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Abstract: A method for finding a transition state (TS) between a reactant minimum and a quasi-flat,

high dissociation plateau on the potential energy surface is described. The method is based on the search of

a growing string (GS) along reaction pathways defined by different Newton trajectories (NT). Searches with

the GS-NT method always make it possible to identify the TS region because monotonically increasing NTs

cross at the TS or, if not monotonically increasing, possess turning points that are located in the TS region.

The GS-NT method is applied to quasi-barrierless and truly barrierless chemical reactions. Examples are

the dissociation of methylenecyclopropene to acetylene and vinylidene, for which a small barrier far out in

the exit channel is found, and the cycloaddition of singlet methylene and ethene, which is barrierless for a

broad reaction channel with Cs-symmetry reminding of a mountain cirque formed by a glacier.

Key words: transition state search, growing string method, Newton trajectory, quasi-barrierless and barri-

erless reactions, vinylidene-acetylene-methylenecyclopropene system, methylene-ethene-cyclopropane system
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Introduction

Finding a transition state (TS) on a potential energy surface (PES) is one of the most important tasks

when studying reaction mechanism or reaction dynamics. The energy of a TS defines the classical barrier

(activation energy) of a chemical reaction, which makes it possible to calculate reaction rate constants with

the help of transition state theory. The steepest descent paths starting at the TS lead to the reactant(s) and

product(s) of a reaction.

The determination of the location of a TS and, by this, also the minimum energy paths leading to

(from) it, is often difficult on multi-dimensional PESs, especially if the latter is rather flat in the TS region.

If chemical intuition or preliminary calculations do not lead to a reliable guess of the TS location, any search

for it may fail. Therefore, it is important to establish a mathematical tool that makes it possible to specify

TS locations on a multi-dimensional PES without invoking chemically-based guesses of the TS location.

The question how to locate the position of a TS is especially problematic in the case of dissociation (re-

combination) reactions. It is well known that dissociation reactions of diatomic molecules are best described

by a Morse curve, which asymptotically approaches the energy of the separated parts. Many dissociation

reactions of polyatomic molecules behave in a similar way, i.e.,the reaction leads to a degenerate TS corre-

sponding to the dissociation plateau and the reverse reaction, the recombination reaction, proceeds without

a classical barrier. However, if the recombination reaction requires some electronic structure reorganization

in the separated parts upon bond formation, a small energy barrier may result, which increases with the

degree of electronic reorganization. Such a barrier is associated with a loose TS, which is difficult to locate

with the help of typical TS localization procedures. Examples for these reactions are the carbene addition

reactions (addition to alkenes, alkines or other molecules with multiple bonds) or chelotropic cycloadditions

in general.

The location of a loose TS and the determination of a small energy barrier may have little chemical

relevance because a) the barrier does not not lead to an activation enthalpy or b) the resulting activation

enthalpy may be too small to be measurable. Even in the first case there will be still the need to locate the TS

if one wants to analyze the mechanism of such a reaction because this task requires the existence of a minimum

energy path as suitable reference. The analysis can reveal the nature of the electronic structure reorganization

steps, factors that make the reaction sensitive to the chemical environment (solvent, temperature, pressure,

etc.), and the stereochemistry of the recombination step.

Detailed investigations of quasi-barrierless or barrierless reactions cannot be found in the literature

because they critically depend on the location of the TS or any other unique point along the reaction path.

Once such a point is found, one follows the downhill path into the entrance or exit channel of the reaction

employing, e.g., the unified reaction valley approach (URVA) [1] for the mechanistic analysis. Without the
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location of a TS or any other unique point such a procedure is no longer applicable and the mechanistic

analysis is difficult to carry out.

