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Abstract. We propose a Frenkel-Kontorova model for a 1D chain of electrons forming a Wigner solid over
4He. It is a highly idealized picture, but with the model at hand we can study the movement of the chain.
We find out that the energetically most preferable movement is the successive sliding of a kink or an
antikink through the chain. Then the force for a movement does not depend on the length of the chain.
The force uniformly applied to all electrons must be larger than a force exciting only a kink or an antikink.
We calculate two cases, one with stiff ’springs’ between the electrons and one with weak ’springs’. The side
potential of the ’dimples’ is additionally damped at the periphery. We study the cases with 33, 66, and
101 particles.

PACS. Quasi-1D electron systems – Winger solid – Frenkel-Kontorova model – Damped side potential
– Newton trajectory – Langevin equation – Barrier breakdown point – Kink/antikink motion

1 Introduction

A Wigner solid (WS) is an experimental fact [1] that has
first been observed in a system of two-dimensional surface-
state electrons (SSE) floating above a liquid helium-4 sur-
face [2,3]. Given that liquid helium is weakly polarized,
the unscreened Coulomb interaction of electrons benefits
a WS formation from SSE crystallization at densities of or-
der 1013m−2 and at temperatures around 1K. The strong
inter-electron interaction makes this SSE system an ideal
system for studying many-particle problems [4–7] espe-
cially for the driven dynamics of strongly correlated sys-
tems.

Typical experimental devices for studying the driven
dynamics of SSE on helium are similar to a semiconductor
field-effect transistor [8,9]. Here SSE are capacitively cou-
pled to the source, channel and drain electrodes beneath
liquid helium. A pair of split gates on the liquid helium
level is used to reduce the effective width of the chan-
nel, so that a quasi one dimensional (1D) configuration
of SSE can be realized. Confining the SSE in capillary-
condensed micro-channel structures is practical for investi-
gating nonlinear electron transport and phase transitions.
The strongly-correlated WS phase gives rise to many in-
teresting phenomena, such as the re-entrant melting of

quasi-1D electron crystals [10–12], stick-slip motion of a
WS [13,14], the bistable transport properties of a quasi-1D
WS [15], the finite-size effect of WSs on sliding transition
[16,17], and the loss of the long-range positional order of
a quasi-1D WS in the presence of an external periodic
potential [18].

The competition between the collective behavior of the
strongly correlated particles and the influence of the en-
vironment on individual particles is important for many-
particle problems. The nonlinear transport properties ob-
served in the aforementioned works essentially result from
the strong coupling of WSs and the liquid surface. The
soft liquid surface commensurately deforms with a WS
due to the electrostatic pressure of the localized electrons
of the WS, so that a 1:1 commensurate dimple lattice (DL)
forms [19]. The profile of the DL deformation is composed
of sinusoidal waves, and it was estimated for the WS of
different velocities according to the hydrodynamic theory
[20]. When the WS is at rest, a typical depth of the DL is
about 10−12m [20]. When the velocity of WS approaches
the phase velocity of the surface wave with a wavelength
that matches the WS lattice constant, the DL drastically
deepens due to their resonance [21]. This resonant surface-
wave emission from a WS is also known as the Bragg-
Cherenkov scattering [22] which first explains the nonlin-
ear WS driven dynamics with a strong coupling to the
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quantum field of capillary waves [23]. While the DL deep-
ens, the frictional force experienced by the WS increases
at the same time. The coupling with varying profiles of the
commensurate DL significantly influences WS’s transport
properties along the liquid surface. We assume here this
strong coupled relation between the WS and the dimples.

At least, if one exposes the WS to an external elec-
tric field then the redistribution of the electrons can be
recorded as a current [8,16,17,24].

We understand the WS as a chain of particles and re-
port here on a numerical study of a 1D model WS. The
site-up periodic substrate potential of the DL is assumed
to be a sinusoidal function with its amplitude smoothly
decaying to zero at the two ends of the DL. It is really of
finite length. It represents the damped resonant DL with
the boundary condition of a zero amplitude. We assume
exponential decay of the DL at the boundaries, because
the transient part of a general solution to a damped driven
oscillators suggests a form of expoential decay. We search
the form of the movement of a 1D WS through a site-
up potential. Intrinsically there is no misfit between the
WS and the DL. Under an external electric field we as-
sume an immediate reaction of the electrons and a frozen
surface deformation. We use the Frenkel-Kontorova (FK)
model for the movement of the electrons. The model was
explained and discussed in Refs.[25–27]. The FK model
describes the situation of the 1D WS: a chain of particles
with ’spring’ forces in between is embetted in a site-up po-
tential. We use here a modified Frenkel-Kontorova model,
see Section 2.

All electrons subject to the Coulomb force. However,
the electrons in both reservoirs before and after the chan-
nel of the chain, in the experiments [17,18], press the
chain into a pattern with fixed distances. In a 1D-chain
the Coulomb potential between electrons is screened by
the presence of other electrons [28]. This is the ground
assumption of the FK model. On the other hand, fixed
boundary conditions for the particles p1 and pN of the
chain would destroy an FK model of a finite, but freely
moving chain [25]. So we leave free the boundary condi-
tions of the chain, and it can move like in the experiment
under an external electric field.

Overall, we treat here the potential energy surface
(PES) for the N electrons of the experimental chain and
search for low lying 1D valleys through the ’mountains’
of the N -dimensional PES for a sliding of the WS chain.
The method corresponds to studies of chemical reactions
through the PES of the corresponding molecules. An im-
portant part of the theory is the use of Newton trajectories
(NT) for the description of the moving stationary points
of the PES under an external force. The NTs are curves
in the configuration space of the chain. The NT theory
was discussed in Refs.[29–32]. They are curves where at
every point the gradient of the PES points into the same
direction, called the search direction. If we compress or
pull the chain, some or all coordinates of the electrons
change. Some examples of a changed chain are drawn be-
low. Because we can draw all N particles of a chain we can

illustrate here N changing dimensions. Such events are de-
scribed in depth by the NTs. Every point of an NT is a
configuration of the chain. To a given driving force, the
search direction, on any number of chain electrons, we get
the ’static’ curve of the NT on the PES of the movement
of the chain. For practical reasons, we divide every NT
into M nodes. The number of nodes used depends on the
step length of the predictor of the NT program.

Under an additional external energy, the chain tilts. In
a second, quasi-dynamical ansatz we study the movement
of the chain on the tilted PES by a Langevin equation. If
the tilting is large enough, the chain starts to slide down-
hill on its effective PES. A fundamental observation is that
the sliding pathway does not cross directly the stationary
points of the unperturbed PES. However, it often crosses
ridge regions over the corresponding SPs in the valleys
which we know by NTs.

We find that the chain never moves as an inelastic,
’solid’ body, or with a ’collective sliding’. The chain of
electrons in the drain of the experiment will be picked up
by the external force (see Eq.(12) below). If the force is
high enough then the chain forms a kink or an antikink. A
kink is a stretched structure of a part of the chain where
an antikink is its compressed counterpart. These are quasi-
particles which move like a wave through the chain along a
flat valley of the PES, and they affect so the recorded cur-
rent measured in the experiment. The motion of the chain
goes on by steps of the periodicity as by antikinks, and/or
kinks, or combination of both. The form of the existence
of a movement with low excitation energy is the forward
sliding of antikinks, akin to the biomechanical motion of
an earthworm or a caterpillar, or the backward sliding of
kinks. In biology we find a combination of shrinking and
tension of individual parts of the body of the earthworm
or the caterpillar.

In recent measurements, Badrutdinov et al. [16] and
Lin et al. [17] found the rather surprising fact that the
amount of force for an external movement of a quasi 1D
WS with more than 30 electrons does not depend on the
length of the chain. We give here a simple explanation of
this unconventional result, even by the emergence of kinks
/ antikinks. To start the movement one has to overcome
the amount of the barrier breakdown point (BBP) on the
way uphill to the former SP1. The BBP is a shoulder on
the effective PES of the tilting. It depends on the direc-
tion of the external force.

