane degree of freedom can also serve for the
bifurcation direction. This is curve Of course, for theVRI3 .
VRI point to have a chemical meaning, the Ðrst emergence of
a VRI point is of particular interest if seen from the minimum.
The second or the third curve of VRI points seen from the
minimum depict VRI points of higher index. There, the
dimension of the ridge is two or more. Already the Ðrst VRI
point causes an instability of the mode which crosses its VRI
point curve and will cause a bifurcation of the corresponding
reaction channel. Thus, as we know from the discussion of
saddle points,29 those points of higher index are not so inter-
esting as the corresponding points of index one.

The problem. The VRI curves in Fig. 5 and 6 are calcu-r
3lated with constant or 1.460 respectively. Inr3 \ 1.219, A� ,

contrast, for the ““PES-part ÏÏ of Fig. 4 we have optimized the
CÈO distance, at every raster point. (The result is depictedr3 ,
by the gray underlying equidistance levels of The PESs ofr3 .)
Fig. 5 and 6 are not very di†erent. If we use other values of r3for the calculation of the VRI curves, in other PES sections,
then we get only slightly di†erent VRI curves. This means that
if we connect corresponding curves of di†erent values, wer3obtain at least 2-dimensional surfaces of VRI points in the
3-dimensional space of the symmetry coordinates Rsym , bsymand which are embedded in the 6 dimensions of the fullr3 ,
conÐguration space. For every antisymmetric mode we have
one surface of VRI points. It is also possible that these sur-
faces intersect, as is the case for for the twor3\ 1.460 A�

modes of symmetry, or for the surfaces of andB2 VRI1 VRI3of di†erent symmetry. At the intersection we Ðnd a degeneracy
of the zero eigenvalue.

6 Discussion
We Ðnd curves of VRI points, i.e. one-dimensional manifolds,
for and as well as three di†erent, at least 2-H2S H2Se,
dimensional manifolds of VRI points in the case of H2CO.
(Note that the results of are only obtained for VRIH2CO
points in symmetry subspaces.) The results revise the older
view of the problem,30 which suggested to obtain an isolated,
well-deÐned VRI point. The method of following a reduced
gradient (RGF)16 as well as the Branin method13 have suc-
ceeded in computing the VRI points.

The results reported in this paper raise the question of the
signiÐcance of high-dimensional manifolds of VRI points.
Which points on the VRI manifold correspond to the chemi-
cal concept of reaction path branching? To answer this ques-
tion we need a criterion allowing us to decide whether a VRI
point is located on a MEP or not. The IRC is not deÐned
locally and so it is unsuitable for such a task. In contrast, if a
VRI point fulÐlls the conditions of a gradient extremal31 and
the eigenvalues of the Hessian indicate a valley, this VRI point
is located on a MEP and so this VRI point is the branching
point of that reaction path.

Now we consider the reaction path which follows the sym-
metric dissociation of or the symmetricH2 ] S H2S, H2 ] Se
dissociation of or the symmetric dissociationH2Se, H2] CO
of In fact, a gradient extremal for crosses the VRIH2CO. H2Scurve near the point at r \ 1.76 a \ 24.7¡ in Fig. 1, and forA� ,

at r \ 1.88 a \ 22.7¡ in Fig. 2. (We have used a gra-H2Se A� ,
dient extremal program of Imig and Quapp, University
Leipzig, 1996. The VRI points nearby are marked in Tables 1
to 3 of the supplementary data.¤) The unimolecular disso-
ciation is WoodwardÈHo†mann for-H2CO] H2] CO
bidden therefore proceeds via the highly asymmetric saddle
point. It is known that the bifurcation of the dissociation path
leads to a non-symmetric pathway of that reaction.26,32 To
compare a possible start of that path, we have calculated the
full 6-dimensional gradient extremals of starting at theH2CO
global minimum. A gradient extremal (mainly along an
increasing CO distance but holding the full symmetry of Fig.
4) leads to the saddle point region of Fig. 4È6, indicating the
pathway to It crosses a VRI point in the stretchingH2 ] CO.
mode region at but at the largeRsym\ 1.425 A� , bsym\ 81¡,
CO distance of This is far above the section ofr3 \ 1.646 A� .
VRI points in Fig. 6, and it is also far away from the short-
ening of the CO distance under the dissociation, thus, we
cannot discuss the pathway within the results of this VRI cal-
culation.

However, with Fig. 5, we may imagine the H2CO] H
theoretical reaction path. The gradient extremal] CO] H

of the dissociation path uphill from the symmetric stretching
valley crosses at andVRI1 Rsym\ 1.485 A� , bsym\ 122¡,
the slightly smaller CO distance of in compari-r3 \ 1.189 A� ,
son to the CO distance used in Fig. 5. A bifurcation on this
(full 6-dimensional) valley pathway at would lead alongVRI1an antisymmetric stretch mode, out of the plane of a section
like Fig. 5, to the energetically lower paths to one of the
saddle points of the pathways to the two HCO ] H versions.
Behind the the gradient extremal of the symmetricVRI1,stretch in the plane of a section (like Fig. 5 but at r3\ 1.189

would go further up a ridge (the ridge eigenvector is that ofA� )
the corresponding orthogonal antisymmetric stretch mode).
This dimension is not shown in Fig. 5. An analogous illustra-
tion has already been given in ref. 11. This ridge is also a
gradient extremal, but it loses the characterization of a reac-
tion pathway. In this way we can state that there is a bifur-
cation of the reaction path. (Note : the gradient extremal itself
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does not bifurcate at the crossing of the VRI line,31 it only
changes its characterization.)

Further gradient extremals also cross VRI points : that of a
symmetric bending excitation crosses at Rsym\ 1.071 A� ,

and at the large a point of thebsym\ 162¡ r3\ 1.632 A� VRI3out-of-plane book mode, and at Rsym\ 1.077 A� , bsym\ 212¡
and the anti-symmetric bending mode cor-r3 \ 1.496 A� VRI1,respondingly. These two points are again above the calculated
upper section of VRI points in Fig. 6. The corresponding gra-
dient extremal slowly follows the valley of Fig. 4 along an
increasing b value (the opening of mode but rapidlym3), r3increases on this pathway (mode up to a turning point inm2)the direction. Thus, the use of the gradient extremal as ar3reaction path is again questionable, in this case.

Finally, we try to generalize the signiÐcance of the curve of
VRI points. A set of RGF curves referring to di†erent search
directions of the PES can be calculated. Some of the curves
cross the VRI manifold and branch there. The directions of
their gradients can be compared with combinations of normal
modes of the equilibrium structure. The curve of VRI points
of the PES may be considered as the outer limit for stable
modes in the symmetric subspace, i.e. for the combinations of
the symmetric stretching modes, and the symmetricm1, m2 ,
bending, cf. ref. 11.m3 ,
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