In this work, we present a mathematical procedure, based on Newton trajectories (NTs) and the growing

string method [2,3], that makes it possible to find a loose TS associated with a very small barrier or determine

unique starting points for a down-hill path in the true barrierless case. The paths traced out by NTs have

well-defined mathematical properties, however they do not have chemical relevance in the sense that they

are identical to a minimum energy path leading from TS to energy minimum that is the location of either

reactant or product. Use of NTs facilitates the search for TSs in extreme cases, which we will demonstrate

in this work. In addition it helps to locate reasonable starting points for a down-hill path that, e.g., leads

directly to the product of a recombination reaction. Such a path can be used for a mechanistic analysis

although it can no longer be a minimum energy path, which does not exist for barrierless reactions.

In Section 2 we will shortly describe the properties of NTs and work out the procedure a) to locate

loose TSs associated with very small classical barriers and b) to determine a reasonable starting point for

a down-hill path in the case of barrierless reactions. In Sections 3 and 4, appropriate examples will be

presented to demonstrate the usefulness of the method worked out.

2. Search for a TS Utilizing Newton Trajectories

Numerous methods have been developed with the objective of finding a first order TS (TS of index

1). [2-14] Since the TS is a stationary point with a single negative Hessian eigenvalue this implies that the

energy has to be maximized for one direction and minimized for all other directions. In a high-dimensional

space, the direction, in which the energy has to be maximized, is difficult to determine.

Since the structures of reactant and product are known in most cases, a one-dimensional (1D) test chain

can be developed between them. Developing all nodes (search points) of the test chain downhill, narrows

down the TS region and helps to find the TS between reactant and product. Various test chain methods

such as the nudged elastic band method [2,6,7], string methods [3,8,9] and others [4] have been discussed in

the literature.

In conventional TS search methods, an eigenvector direction of the Hessian matrix is often assumed for

uphill walking toward the TS. The eigenvector following method [11] used in quantum chemical programs can

be applied to locate a TS, if the latter exists in an eigenvector direction initially chosen. In the latter case,

the 1D search curve is implicitly in use; it has a loose connection to the gradient extremal of Ruedenberg

and co-workers. [12] Other 1D search curves used in the past are NTs [13] or the gradient extremals [12,14].

The growing string method [3,9] used in this work follows a NT rather than searching for a steepest

descent curve, i.e. an IRC (intrinsic reaction coordinate) path. For a NT, the gradient of the PES is always a
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pointer to a fixed direction [13]. This property can be enforced by a projection of the gradient g(x) according

to Eq. (1).

Pr g(x(t)) = 0 . (1)

The projector Pr is a constant, n×n matrix of rank n-1 where n is the dimension of the PES. A unit

column vector r, which defines the search direction, is used for the projection. The projector, which projects

orthogonal to r is

Pr = I − r · rT , (2)

where I is the unit matrix and r · rT is a dyadic product. Vector r should be fixed for a NT adapted to any

given search problem. Every regular NT connects stationary points with an order difference of one [15], thus

for example, NTs connect minima and TSs of index 1. [16]

Figure 1. Two-dimensional (2D) model PES a) with a small energy barrier (left side) and b) without a

barrier in the flat dissociation channel (right side). Three different NTs are included (bold solid, bold dashed,

dashed lines), which either cross at the TS (left side) or concentrate in the dissociation channel (right side).

In Figure 1, it is demonstrated for 2D model potentials how NTs can be used to search for a TS in a

flat dissociation channel. The special shape of the level lines in the flat region enforces the concentration of

NTs starting at the minimum (-2,-5) in different directions. As examples, the x-direction (bold dashed line),

the y-direction (bold solid line), and the diagonal y = x (dashed line) are used for three search directions of

the NTs. The model surface is:

f(x, y) = 0.6 [(x − y − 3)2 ± 0.01 (x + y − 3)2] − 25 exp[−3 (x + 2)2 − (y + 5)2] (3)

where the + sign gives the left part, and the - sign the right part of Figure 1.
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Monotonically increasing NTs indicate that the PES region they pass is convex and belongs to a valley.

[15] The NTs turn at the point where the convex region changes to a concave or nonconvex region (the latter

in the case of a plateau) and follow a path to the next stationary point. At the turning point the gradient

is perpendicular to the tangent of the NT. This point is located on a ridge between two valleys.