In our previous work [27] we found kinks in commen-
surate and in incommensurate lattices. But in this case of
no misfit here, we find sliding antikinks, kinks or pairs of
them doing the movement of the chain. It is in contrast to
the meaning of ref.[33] where the authors claim that kinks
are an indicator for incommensurate lattices.

In section 2 we introduce the FK model used in this
paper. The remains are divided into two parts. Part I dis-
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cusses a ’strong’ case of the spring potential with N=33,
66, and 101 chain length in the sections 3 to 6, and in
section 7 we add the conclusions for the case. Part II in
contrast studies a weak spring parameter for N=33. In
sections 4 and 9 we study the action of a Langevin equa-
tion. Finally we discuss the Coulomb force of the electrons
and the use of the FK model, and give some further con-
clusions.

2 The modified FK model for a Wigner solid

p = (p1, ..., pN ) represents the position of N discrete par-
ticles of a chain, here electrons of the Wigner crystal. The
positions pi are on a linear axis. It holds pi < pi+1. We
treat a finite chain. The free end points of the chain de-
termine the average distance ao = (pN − p1)/(N − 1). It
is determined by the density of the electrons. Between the
repelling electrons we have the long-range Coulomb force
[34–37]

FC(p) =
e2

4πεo

N∑
1≤i<j

1

(pi − pj)2
(1)

with e is the electron charge, and εo is the vacuum permit-
tivity. Note that in the Coulomb ansatz we do not have
a dependence on the ao distance; this distance is deter-
mined by the density of the electrons in the experiment.
The thermal motion of electrons in the liquid/gas phase
is fast. If the electrons are in the solid phase, they move
slowly so that the liquid 4He surface can deform accord-
ingly. If then the electrons are subject to an orthogonal
electric field, E⊥, they induce dimples with the same dis-
tance in between like the electrons. Thus the on-site po-
tential of the dimples has the same periodicity, as = ao.
The lattice constant as of the dimple lattice is determined
to be somewhat less than the distance of the first WS de-
tection, 5× 10−7m [2]. But the as is still large enough to
assume that the electrons interact like point charges [2].
So to say, the chain of electrons is a quantum dot molecule.
The energy of the dimples depth is approximated by

v = eE⊥ξ = (1.6× 10−19)(7.5× 105)(5.2× 10−11 (2)

= 6.2× 10−24[Joule]

with the holding field, E⊥, which presses the electrons into
the He which is about 7.5× 105V/m and the amplitude ξ
is estimated to 5.2 × 10−11m [13]. The amplitude of the
surface wave, ξ, describes the resonating ripplons of the
He-surface.

The first aim is to coarsely approximate the Coulomb
force by a harmonic force between neighboring particles.
The first step is the approximation of the double sum in
Eq.(1) by a single sum over only neighboring electrons just
for the sake of simplicity. We get

FC(p) ≈ e2

4πεo

N−1∑
i

1

(pi+1 − pi)2
. (3)

Two consecutive summands contain the same electron, say
for example pi+1, and we can look for the Taylor series for
the variable pi+1 developed at the equilibrium distance,
ao,

FC(p)

∣∣∣∣i+1 ≈
e2

4πεo

(
1

(pi+1 − pi)2
+

1

(pi+2 − pi+1)2

)
(4)

=
e2

4πεo
[

1

a2o
− 2

a3o
(−pi + 2pi+1 − pi+2) +O[2] ]

We suppress the first term, a constant, and the higher
terms. We can use the linear term to look for a corre-
sponding potential energy of the springs. We get the cor-
responding two summands containing the pi+1

e2

4πεoa3o
[(pi+1 − pi − ao)2 + (pi+2 − pi+1 − ao)2] (5)

and the sum over all electrons then results in the trans-
formed ’harmonic’ energy

SH(p) =
e2

4πεoa3o

N−1∑
i

(pi+1 − pi − ao)2 . (6)

In the numerical tests we scale the as-constant of the
dimples potential to 2π for computational simplicity. Be-
cause as = 2π it causes a coordinate transformation

xi =
2π

ao
pi, i = 1, ..., N . (7)

For the spring potential the transformation means

S(x) =
e2

24π3εoao

N−1∑
i

(xi+1 − xi − 2π)2 (8)

where the spring constant k/2 is the factor before the sum.
As the result of the transformation we have instead of
Eq.(1) a harmonic trap, S(x), for the electrons by a near-
est neighbor potential.

Additionally we fix the row of dimples including the
damped ones. Thus we artificially exclude a moving DL
by surface waves (ripplons) [38], or, in other words, we set
the ripplon relative velocity to zero (rigid dimple model)
[39,40]. A reasoning may be that the electrons move quite
faster than the dimples under an external force because
the effective mass of a dimple is typically several hundred
times the electron bare mass [41]. Thus each dimple can
be treated as a massive object. In contrast, the formation
of the DL contributes little to the stability of the WS
itself [41]. The aim is here to decouple the WS from the
helium surface. The range is on the x-axis (0, 2πN) for
the N dimples. In our calculations the chain can move by
one or two dimple places further. The PES for the variable
changes of the xi is the modified Frenkel-Kontorova model

V (x) = D(x) + S(x) (9)

where D is the potential of the dimples and S is the po-
tential of the ’springs’ between the electrons with Eq.(8).
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D(x) =
v

2

N∑
i=1

 (1− Cos(xi))Exp(−(20π − xi)/15) for xi < 20π
(1− Cos(xi)) for 20π ≤ xi ≤ 2π(N − 11)
(1− Cos(xi))Exp(2π(N − 11)− xi)/15) for 2π(N − 11) < xi

(10)

For N we use values ≥ 33 to save an internal part
of the chain. In the first part of this paper we calculate
N=33, 66, and 101. In part II we treat N=33.

The ratio of the constants of the two potentials be-
comes

v

k
=

8π3εoE⊥ξao
e

= 0.27 (11)

with Eqs. (2) and (8) where the units cancel. It is εo =
8.854× 10−12 F/m, E⊥ = 7.5× 105 V/m, ξ = 5.2× 10−11

m, e = 1.6× 10−19 C, a0 = 5× 10−7 m.

The uncertainties in Eq.(11) are the depth of the dim-
ples, ξ and the distance a0. They can variate under dif-
ferent conditions [42]. In this paper we treat two different
models to take into account the uncertainties. First we fix
in the potentials v = 2 and k = 8. The value v = 2 is used
in the PES of D(x)-figures in the next sections. Secondly
we fix a ratio with another parameter k to study the ac-
tion of the model under drastically changed relations. We
use v = 2 and k = 1 in part II of this paper. The situation
then changes to a stronger dimple potential, or a weaker
string constant. However, we will see that the qualitative
pattern of the existence of kinks or antikinks is similar, in
both cases.

Because we treat a simple special case of the FK model
with as = ao with no misfit between the two potentials,
we immediately find the ground state of the chain with
zero energy where all N electrons occupy N minimums of
the dimples of the on-site potential.

Because v >0, the on-site potential will modulate the
chain if an external further force is applied. We use a linear
force. We name the resulting PES an effective PES

VF (x) = V (x)− F (l1, .., lN )T · x . (12)

The multiplication point between the N -dimensional nor-
malized force direction vector (l1, .., lN )T and the N -vari-
able x means the scalar product. F is the factor for the
amount of the external force. The new term is often named
dc driving (dc: direct current). The force tilts the former
on-site potential for electron xi with the incline F li, i =
1, ..., N . If the amount, F, of the force alternates then one
names it ac driving [42]. The extremal points of the effec-
tive PES, VF , move if F increases. It is described by NTs
[29–32]. F increases to a maximum at the barrier break-
down point (BBP) [31], and it decreases again to zero at
the next SP.

SP1
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Fig. 1. The energy profile of an LEP over the antikink. The
inset is the structure of the chain at the SP. Note that the
electrons are artificially lifted on the dimples potential to guide
the eye. The real chain is on a straight line. Only the distances
can change.

3 PART I – THE STRONG SPRINGS –
CASE v=2, k=8, N=33

3.1 A low energy path (LEP) for an antikink

There is an SP1 of a symmetric antikink of the chain, a
compressed structure. SP1 means an saddle point on the
PES of index one, with one valley-direction, but N − 1
directions pointing uphill. It has two electrons in the full
dimple 6 of the chain. They are compressed in the centre
of the chain. Further electrons are sorted in the other dim-
ples, one per dimple. So, the left half of the chain is moved
by one dimple. We report on an NT over this SP which
describes a low energy path through the PES in Fig.1. A
mild turning point (TP) emerges before the SP1 . Here
the NT turns the increase of energy into a mild decrease.
The search direction of the NT, (l1, ..., lN )T , is the first
eigenvector of the SP2 of the PES, see subsection 3.3. The
SP2 direction is in between the two directions of the two
SP1, compare Fig. 5 below. The model of the chain is a
very rigid one. Because of the large k-value the electrons
form a stiff chain. It follows that the length of the antikink
structure, L, is approximately the half length of the chain,
L ≈ 16. Thus, we cannot expect similar antikinks before
or after this symmetric structure. And indeed, we only
found this one SP1 on this LEP. However, N=33 is even
long enough to allow the antikink structure of the chain.
The barrier of the SP1 of the antikink is named Peierls-
Nabarro barrier [43]. The PES of the SP1-structure of the
antikink has N eigenvalues of the Hessian matrix of the
second derivations of the PES, V (x) [25,44]. One eigen-
value is negative, the other (N − 1) eigenvalues are posi-
tive. This is the definition of an SP1. The corresponding
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Fig. 2. The energy profile of the MEP over the kink SP1. The
inset is the structure of the chain at the SP. (To compare the
structure with Fig. 1, see Fig. 4.)

’negative’ eigenvector points along the LEP over the SP1.
It is the ’decay’-mode of the SP1. All other (N −1) eigen-
vectors are orthogonal to the LEP at the SP1. They point
into the ’mountains’ of the PES, and they have nothing
to do with the movement of the chain along its axis over
the LEP. The lowest four eigenvalues are 0.96, 0.22, 0.18,
-0.06; thus there is not a phonon ωmin = 1 like in ref. [45].
The reason may be the damped dimples used here. By the
way, the term ’phonon’ was coined by J. I. Frenkel [46].

3.2 The minimum energy path (MEP) for a kink

The minimum energy path is that with the lowest energy
which we need to come through the mountains of the PES
for a movement of the chain. A next SP1 of a symmetric
kink of the chain, a stretched structure, is shown in Fig.2.
The chain has a gap in the full dimple 6 of the side poten-
tial. The profile is combined by the energy over two NTs.
A unique NT for the pathway could not be found. The
search direction of the left part up to the SP is the gradi-
ent of the barrier breakdown point (BBP) of the steepest
descent from the SP back to the global minimum. This
direction is mainly a pull direction. Similarly, the search
direction of the right part down from the SP is the gra-
dient of the BBP of the steepest descent from the SP to
the other side to a moved minimum. Now the direction is
inversely mainly a push direction.

Kinks and antikinks form the SPs of index one of the
PES of the FK model. In section 3.3 we also cross an SP2 of
index two. For this chain with N=33 and flattened border
dimples, a 1D pathway through the PES to a structure
moved by as goes over one of the two SP1, compare Fig. 5
below. There is no other pathway with comparable low
energy. If we compare the two SP1 of Fig. 1 and Fig. 2, we
can say which one is the MEP, and which one is ’only’ a
low energy path.

Kinks are already studied elsewhere [45,47] for the sim-
plest excited states which connect two neighboring ground
states. In contrast to a remark in Ref. [45] we can give
the exact shape of a kink by a numerical calculation, see
Figs. 1 and 2.
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Fig. 3. The energy profile over an NT through three stationary
points: the SP1 of a kink, the SP2, and the SP1 of an antikink.
A projected PES with all stationary points is shown in Fig. 5.

It is worth noting that the kink, as well as the anti-
kink form a spontaneous symmetry break of the given
chain [48]. The two lowest eigenvalues, 0.21 and 0.209, of
the ground chain are nearly degenerated. The two lowest
eigenvectors, correspondingly, are a symmetric push, or an
asymmetric push and pull, mainly in the outer regions of
the chain. They point into the directions of the two LEPs
of Figs. 1 and 2. The symmetry break for both LEPs is
in a clear contrast to an assumption of a ’symmetry op-
eration’ in an FK chain in references [49,50]. Of course,
the existence of kinks and antikinks in the FK model is
long known, see for example ref. [51] and further references
therein.

3.3 A pathway including the antikink and the kink SPs

The lowest SP1 of the PES is a symmetric kink, a stretched
structure. Many NTs which we tested go over this SP but
then turn up to the SP2 of higher energy, compare Fig.3.
It depends on the direction of the applied force. The mir-
ror picture of the symmetric minus-eigenvector of the SP2

is used for the search direction. If the energy of the ex-
ternal electric force is high enough then the movement of
the chain can also go over the region of the instable SP2,
however, any fluctuation will lead to a falling down of a
real experiment to the next SP1 valley. The structure of
the three stationary points are given in Fig.4. The energy
of the kink is 22.2, of the antikink, however, it is 22.37.
The SP2 comes to 33.38. This energy is near the sum of
the height of all dimple-tops, because the springs are all
near their equilibrium length.

The understanding of the localization of the three sta-
tionary points of the PES is possible by a projected PES
into 2 dimensions. We use the two negative eigenvectors of
the SP2 as coordinate axes in the 33D coordinate space of
all electrons. The eigenvector 1 is quasi symmetric with a
small shift to more push. The eigenvector 2 is quasi asym-
metric. The centre of a corresponding picture is the SP2,
and we name the axes s and a. The result is Fig. 5. The NT
of Fig. 3 first climbs up to the lower SP1 but it does not
find the downhill path to the next minimum, however, it
turns up to the SP2. This is possible by the theory of NTs,
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SP1 0 10π 20π 30π 40π 50π 60π

x

0.5

1.0

1.5
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SP20 10π 20π 30π 40π 50π 60π

x

SP10 10π 20π 30π 40π 50π 60π

x

Fig. 4. The structure of the left SP1 is a kink, the SP2 is the structure of the chain moved by π to the tops of the dimples,
and the right SP1 is an antikink. The top of the central dimple 6 is enlarged, correspondingly to illustrate the difference of the
two SP1. A modified Frenkel-Kontorova model is assumed. In this model the ’y’-axis, the ’SidePot’ is the energy of the dimples
on the He surface with v=2. The spring potential is not illustrated.
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Fig. 5. The projected PES of the chain. Three stationary
points correctly emerge near the a-axis for s = 0 – the low
SP1 of a kink, the SP2 at the centre, and the upper SP1 of an
antikink. The solid line is the NT to direction a but the dashed
curve is the NT to direction s.

by the index-theorem [52]. Every NT connects stationary
points with an index difference of one. So, also NTs to the
SP2 are possible. After the SP2 the NT then goes down
to the former SP1 of an antikink, and finds the next min-
imum where the chain is again in the ground state but is
moved by 2π.

One can understand the representation of Fig. 5 as
the 2D pathway of the chain through its PES mountains.
While the profiles of Fig. 1 and Fig. 2 describe 1D ways
over the corresponding SPs of index one, the broad valley
of Fig. 5 leads over the SP2. The ridges on the left and on
the right hand side of the 1D valleys have the dimension
(N − 1) which may be imaginable. But at every point of
the 2D valley we have ridges into the remaining (N − 2)
dimensions. Of course these high-dimensional ridges are
difficult to imagine.

The usual experimental external force direction, a fully
equal external force, f=1/

√
N (1,...,1)T , also results in an

NT similar to Fig. 3, see also Section 4.
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Fig. 6. The projected PES of the chain tilted by an external
force (0.949, -0.316). The stationary points move on the effec-
tive PES along the NT (fat) to the tilting direction.