The nature of the definition of NTs guarantees that monotonically increasing NTs, independent of their

starting directions, cross at the TS (Figure 1, left) or concentrate in the exit channel (Figure 1, right). In

case of a turning point (not shown in Figure 1), which corresponds to a maximal energy value along the

pathway traced out by the NT and therefore should be close to a TS, this point is a useful starting point for

a TS search.

Hence, a TS can be found in different ways: 1) An intersection of different NTs exists and an estimate

of the crossing point is used as the starting point for a TS optimization, which should converge within a few

steps. 2) Turning points are found, which represent useful starting points for TS searches. Searches require

more steps than for 1) and do not always lead to the TS in question. 3) If the NTs do not cross as shown

for the second example in Figure 1 (right side), their narrowing defines the direction of the exit channel and

makes it possible to find a reasonable starting point for a downhill path, which we will demonstrate in this

work. - In all cases considered, it does not make any difference whether the NT is calculated in an uphill or

downhill mode, which is a clear advantage compared to steepest descent searches.

An alternate case of a dissociative channel is given in Figure 2. The minimum of the test PES is again

in the left lower corner. The formula for this model surface is given by Eq. (4).

f(x, y) =3(1 − exp[−2(x − 0.5)])2exp[−y2]

+ 2(1 − exp[−3(y − 0.7)])2exp[−x2]

+ 30(1 − exp[−0.7(
√

x2 + y2 − 1)])2. (4)

On the diagonal to the upper right, there is the broad border of a bowl. The ascent potential along the

diagonal has the form of a Morse curve. However, the channel spreads over an area of 70◦ degrees. The

valley curvature uphill is stronger than its side curvature, i.e. the eigenvalue of the Hessian matrix parallel

to the diagonal is significantly larger than the eigenvalue perpendicular to the diagonal. This form of a

reaction valley is called a cirque [17] according to its similarity with a mountain cirque carved out by a

glacier. A cirque encompasses a much broader area than the streambed of a valley. Accordingly, different

NTs to directions up to the bowl border spread over a wider range and do not concentrate as in the case of

a reaction valley up to an energy plateau (compare Figures 1 and 2). Of the six NTs shown in Figure 2, the

three central ones (NT 2, NT 3, NT 4) are equally well suited for describing a reaction path for dissociation

or recombination reaction.
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Figure 2. 2D model PES with a small, broad barrier across the flat dissociation channel. The drawn NTs

are given in the following directions: 1) fy = 0 (full line), 2) 0.65fx−fy = 0, 3) fx−fy = 0, 4) 1.5fx−fy = 0,

5) fx = 0, and 6) 1.5fx + fy = 0 (all dashed lines). The last NT has branches at the upper left and bottom

right.

Any suitable search method has to be applicable to the different situations shown in Figures 1 and

2. The Growing String-Newton Trajectory (GS-NT) method proposed in this work is based on previous

developments. [3,9,10] It uses the NT of Eq. (1) for any start direction (for example, r can be the direction

between the given global minimum and the proposed TS). We search for a reaction path, which should

connect the initial minimum, xini=x0, with the end xfin=xm+1 by a chain of m successively calculated

nodes xk.

First, a chain between the two brink points is defined by a linear combination of the corresponding

structure data: we construct a number of copies of the original molecule somehow interpolated between x0

and xm+1.

The method alternates between predictor steps and corrector loops. If the corrector has found a node xk

on the NT fulfilling an error threshold ε, then the next predictor will again be a linear combination (utilizing

either curvilinear z-matrix coordinates or Cartesian coordinates directly) of the current chain point xk and

the final point. The next guess point, yk+1, of the string between the actual node and the final minimum is
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chosen by the predictor step

yk+1 = λkxk + (1 − λk) xfin, λk =
m − k

m + 1 − k
k = 0, .., m − 1 (5)

If the reaction path is a straight line, the linear combination would give equidistant nodes on the line, for

setting back successively xk+1 = yk+1, without doing the corrector and then repeating ansatz (5).