We still discuss what a tilting would make with the
PES using the example of this 2D projected surface. We
apply the force l=(0.949, -0.316) in Eq. (12) pointing to
the lower SP1. In Fig. 6 the corresponding effective PES
is shown. The NT emerges if the amount F increases or
decreases, correspondingly. Shown is the case F=1. The
external force shifts the left minimum and moves together
this minimum and the lower SP1. For a certain larger F ,
the two extremals will coalesce at the BBP. However, the
upper SP1 is moved uphill to the SP2. Thus, the tilting
causes a decrease of the lower barrier and an increase of
the upper barrier.

Translated to the general case we can conclude that a
force where the corresponding NT climbs up to an SP1 in
any case causes a movement of the chain to the new mini-
mum. The arc of the NT over the other stationary points,
SP2 and the upper SP1, only describes the ’background’
of the process: when not included SPs move on the PES.
It is not of interest for the chain itself.

Note that the NT (usually) does not describe the be-
havior of the chain. It describes the movement of the sta-
tionary points. If the chain is pushed, or pulled by the
external force into the SP region, it will follow another, a
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dynamical trajectory down to the next minimum, compare
section 4.

Note further that we do not need to extend the amount
of the force up to the BBP where the lower SP1 and the
former minimum coalesce. By a zero point vibration of the
particles of the chain, or fluctuations, or noise, they will
overcome a lower SP of a corresponding effective PES.

If the chain ’slides’ down the effective PES into the
next minimum, then it will submit energy. This energy
could go to
(1) vibrations of electrons (temperature raises);
(2) take away due to cooling by the experimental environ-
ment;
(3) electron vibrations could induce off-resonant ripplons
and modify the DL profile. This still needs further stud-
ies. If the chain is in the next global minimum, one dimple
further, then a slip-stick cycle is finished, and the next can
start. The cycle is consistent with a reported oscillation in
an I V diagram of a WS transport [53]: “The oscillations
arise from the switching between the pinned WS and a
conducting state yet to be determined.”

4 Dynamical sliding of the chain

We treat the equation

mẍ + ηẋ = −g(x) + F l (13)

where on the right hand side the effective gradient of
Eq. (12) is used. m is the mass of an electron and η is
a damping factor. For FK chains with small mass of the
electrons it is shown in Ref.[54] that we can use the case
with m set to zero [41]. We can study an approximation
of Eq. (13) by the overdamped Langevin equation [54]

ẋ = −g(x) + F l . (14)

Usually in experiments, one takes the symmetric force di-
rection, l=(1,...,1)T . Start may be the global minimum.
The force amount F = 0.5 is large enough to get a tilted
effective PES where the chain slides downhill. Interesting
is the pathway on the effective PES. For the solution of
the differential equation (14) we have put the step length
to 0.01 units, and get the profile of the steepest descent
ansatz in Fig. 7. How we expect it, the sliding goes con-
tinuesly downhill, but with different slope.

To imagine the crossed structures of the chain, we have
included two inlays in the figure. We additionally show a
profile over the solution curve where the pure tilting part,
F (1, .., 1)T · x, of the external energy is cut. This profile
is shown in Fig. 8.

We find a strong increse of the former chain energy at
the start: the search direction is fully symmetric, and after
leaving the minimum region one is on a ridge of the PES.
However, the steepest descent can go downhill on such a
ridge. (Note it goes downhill on the effective PES of Fig. 7.
Compare Ref. [55] where on a 2D PES a steepest descent
crosses a ridge.) Steepest descent usually only bifurcates
at stationary points, or before on a ridge by numerical
effects. Here it goes up into the region of the SP2.
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Fig. 7. The profile of the effective energy over a Langevin
solution. The FK chain at the first shoulder is shown by an
inlay, compare the SP2 structure of Fig. 4, as well as the chain
after the last step downhill.
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Fig. 8. The profile of the energy without the external part,
over a Langevin solution. The two fat points depict the inlays of
Fig. 7. The chain oscillates between the both structures under
the sliding.

By numeric effects, in the next cycles the curve crosses
the ridge somewhat befor the SP2 region, and below, the
curve touches a region near the minimum. Note that the
last point shown is already moved along the site-up po-
tential. The deflection of the energy profile is from SP2 to
global minimum. The MEPs are not met. The oscillation
emerges because there are included 33 dimensions. If the
MEP on the PES makes sharp curves from one dimen-
sion into another, what really happens, then the steepest
descent ’cannot follow’ such jumps immediately. Then it
leads across a ridge.

In the cited experiments [17,18], however, one can as-
sume that the symmetry of the dimples, as well as of the
acting force, f, is not perfect. Then the effective gradient
in Eq. (14) will not strongly point to the fully symmetric
SP2, and one may get a profile with lower deflection than
in Fig. 8, thus nearer to the MEP.

An NT to the same direction, on the other hand, fol-
lows a curve like the solid line in Fig. 5. So to say, it also
leaves the MEPs and goes over the SP2, however, in parts
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Fig. 9. The profile over the NT on the PES of the 66-chain to
standard external force. Three stationary points again emerge:
two SP1 of kink nature and an SP2 being a combined kink-
antikink structure.
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Fig. 10. Enlarged region around the left SP1 of Fig. 9. The
three TPs, and the SP are depicted in Fig. 11.

it goes along the MEPs and it crosses also the two SP1 of
the PES.

5 CASE v=2, k=8, N=66

We apply the usual experimental external force of equal
components, f=F/

√
N (1, ..., 1)T . It makes a similar pro-

file over the corresponding NT like in the shorter case
before, see Fig.9. In the current case, the NT crosses the
SP2 and turns back to the same SP1. It is possibly un-
derstandable by an analogy to the dashed NT in Fig. 5.

In Fig. 10 we enlarge the region of the kink-SP1. The
special points of the 66-chain are depicted in Fig. 11. Any
excitation of the WS up to the SP1 region in energy will
result in a movement of the corresponding kink or antikink
to the end of the chains central part, and then a ’falling
down’ of the structure to the next global minimum. This
is a movement of the full chain by as = 2π. The energy of
the kink is independent on the flat part of the path around
the SP1. This energy is 22.6 units.

A similar profile emerges with an antikink structure for
the SP1 if one uses another search direction, see Fig. 12.
We take the second search vector of Fig. 2 and fill up the
last 33 coordinates by zeros. The direction is then a push-
direction for the chain. It causes the antikink.

6 CASE v=2, k=8, N=101

We treat the length of the chain of 101 electrons which is
used in some experiments [17,18]. We find an analogous
behavior of the two LEPs for a kink or an antikink like
in the cases of N = 66 or N = 33 above. In Fig. 14 we
show the energy profile over the NT to the standard search
direction (1,...,1)T . It makes the first floor for a kink, and
an expedition to an SP of index two being again a pair
of a kink-antikink structure. The SP2 is shown in Fig. 15.
Note that the kink has already slided to the left hand side
of the chain, but again the NT goes a ’wrong’ way up to
the SP2. A real excited chain would relax here at the TP
before, and it would fall down to the next global minimum
moved by 2 π.

Once more the second LEP also exists. The maximal
antikink SP1 central in the chain near 100π is again at
22.58780186846 energy units but a neighboring interme-
diate minimum is at 22.58780186041 energy units with a
difference of 8.0 × 10−9. The lowest eigenvalue of the SP
is −1.14 × 10−7 and the eigenvalue of the minimum is
4.66×10−8, thus this first ’floor’ of the PES is flat. (More
flatness cannot be.)

A similar flat floor we find for the sliding kink above.

Analogously to section 4, a test of the Langevin equa-
tion ansatz gives an impression of the possible dynamical
behaviour of the chain. We set f=0.5 (1,...,1)T , and the
step length of the steepest descent 0.01, and get Fig. 16 for
the profile of the solution on the PES without the external
energy. The inlay is the structure at the brown point. It
is a double kink with some further small excitations. Note
that its energy is far below the global, full symmetric SP
where all electrons are on the top over their dimples. The
energy of the global SP is 169.4 units. The numerics of
the Langevin equation anywhere departs from the fully
symmetric path to the global SP and starts to oscillate in
the region over the second floor. One can expect that in
an experiment the conditions are also not fully symmetric
so that a similar behaviour of the chain to Fig. 16 is to be
expected.