After every predictor step, the GS-NT method jumps into the corrector loop. It employs the L-BFGS

method of Liu and Nocedal [18] in a projection version [3] to find a solution of Eq. (1) orthogonal to the

search direction r. It is a conjugate gradient method, CG+, with line search, which works with Cartesian

coordinates. For every reaction complex, the task emerges to determine a useful convergence condition ε

for the norm of the projected gradient (1) of a current curve point or for every component of (1). The

convergence condition ε should be strong enough to stop the corrector not too early before the reaction

path node. However, a too strong chosen convergence condition could lead to a waste of computer time. In

this situation, the corrector does ineffective calculations (zigzagging) while slightly sliding down along the

direction of the gradient. However, the problem will nearly disappear if the search is in the flat region of the

dissociative plateau of the reactions investigated in this work. There the threshold ε can be very small.

Section 3. Dissociation of Methylenecyclopropene to Acetylene and Vinylidene

The cycloaddition of vinylidene in its closed shell ground state to acetylene leads in a strongly exothermic

reaction (60 - 70 kcal/mol) to methylenecyclopropene (MCP). The cycloaddition follows the Woodward-

Hoffmann rules for chelotropic reactions, i.e., the carbene adds in a non-linear fashion to the multiple bond

where the C2v-symmetrical product structure is only obtained in the last step. The reaction was recently

found by Cremer and co-workers to proceed with a small activation enthalpy of just 3 kcal/mol (CCSD(T)/6-

311G(3df,3pd) calculations). [19] DFT calculations with smaller basis sets such as 6-31G(d,p) and the B3LYP

functional failed to locate a TS of index 1 for the reaction. [19,20] Clearly, a TS should also exist in the

latter case and, therefore, it is the question how to find it.

We solved the problem by following a three-step procedure:

1) Calculate uphill paths that lead from the valley minimum occupied by MCP to the valley exit on the

side of the reactants.

2) Determine points in the far valley exit that can be used as starting points for TS search procedures.
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Figure 3. B3LYP/6-31G(d,p) geometries of acetylene, vinylidene, methylenecyclopropene (MCP), anti

allenylcarbene, TS1, and TS2. Distances in Å, angles in degree.

3) Calculate the location of a TS employing standard search methods.

The procedure described was applied to the chelotropic reaction between vinylidene and acetylene. For

this purpose DFT calculations with the B3LYP hybrid exchange-correlation functional [21] were carried

out employing the 6-31G(d,p) basis set of Pople and co-workers [22]. First, reactants and product were

calculated (Figure 3). Then, we investigated for MCP three different dissociation directions into acetylene

and vinylidene enforcing a) a T-shaped (C2v-symmetrical), b) an intermediate oblique (Cs-symmetrical),

and c) a parallel Cs-symmetrical dissociation of the reactant. The geometries generated in this way were
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Table 1. Energetics of the reaction between acetylene and vinylidene in their ground states. a

Structure Sym ∆E ∆E(BSSE) ∆H(298) νmin

acetylene (1Σ+
g ) D∞h -77,32957 653

vinylidene (1A1) C2v -77.26334 344

HCCH + H2CC: -154.59291 0 0 -

MCP (1A1) C2v -72.4 -72.4 -67.8 361

TS1 (1A’) Cs -1.2 0.6 -0.05 182i

TS2 (1A’) Cs -25.6 -25.6 -23.0 216i

anti allenylcarbene C1 -28.5 -28.5 -25.9 158

(1A)

a Absolute energies in hartree, relative energies in kcal/mol. ∆E(BSSE) is the relative energy after counter-

poise corrections for the basis set superposition error (BSSE). νmin in cm−1 denotes the smallest vibrational

frequency calculated.

used for the search direction of coarse NTs, which start at the reactant MCP. Using the GS-NT method

two exit channels and two crossing points of NTs were determined on the PES, which led in subsequent TSs

searches to the two TSs TS1 and TS2 shown in Figure 3.