7 Conclusions for PART I – the 3 cases with
v = 2, k = 8

There are two ’parallel’ low energy paths (LEP) over the
PES near a level of 22.6 energy units, one for a sliding
kink, but the other for a sliding antikink. If the external
force is nearly optimal, what means that on its NT no TP
emerges, and if this force is large enough to come to the
BBP then the chain is excited to a lifting to one of these
first floors. Because the floors are flat, an installed kink, or
an antikink will slide over the PES to the other end of the
corresponding floor – the antikink forward from the left
hand side, but the kink backward from the right hand side
of the chain. The next step is a back jump of the chain to
the ground state structure, a minimum, but moving one
dimple further by the distance as, here scaled to 2π. The
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Fig. 11. The structure of the special points on the former profiles in Figs.9 and 10. The central SP1 is a kink. The three TPs
show how the structure develops along the NT. ’Unfortunately’, the NT does not go down after the third TP to the new moved
minimum, but it turns up to the SP2. This SP2 is a combined kink and antikink.
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Fig. 12. The profile over a push-NT on the PES of the 66-
chain. Similar stationary points emerge again. The SP1 is now
an antikink (see Fig. 13) and an SP2 is again the combined
kink-antikink structure, like in Fig. 11.

stored energy of the chain will be radiated off. Then the
next cycle will start. And so on.

Our result means that the formation of the kink, or
the antikink, is the decisive step. The energy for this for-
mation depends on the ratio v/k but not on the length of
the chain. In PART II we discuss another k. Three differ-
ent chains in PART I need the same energy for the rise
up to their SP1, thus to their move. This finding coincides
with the results of refs.[16,17], see also Fig. 5 in [17] for
larger N . Only for very short chains the amount of force is
length-dependent. Then the length of the kink or antikink
may be too long for the length of the chain itself, compare
below Eq. (15).

SP1
0 20π 40π 60π 80π100π120π

x

0.5

1.0

1.5

2.0

SidePot

Fig. 13. The structure of the central SP1 is an antikink.
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Fig. 14. The profile over the NT to the standard direction
on the PES of the 101-chain. Similar stationary points emerge
again. The SP1 is a kink, and an SP2 is again the combined
kink-antikink structure, see Fig. 15.
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Fig. 15. The structure of an SP2 for the 101-chain. Left is a
kink, but right is an antikink.

Note that this model is in contrast to the assumption
in other models that the chain moves as a whole [2,22,
41]. Thus here a substantial disagreement exists on the
character of the motion. If one moves equally all electrons
an as/2 step one gets the ’global’ SP of the chain. Its
energy linearly increases with the length of the chain. The
101-chain comes to an energy of 169.4 units and it is an SP
of index 10 – quite higher than the SP1 on the first floors
of 22.6 units of a moving kink or an antikink. One could
compare it to the SP2 in Fig. 4. We guess that the real
physics of the chain will go the much lower pathway on
the PES under any excitation. Only a fully inelastic chain
will move over this SP10 – it means that spring parameter
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Fig. 16. Profile of a Langevin solution for the 101-chain for the
pure PES part. The structure at the brown point is given by
the inlay. It is a double kink with some further small deviations.

k becomes ’infinitely’ large. In reality, however, the WS is
not so solid. It is easy to perturb [1].

We thus understand the movement of the chain by sin-
gle steps for successive dimples. The movement is done by
sliding kinks or antikinks like the movement of an earth-
worm. After every step we are back in the ground state.

The main step always is the formation of a kink or an
antikink. Its sliding along the tops of the full dimples then
will go on ’automatically’. This may explain the experi-
mental fact of the observation that a sliding of the chain
is nearly independent on the length of the WS [16,17].
The movement also does not take place by any kind of an
’avalanche’ [56].

Of course, if the excitation energy of the external force
is higher than two times the first floor, then pairs of a kink
and an antikink can emerge. For still higher energies a
third floor can open, and so on. Then corresponding pro-
cesses may become more complicated [51], see the next
PART II for an example.

We do not discuss the relation of kinks to the lowest
eigenvalues of the ground state of the chain. Under the
SP1 height of 22.6 one would get a lot of vibrational states
before the level of the SP1 named phonon modes [43,45].
Of course, most of these states are orthogonal to the MEP-
direction. Because we will understand an excitation of the
WS by an external field we do not need to speculate over
excitations of diverse phonon modes.

8 PART II – THE WEEK SPRINGS – CASE
v=2, k=1, N=33

8.1 The path for an antikink

By the much lower parameter, k, in comparison to Sec-
tions 3 to 6, we can expect that the PES of the chain
changes qualitatively. It is an Aubry-trans-formation [57]
– compare also a low dimensional explanation in Ref. [25].
The undamped case for k=1 was studied elsewhere [27] for

N=10 and N=20. Here we find that the damped dimples
model distinctively exhibits different properties from the
pure FK model.

One MEP here is that of an antikink, which ’slides’
through the PES, see the extended Fig. 17. The corre-
sponding flat PES-level of the former SP1 in PART I is
now somewhat divided into a row of SP1 and in notice-
able intermediate minimums in between. But the kink- or
antikink structures of the chain are much shorter, and its
energy is much lower. This is caused by the lower springs
between the particles. The first SP indeed starts at the
main peak 2 of the upper line of the undamped dimples.
At the first dimple maximum still exists a shoulder (Sh)
of the PES.

The MEP across the PES with the level of one anti-
kink is given in Fig. 18. We have composed it in four parts.
The first part is an NT from the global minimum to the
direction of the gradient in a BBP of the steepest descent
from the first left SP (from full dimple 2 to 3). A further
part 3 is an NT started at the central iMin in full dim-
ple 6 to the 1st EV of this minimum. Part 2 is calculated
with the mirror picture of the search direction of part 3,
and part 4 is calculated with the mirror of part 1. Note
that different pieces of this curve ’meander’ through dif-
ferent dimensions of the configuration space of the chain.
It emerges here as a plain projection.

We guess that a full sliding of an antikink along the
MEP on the first floor can be realized by a combination
of two NTs to alternating directions, see Fig. 19: the first
part (in blue colour) is the NT to direction (9×0, 5×1,
19×0)T - here named a push direction. It is stopped at 9
energy units. Note that such an excitation with an increas-
ing energy over the NT describes the movement uphill of
the last stationary point, an SP of index one. Thus the
structure of the chain would change here to an additional
next kink or antikink and not move further to a global
minimum shifted by one lattice site, as = 2π. The second
part (in brown colour) begins at the antikink in full dim-
ple 5 near the centre of the MEP to the mirror direction
(19×0, 5×1, 9×0)T - now a pull direction. In the first case
the force acts to the front of the central particles but in
the second case the force pulls at the end of the central
particles of the chain.

The further, right side of the blue curve increases along
the slope of the PES. It is not shown here. Analogously,
further into the left hand side of the brown curve, they
would also increase uphill on the PES.

If one imagines the exact timing of such an ac drive
between the two NTs along the ansatz of Eq.(12) with an
amount, F , not exceeding the SP energies of the first floor
then it will move the chain by one step as thus here by
2π. If then the next cycle starts it can again move the
chain by one step, and so on, with an energy amount of
the lowest floor only.

Fig. 19b opens the possibility to move the chain as a
whole structure with low energy. The movement as a whole
is composed by a moving antikink through the chain sug-
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Fig. 17. Alternating SPs of index 1 and intermediate minimums of a chain with 33 electrons and k=1. The above left structure
is a shoulder on the slope of the PES, with one eigenvalue zero. It is no stable structure. In the row, an anti-kink wanders over
the MEP on quasi equal height from the left hand side to the right. There are in sum 10 SPs, and the length of an antikink is
≈ 5 electrons. The energy level of the SPs is ≈7.89 units, and of the intermediate minimums is ≈7.86 to 7.87.
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Fig. 18. The MEP of a ’sliding’ antikink. The inset is an en-
largement of the top of the pathway. The shoulders are red bul-
lets, blue bullets are the SPs, and the intermediate minimums
are black bullets. The numbers are the full dimples where the
corresponding antikinks residue, compare Fig. 17.

gested by the consecutive panels of Fig. 17. At the end the
chain has moved by one dimple-place.

8.2 Another MEP for kinks

There is a second kind of an MEP where a kink emerges at
the right end of the chain and wanders through the PES
in the inverse direction. The energy profile over only a
single NT is shown in Fig. 20. The search direction for the
NT was a vector with 7 zeros, 19 ones and again 7 zeros.
It was inspired by an ’equal’ force to all electrons. But a
full vector with 33 times ’1’ does not work well, see below
Sect. 9. We show the structures of some kinks in Fig.21.

Here the beginning of the MEP is a kink, a stretched
structure, at the right end of the chain. Because the kink
is a stretched structure, it wanders from the right end to
the left end, in contrast to the antikinks of Fig.17 which
wander from the left hand side to the right hand side.

Analogously to Fig. 19 one could guess for a still better
ac drive of the full chain along its axis. Fig. 22 shows the
energy profile over extended NTs of Fig. 19. The pathway
goes from the 1st floor of antikinks, starting in the full
dimple 6, to the 1st floor of kinks, up to the full dimple
6, and then alternating to the next beginning on the floor
of antikinks. Such an ac drive would alternately push an
antikink through the chain, then pull a kink through the
chain, then again an antikink and so on.

8.3 The second floors

Another energy level is reached if two antikinks, or a kink
and an antikink, or two kinks are in the chain, see Fig. 23.
Then the energy level is quasi doubled, and we climb up
to the ’second floor’ of the PES. There are very many
possibilities of the combinations of two such structures,
into the different full dimples of the chain.

First we follow the NT to the unsymmetrical direction
(7×0, 8×1, 18×0,)T . It pushes an antikink into the chain
at the early beginning, and drives it up to the full dimple 9,
compare the similar (blue) NT in Fig. 19a. After the anti-
kink in full dimple 6 TPs emerge on the NT; because the
NT is not simple a connection of the stationary points on
the MEP. The different stationary points of the 1st floor
go up to node 5700 in Fig. 23. After the iMin in full dimple
9, at least, emerges a high TP near 18.5 units and after
that the NT finds a pair of two antikinks on the 2nd floor,
see Fig. 23. The pair is the former antikink in full dimple
9 and a new one in full dimple 1. Because now two times
an antikink was created, the left periphery of the chain is
moved by two times the as length, here 4π. From here one
can follow the NT on the 2nd floor. The new left antikink
wanders up to full dimple 4 but then the NT turns back
and at the end it jumps down near the old single anti-
kinks on the 1st floor, exactly to the next SP between the
full dimples 9 and 10. This is near node 13000 in Fig. 23.
Interestingly one can continue the NT and in a next jump
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Fig. 19. (a) Two NTs which describe in parts the MEP for moving antikinks. The first one in blue is to search direction (8×0,
7×1, 18×0) thus a push-direction, where the second, the brown one is to pull direction (18×0, 7×1, 8×0). They overlay at the
centre of the MEP. (b) Energy profile over the two combined NTs which are cut and now exactly meeting at the antikink in full
dimple 6. The NTs act for a ’sliding’ antikink over the full MEP, see text. It could be realized by an ac-kind of the excitation
force.
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Fig. 20. Energy profile over an NT of a ’sliding’ kink. The
shoulders are red bullets, blue bullets are the SPs, and the
intermediate minimums are black bullets. SPs and iMins alter-
nate like in the former case of antikinks. The profile is drawn
over only one NT. The pieces between the two TPs near node
1500 on the left hand side and node 7500 on the right is quasi
the inner part of the MEP. Note that the final piece of the NT
does not find its way down to the next global minimum, but it
deviates uphill into the mountains. If one imagines here a shut
down of the force in an ac-kind, after the right shoulder, then
the steepest descent will lead to the next global minimum.

uphill it creates an SP-kink between the full dimples 1
and 2. Thus a pair kink-antikink emerges. But because
now the push force has created a kink, the first particle of
the chain is again back in its first (damped) dimple. The
former movement of the left periphery is cancelled. On
the 2nd floor of the mixed pair the NT again moves the
kink into the centre of the chain. But again the NT turns
back and jumps down to the 1st floor into a new antikink
in full dimple 10. The game here starts again for pairs of
two antikinks on the 2nd floor after node 22000. At least,
the NT jumps back to a last structure on the first floor,
an SP-antikink between the dimples 10 and 11 – near to
the right damped periphery. After that, unfortunately, the
SP-antikink does not flatten out, and does not move the
chain into a new global minimum; no, the NT again rises
up to the 2nd floor. But for the next pair of a kink and
an antikink now the convergence of the NT finishes. This

only-push direction used here does not deliver a strategy
to move the full chain.

It seems tricky to propose a strategy for an ac driving
of the chain to enforce a movement of the whole chain us-
ing these parts of the 2nd floor. In contrast, we guess that
an external excitation energy for or over the 2nd floor will
destroy the simplicity of a moving kink, or an antikink,
on the first floor.

We show in Fig. 24 again an energy profile over an NT.
It starts in a symmetric ’double’-SP, which is here only of
index 1+1/2 because one of the eigenvalues is zero. It is
structure 1 in Fig. 25. The search direction of the NT is
the eigenvector to the zero eigenvalue.

Structures of stationary points along this NT are shown
in Fig. 25. One could assume that there is not only one
LEP over this second floor of the PES, however, a net
of such pathways will exist. Additionally, there are NTs
which connect SPs of the upper floor to structures of the
first floor, the MEP.

8.4 Mixed pairs on the second floor

An NT to the symmetric direction (12×0, 9×1, 12×0)T

finds the second floor of mixed pairs of a kink and an anti-
kink directly, see Fig. 26. Such a kind of pair production
one can imagine also in a larger chain of particles when the
force points to a special inner part of particles. It does not
go over the outer regions of the chain where the dimples
are flattened. The energy profile of the NT is shown in
Fig. 26a, and some structures in Fig. 27.

Here the kink emerges on the left part of the chain, but
the antikink is built on the right part. If the two structures
wander through the chain so that the kink goes left and
down to flatten, and the antikink goes right and down to
flatten, then the chain would also move to the right hand
side. In our case the NT goes into the other direction and
again flattens out the structures at the end (not shown in
the Figure) of the original global minimum.
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Fig. 21. The structure of iMin-kinks and SP-kinks along the top of the MEP of Fig.20. Additionally is shown the structure of
the chain at two TPs of the NT at the beginning and at the end of the path.
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Fig. 22. Energy profile over NTs which go from the 1st floor
of antikinks to the 1st floor of kinks and further to the next
antikinks with a speculative ac drive, see text and compare
Fig. 19.

globMin

TPs TPs

TPs

TPs

TPs TPs

TPs TPs

iMin9 SP9-10 iMin10 SP10-11

1st floor

2nd floor

push

0 5 10 15 20 25

0

5

10

15

20

Node x 1000

P
E
S

Fig. 23. Energy profile over an NT rising up from the 1st to
the 2nd floor of the PES, and vice versa. Pairs of 2 antikinks
wander on the left and the right pieces of the 2nd floor, but on
the central piece are pairs of a kink and an antikink, see text.
The symbol iMin9 means an antikink in full dimple 9, and so
on.
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Fig. 24. Energy profile over an NT on the second floor of the
PES. The stationary points are two antikinks. SPs of index 2
are red, usual SPs are blue, and the intermediate minimums
are black.