In Figure 4, energy profiles of three calculated NTs are shown. All have pronounced turning points

(here appearing as cliff points) uphill (ε =0.03 for the corrector threshold, step maxima = 0.5 for corrector

steps, 23 nodes of the GS-NT method). Using the highest cliff point P1, a TS search [23] immediately led to

TS1 (Figure 4, Table 1). A search starting at the cliff point P3 (Figure 4) resulted in the location of TS2,

which is 1.2 kcal/mol below the energy of the products, however 0.6 kcal/mol above the latter as soon as

BSSE corrections [24] are included.

All structures calculated on the PES were characterized by their vibrational frequencies and identifying

value and mode of the one imaginary frequency in the case of a TS of index one. The relative energy of

the TSs found in this work were referenced with regard to the energy of the reactants where the energy of

the latter was corrected for basis set superposition errors (BSSEs) using the counterpoise method (see Table

1). [24] The chemical relevance of the calculated barrier values was tested by determining vibrational and

thermal corrections needed to obtain activation enthalpies. TS1 was identified as a saddle point of index

one according to an imaginary frequency of 182i that suggests weak interactions between the dissociating

molecules vinylidene and acetylene. The calculated geometry of TS1 (Figure 3) reveals a sideward oblique

position of vinylidene with C,C contact distances of 2.25 and 2.69 Å. Considering that typical C,C interaction
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Figure 4. Energy profile of three coarse uphill NTs calculated with the GS-NT method for MCP dissociation.

All NTs lead to the dissociation products vinylidene and acetylene via pronounced turning points appearing

as cliff points. The three cliff points P1, P2, and P3 are reasonable starting points for TS searches.

distances for CC bond forming / braking TSs are between 1.8 and 2 Å, TS1 is certainly a loose TS, which

is also in line with the fact that the geometries of acetylene and vinylidene are hardly distorted (Figure

3). The calculated geometry of TS1 reflects the fact that a carbene addition has to occur in a non-linear

(in this case Cs- rather than C2v-symmetrical) mode. When investigating the chemical relevance of TS1, it

was found that vibrational and thermal corrections lead to an enthalpy 0.05 kcal/mol (Table 1) below that

of the reactants. Hence, results confirm the experimental observation that the reaction proceeds without

an activation enthalpy. [19] Nevertheless, we can use TS1 as a meaningful starting point to carry out a

mechanistic analysis of the reaction, which will be described in a forthcoming paper.

TS2 is associated with the rearrangement of MCP to allenylcarbene, which requires a cleavage of one of

the three-membered ring CC single bonds. The imaginary frequency of TS2 is 216i, which is typical of CC

bond cleavage processes. The distance of the cleaving bond is 2.19 Å (Figure 3). This and the fact that TS2

is characterized by an almost linear arrangement of the CH2-C-CH unit indicates that TS2 is positioned far

out in the exit channel of the rearrangement reaction leading to allenylcarbene. [19,25] In line with this, the

energy of TS2 lies only 2.9 kcal/mol above that of the 1A excited state of anti allenylcarbene (the ground

state is a triplet [19,25]). The reaction leading from MCP to allenylcarbene is endothermic by 41.9 kcal/mol

(∆H0
f (298) difference, Table 1).
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Utilizing the GS-NT method and the three-step TS search described above, we were able to find the

dissociation products of MCP related to the cycloreversion of the carbene cycloaddition reaction. Dissociation

can happen in a single step (TS1) or a two step process where in the latter case first allenylcarbene is formed

(TS2) and then allenylcarbene dissociates in an endothermic reaction (∆ H(298o) = 61.7 kcal/mol) without

barrier. [19]

4. Cycloaddition of Singlet Methylene to Ethene

Skell and Garner were the first to propose a mechanism for the chelotropic 1,2 cycloaddition of singlet

methylene to ethene leading to cyclopropane. [27] This mechanism involved in its first phase an electrophilic

attack of the vacant pπ-orbital of methylene at the π-bond of ethene, polarization of the π-bond, and

formation of a CC-bond between carbene and alkene. In the second phase, the methylene unit rotates into a

central positionand attacks via its σ electron lone pair the second C atom of the alkene in a nucleophilic way.