In Fig. 26b we present a ’cyclic’ NT to the unsymmetri-
cal search direction (9×0,7×1,0,7×-1,9×0)T . It would in-
finitely often turn through four different stationary points.
By a corresponding exact ac-drive one could ’march on the
spot’.

NTs to different search directions reach pairs of kink –
antikink structures. Mainly the inner particles are to push
by the external force. Then such a pair emerges inside the
chain but the outer regions are unchanged. The NTs which
climb up to the second floor do not lead, in the general
case, to a movement of the chain as a whole. Such an
NT meanders over the second floor and sometimes, it is
mirrored and goes back, or it falls back to the ground level
by unification of the pair, thus its annihilation.

8.5 Compare the two first ’floors’ for kinks, or
antikinks

In the configurations space of the chain, the family of kinks
of the 1st floor, and the family of antikinks of the other
1st floor, reside in different regions. One could question
some possible connections, over the second floor of kink-
antikink, or antikink-kink pairs.
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Fig. 25. Structures of the chain to points 1 to 7 (from left to right, and from top to bottom) of Figure 24.
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Fig. 26. (a) Energy profile over an NT up to the second floor of the PES. A BBP point is green, an SP of index 2 is red, usual
SPs are blue, and an intermediate minimum is black, see Fig. 27. The iMin structure is shown in the inset. (b) Profile over an
NT on the 2nd floor of pairs of kink-antikink structures which turns in a periodic run around a circle through four points: one
minimum, one SP of index 2, and two SP1.
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Fig. 27. Structures of the chain at a BBP (green) point and to the next stationary points of Figure 26(a).

A speculation could be that the central structures,
where the kink is in its full dimple 6, or the antikink is in
its full dimple 6, are the nearest neighbors. However, the
midpoint of the two structures is exactly the SP7 of the
’global SP’, see Figure 28. This is because the two SPs are
already differently moved: the antikink is on the left hand
side moved out of the ’zero dimple’ but for the kink the
right particles are moved one place to the right hand side.
Every pathway for a movement will circumvent this SP7.
Thus, from the point of view of the energy, one should
look for other, nearer neighbors.

Note that the SP7, the ’global SP’, was in the previous
Section 3.3 for k = 8 an SP2 only. It really shows that the

parameter k makes an enormous qualitative change of the
’combined’ PES of Eq. (9).

8.6 Higher Regions of the PES

Higher regions of the PES are of importance for the dy-
namics of the chain in experiments, compare section 4.
We report a result of NTs which find the 3rd floor, and
the ’global’ SP7 where all particles are on top of the side
potential, in analogy to the SP2 of Fig. 4.

The NT to the unsymmetrical direction (19×0, 5×1,
9×0)T (compare subsect. 8.1) starts at the global mini-
mum, runs through the kinks of the first floor, rises up
alternately to the second floor with kink-antikink pairs,
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Fig. 28. Central structures of the chain at full dimple 6: kink left, antikink right, and the midpoint in between is an SP of
index 7 of a forbidden high energy of 35.442 units.
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Fig. 29. (a) Profile over an NT to a pull-direction (19×0, 5×1, 9×0)T connecting four energy levels of the Wigner chain. Two
points representing the SP3 are depicted by a pink bullet. The corresponding chain is the inset. (b) Profile over an NT from SP3

over the ’global’ SP7, see Fig. 28 centre, here as a red bullet. The search direction of the NT is the 5th eigenvector of the SP3.
Blue are two SP6 which are slightly unsymmetrical but which are vice versa symmetric, and brown is an SP5. An SP4 is a black
bullet; the last two are shown in the insets. All SPs from index 3 to 6 are slightly unsymmetrical. The ’global’ SP7 is a single
peak of the PES surrounded by SPs of lower index; thus this is a ’highest floor’ as well. Intermediate minimums apparently do
not exist.

and finally rises further up to the third floor where only
one SP3 exists with a ’triple’-state of kink-antikink-kink
character which is shown in the inset of Fig. 29(a). Further
stationary points of index 3 possibly seem not to fit into
the only 11 full dimples of the 33-chain, on this 3rd floor.
Of course, for a longer chain further corresponding floors
will exist.

We add a remark to the usefulness or not of SPs of a
higher index [25,58]. They are instable structures not only
for the one direction where the chain propagates, like the
SPs of index 1, but also for directions across the propa-
gation direction. One can imagine an SP2 being a summit
on a 2D landscape. So, any fluctuation in the structure
will lead to a ’falling down’ to a lower level of the PES.
These lower levels of the PES we determine by the tool
of NTs, but one can use any other optimization tool. For
example, one can use the minimization in Mma.

We gave an example in ref. [26] with the PES of a 23-
particles chain, where an MEP and a quasi parallel LEP
exist. In between is an SP2 with a Figure for illustration.

Fig. 29b shows the energy profile of a further NT which
explores the uppermost floor of the PES. The search di-
rection of the NT is the 5th eigenvector of the SP3 of the

3rd floor. The NT nicely connects all SPs with an increas-
ing index up to the ’global’ SP7 at the top. It illustrates
the index-theorem for NTs that they connect stationary
points of an index difference of one [52].

9 Dynamics of the fully equal external force

The symmetric external excitation with an equal force to
all electrons, the force (1, ..., 1)T is often used in exper-
iments [17,18]. In this case with the very weak k = 1,
the external force does not work well for an NT. For
the side-potential with damping this equal force does not
act equally on all particles because of the damped dim-
ples at the two peripheries. They ’feel’ the force more
directly than the inner particles which are embedded in
their deeper dimples.

Many NT calculations with this force and similar ones
are done. We have to report that the NTs starting at the
global minimum do not reach the central region of the
chain. They compress electrons on the left hand side in
the damped dimples region, and they pull electrons on
the right hand side to a kink, but they stop at energies
over 14 units at a ’clash-point’ (by unknown, probably
numerical reasons).
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Fig. 30. k=1: profile of the effective energy over a Langevin
solution.
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Fig. 31. k=1: profile of the energy over a Langevin solution
without the external energy.

Another test with a start on the second floor also could
not find the way out of the floor. So, we change here
again to a treatment with the dynamical Langevin equa-
tion (14).

For a solution of the Langevin equation (14) we start
at the global minimum and apply the external force to
unit direction. The force amount F = 0.5 is again large
enough to get the tilted effective PES where the chain
slides downhill. For the differential equation (14) we use
the step length of 0.01 units, and get the profile of the
steepest descent ansatz in Fig. 30. Again, the sliding goes
continuesly downhill, but with different slope.

The profile without the pure tilting part is shown in
Fig. 31. Like in the case k = 8 we here find a strong in-
crease of the energy at the start: the search direction is
fully symmetric, and some steps after leaving the mini-
mum one is on a ridge of the PES. It goes up into the
region of the third floor. We show the structure of the
chain at the first maximal energy of the PES in an inlay.
There it deviates from the ridge and falls down but only
into the region of the second floors. The next minimal
structure is also shown in Fig. 31 by an inlay. The next
cycles iterate downhill on the effective PES of Fig. 30 in
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Fig. 32. A kink SP for a structure with Coulomb force for the
springs of the chain, see text.

the same region of Fig. 31. If we do not know the diverse
valleys of the PES then we could not understand these
cycles.

10 Discussion

We mostly treat a static PES model of the WS of a chain
of electrons. On this PES we look for low pathways for a
movement of kinks or antikinks of the chain. We do not
describe the real, dynamical movement of such quasipar-
ticles. We only calculate by NTs possible pathways over
low SPs and depict special structures of the chain on such
pathways. Using the Langevin equation, we treat a quasi-
dynamical, damped descent on the effective PES. We as-
sume a separation of dimples which we fix, and of quick
single electrons in the kinks or antikinks. So to say we ac-
tivate a former ’rigid-potential sliding model’ of the WS
[41].

Since only a kink or an antikink moves in our model,
but the remaining electrons stay in their corresponding
dimple, we must not assume that the DL disappears under
a sliding, in contrast to former assumptions for a collective
sliding of the chain [41]. But of course such a structure of
a stable DL needs a chain of a certain length.

We do not take into account the phonons of the WS
which emerge in phase with the DL, or out of phase. We
only sometimes use the eigenvector directions of the Hes-
sian of stationary points of the PES for search directions
of the NTs.

To justify the transformation of the WS to an FK
model we add a test calculation for an extremal structure
with the correct Coulomb force formula Eq. (1). Note that
this formula does not contain the constant ao which has
defined an equilibrium distance in the chain. Here such
a distance does not exist. In the model, only the peaks
and troughs of the dimples hold together the chain. The
resulting structure in Fig.32 is a kink-SP. Thus analogous
structures like under the harmonic force potential may
exist. The used factor for the dimples is v=2 and for the
spring force it is kC=8. We optimized in Mathematica a
former SP1 of the other force of Eq.(8). Note that at the
periphery the ’unbounded’ Coulomb force moves the elec-
trons far away! We wonder that the outer particles are not
moved to infinity in this abstract mathematical model.
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To include directly the electron density into a spring
formula for the Coulomb forces seems to be difficult. Both
reservoirs before and after the channel for the chain, in the
experiments [17,18], are a constellation which presses the
Coulomb forces into a pattern. But these boundary con-
ditions destroy an FK model of a finite, but freely moving
chain. On the other hand, we gave a comment on fixed
boundary conditions in a former paper [25]. And finally,
we will move the full chain. Thus we cannot fix the outer
electrons.

Note that the density of electrons in a semiconductor
or a metal is quite higher [59]. We do not consider excited
states of the electrons here. Electronic properties of an FK
model are discussed elsewhere [60], however, for a different
misfit relation than we treat it.

We also do not consider the possibility that the WS can
deviate in the plane from its quasi 1D shape to form a zig-
zag chain [61–64]. In the case of a linear chain treated here
there is no possibility that a single electron moves. The
interaction of the particles in the chain lead to collective
states like kinks or antikinks.

11 Conclusions

We apply the model of an FK chain to a WS. Although
conceptually simple, the model displays extremely rich
physics. We compute the response of the FK chain to a
linear external excitation. The static enlightenment of the
low energy pathways of the PES of a WS chain allows us
to propose an understanding of the experiments done with
a quasi 1D chain of a WS. If an external force shifts the
chain structure up to a first ’floor’ of the PES then a kink,
or an antikink in the chain will slide along this floor, inde-
pendent on the length of the chain, and it can fall back at
the end into a next global minimum with an off-radiation
of the stored energy. It causes a movement of the full chain
by the periodicity, as, of the dimple lattice. For the strong
spring potential with k = 8 we already summarized some
conclusions in Section 7 in Part I. For the weak springs
with k = 1 in Part II the floors become somewhat less
flat; they have distinguishable SPs and intermediate min-
imums on the floor level. However, the global behavior is
similar.

With the length of the kinks or the antikinks in the
two cases, k=8 and k=1, and an additional calculation
with k=16 (not reported above), we can approximate the
length of kinks or antikinks, L, for a general ratio of the
potentials to be

L ≈ 8

√
k

v
. (15)

The right hand side formula was reported elsewhere [45]
from the sine-Gordon equation with the slightly smaller
factor as insteed of 8. Because the energy of the kinks
or antikinks is directly connected with the length of the
corresponding collective state, we can approximate the en-

ergy by a similar formula

V ≈ 11.25

√
k

v
. (16)

If a kink or an antikink hovers over the tops of the full
dimples, nearly without additional energy effort, then we
observe a density change of the chain in kind of a wave,
and because the electrons have a charge, one could name
the process “charge-density wave” [41,65]. Of course, the
name is used in metals or semiconductors with another
meaning [66–68], however, our highly idealized picture of
the FK model may be used also to lighten such processes.
And it may hold that also these charge-density waves here
are the simplest patterns of moving configurations of elec-
trons.
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G. Zarand, S. Ilani, Science 364, 870 (2019)

2. C.C. Grimes, G. Adams, Phys. Rev. Lett. 42, 795 (1979)
3. D.S. Fisher, B.I. Halperin, P.M. Platzman, Phys. Rev.

Lett. 42, 798 (1979)
4. E.Y. Andrei (ed.), Two-Dimensional Electron Systems

on Helium and other Cryogenic Substrates, Physics and
Chemistry of Materials with Low-Dimensional Structures
(PCMALS, vol. 19) (Springer, Berlin, 1997)

5. M.I. Dykman, C. Fang-Yen, M.J. Lea, Phys. Rev. B 55,
16249 (1997)

6. Y.P. Monarkha, K. Kono, Two-Dimensional Coulomb Liq-
uids and Solids (Springer, Berlin, 2004)



18 Quapp et al.: Wigner solid

7. G.F. Giuliani, G. Vignale, Quantum Theory of the Electron
Liquid (Cambridge University Press, Cambridge, 2005)

8. J. Klier, I. Doicescu, P. Leiderer, J. Low Temp. Phys. 121,
603 (2000)

9. P. Glasson, S.E. Andresen, G. Ensell, V. Dotsenko, W. Bai-
ley, P. Fozooni, A. Kristensen, M.J. Lea, Physica B 284-
288, 1916 (2000)

10. H. Ikegami, H. Akimoto, K. Kono, Phys. Rev. B 82, 201104
(2010)

11. H. Ikegami, H. Akimoto, D.G. Rees, K. Kono, Phys. Rev.
Lett. 109, 236802 (2012)

12. D.G. Rees, H. Ikegami, K. Kono, J. Phys. Soc. Jpn. 82,
124602 (2013)

13. D.G. Rees, N.R. Beysengulov, J.J. Lin, K. Kono, Phys.
Rev. Lett. 116, 206801 (2016)

14. M.I. Dykman, Physics 9, 54 (2016)
15. D.G. Rees, S.S. Yeh, B.C. Lee, K. Kono, J.J. Lin, Phys.

Rev. B 96, 205438 (2017)
16. A.O. Badrutdinov, A.V. Smorodin, D.G. Rees, J.Y. Lin,

D. Konstantinov, Phys. Rev. B 94, 195311 (2016)
17. J.Y. Lin, A.V. Smorodin, A.O. Badrutdinov, D. Konstanti-

nov, Phys. Rev. B 98, 085412 (2018)
18. J.Y. Lin, A.V. Smorodin, A.O. Badrutdinov, D. Konstanti-

nov, J. Low Temp. Phys. 195, 289 (2019)
19. Y.P. Monarkha, Europ. Phys. Lett. 118, 67001 (2017)
20. Y.P. Monarkha, K. Kono, J. Phys. Soc. Jpn. 74, 960 (2005)
21. W.F. Vinen, J. Phys.: Condens. Matter 11, 9709 (1999)
22. M.I. Dykman, Y.G. Rubo, Phys.Rev. Lett. 78, 4813 (1997)
23. H.J. Lauter, H. Godfrin, V.L.P. Frank, P. Leiderer, Phys.

Rev. Lett. 68, 2484 (1992)
24. D.G. Rees, I. Kuroda, C.A. Marrache-Kikuchi, M. Hoefer,

P. Leiderer, K. Kono, Phys. Rev. Lett. 106, 026803 (2011)
25. W. Quapp, J.M. Bofill, Molec. Phys. 117, 1541 (2019)
26. W. Quapp, J.M. Bofill, European Phys. J. B 92, 95 (2019)
27. W. Quapp, J.M. Bofill, European Phys. J. B 92, 193 (2019)
28. H.J. Schulz, J. Phys. C 16, 6769 (1983)
29. W. Quapp, J.M. Bofill, Theoret. Chem. Acc. 135, 113

(2016)
30. W. Quapp, J.M. Bofill, J. Ribas-Ariño, Int. J. Quant.

Chem. 118, e25775 (2018)
31. J.M. Bofill, J. Ribas-Ariño, S.P. Garćıa, W. Quapp, J.
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Eur. Phys. J. Plus 134, 598 (2019)
65. H.J. Schulz, Phys. Rev. Lett. 71, 1864 (1993)
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