Ample experimental and theoretical support was provided for this reaction mechanism in the past. [28-38]

Hoffmann and co-workers [29] demonstrated that the reaction of methylene and ethene is symmetry-allowed

when the methylene follows a Cs symmetrical non-linear (oblique) approach path whereas it is forbidden

when the reaction complex possesses C2v symmetry corresponding to a linear movement of methylene along

the C2 axis of the complex and leading to a T-structure where the top bar is the ethene molecule.

Quantum chemical calculations [30-38] have confirmed the early predictions based on either just elec-

tronic structure considerations or orbital (state) symmetry according to the Woodward-Hoffmann rules.

There are however two important properties of the methylene + ethene reaction that could not be predicted

on just qualitative considerations: a) The reaction proceeds without an energy barrier in the Cs-symmetrical

(symmetry-allowed) reaction mode. b) The reaction is concerted, i.e. follows a one-step mechanism contrary

to what Skell and Garner [27] described as a two-step mechanism. Therefore, it is more appropriate to speak

of a two-phase mechanism of the reaction thus complying with its concertedness but indicating at the same

time that the formation of the two CC bonds can be highly asynchronous.

Quantum chemical calculations for substituted carbenes CX2 and higher homologues YH2 such as germy-

lene and stannylene [36] have revealed that depending on substituent X or central atom Y the chelotropic

cycloaddition can change from a two-phase to a two-step, non-concerted reaction mechanism with an inter-

mediate carbene-alkene complex located at a minimum. The question is whether such a change in mechanism

can be anticipated from a detailed analysis utilizing URVA [1,39-42] for the methylene-ethene reaction. Such

an analysis requires a TS as starting point or, in case of a barrierless reaction, another reasonable starting

point in a region where the upgoing valley disembogues into the energy plateau being the location of the

separated molecules methylene and ethene.
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Figure 5. Seven downhill NTs (numbered 1 to 7) describing the cycloaddition of singlet methylene to ethene

are given by the movement of atom C1 in the Cs-plane of the reaction complex. The origin of the coordinate

system is atom C3 of the final structure cyclopropane. The two triangles illustrate one start and one final

structure. Three parts of the PES are included between 3.5 and 6 Å. Differences of energy contour levels are

0.1 kcal/mol. They are calculated by a grid of locations for the C1-atom where C3 and the z-component of

C2 are fixed. All other coordinates are minimized at every grid point. The NTs are given by connecting the

calculated node points denoted by small dots.

The appearance of a small, loose TS may change with the method and basis set used as was already

suggested by the results of Section 3. Hence, we have to verify that for the B3LYP/6-31G(d,p) description

used, the reaction proceeds without classical barrier. In the latter case, there is the need to describe the

valley down from the energy plateau to cyclopropane at the energy minimum. And finally, we have to

calculate a suitable starting point for whatever valley situation is found.

From the discussion in connection with Figure 1, we know how NTs behave when connecting a minimum

with a TS region (case a: monotonically increasing; intersecting at the TS; case b: when not monotonically

increasing, turning points close to the TS). In the barrierless case these conditions continue to hold because

now a degenerate TS exists, which is the energy plateau of the separated dissociation products. The inter-
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Figure 6. Energy profiles of the seven downhill NTs shown in Figure 5 calculated by the GS-NT method

for the cycloaddition of singlet methylene to ethene yielding cyclopropane. Up to 33 nodes are calculated

for each NT.

section of NTs at the TS is missing because the TS is not of index one. However, it is still true that any

NT, which increases strongly monotonically in energy (if starting at the minimum) moves automatically in

a valley uphill to the next TS (basic theorem). [43]

In Figure 5, calculated NTs for the Cs-symmetrical cycloaddition of singlet methylene to ethene are

shown in a 2D subspace spanned by the x- and the z-coordinate of the methylene atom C1 where the origin

of the coordinate system is given by ethene atom C3. The starting geometry of one reaction complex ring

is given as well as the cyclopropane geometry at the end point of one NT (marked by larger dots). Smaller

dots along the NT correspond to intermediate C1 positions, which imply small shifts in the position of

C2 (generally not shown) for a fixed position of C3. Each dot is one node point of the GS-NT method.

Also shown are parts of the PES in form of contour line diagrams in a region where the valley smoothly

disembogues into the plateau (109 to 112 kcal/mol above cyclopropane). Changes in the energy on the

energy plateau are so small that contour lines and NT paths become erratic. All calculated NTs (up to 33

node of the GS calculated) are on the right side of the C2v-symmetrical symmetry-forbidden path where the

two NTs closest to this path are effected in the way that they do no longer decrease monotonically but have

to surmount first small hills in the region of the plateau (Figure 6). All other NTs possess monotonically
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decreasing energy profiles (Figure 6). Over a range of 50 degrees they behave in the same way and indicate

thereby the existence of a cirque rather than a valley (compare with Figure 2).

The question of a starting point for a downhill URVA analysis of the reaction mechanism is solved in

the way that the bisector of the cirque is determined and a point at the edge of the ”cyclopropane bowl” (at

4 Å, Figure 5) is used. Since URVA requires second and even third derivatives of the energy the first part of

the analysis is disturbed by error progression caused by the numeric procedures used in the calculation. This

part, however, is chemically not interesting with regard to both geometrical or electronic structure changes.

Van der Waals interactions between the reaction partners become significant only at an approach distance

of 2.5 Å and closer.

The different phases of a reaction mechanism are determined by changes in the reaction path direction,

changes in the electron density distribution or the forces exerted on the atoms of the reaction complex,

changes in the vibrational frequencies and the Coriolis couplings between the vibrational modes and espe-

cially by changes in the the curvature of the reaction path. [1,39-42] Here we consider just the changes in

the reaction path vector since the complete URVA analysis of the methylene-ethene cycloaddition reaction

(referenced against the C2v-symmetrical approach and compared for changes in substituents and central

atom) is beyond the scope of the present paper and therefore a topic of another publication.

For the purpose of analyzing the direction of the reaction path given by the reaction path vector t(s),

we decompose the latter into basis vectors un(s)

un(s) = M−1bn(s) (6)

associated with the internal coordinates qn used to describe the reaction complex [1,39] (s: reaction path

length; M: mass matrix of the reaction complex) according to

t(s) =
3K−L∑

n=1

tn(s)un(s) (7)

where an element i of bn(s) is given by ∂qn(x)/∂xi and coefficients tn(s) are determined as described by

Konkoli and co-workers [39]. Vectors un in Eq.s (6) and (7) are the internal modes that characterize the

movement along the reaction path.

Amplitudes An,s(t, s) measure the contribution of un(s) to the reaction path direction according to

An,s(t, s) =
(g†M−1bn)2

(g†M−1g) (b†
nM−1bn)

(8)

which considers (beside electronic effects) the kinetic aspect of the translational motion along the reaction

path.
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Figure 7. Characterization of the reaction path vector t(s) in terms of internal coordinate modes using

amplitudes An,s considering electronic and mass effects according to Eq. (8). For a definition of parameters,

see insert. B3LYP/6-31G(d,p) calculations.

In Figure 7, the internal coordinate contributions to the reaction path vector t(s) are shown as a function

of the reaction path parameter s. The reaction path was calculated from s = 0 to s = 19 amu1/2, however only

the range 10 < s < 19 amu1/2 is chemically interesting because for s < 10 (C1,C2 distance > 2.55 Å) van der

Waals interactions are weak. The reaction path direction depends up to s = 16.2 amu1/2 predominantly on

the approach parameter C1C2; beyond this value vector t(s) depends on the C1C2C3 (CCC) bending angle

or vicariously on distance C1C3. There are other small contributions to the reaction path vector throughout

the reaction (see Figure 7), however they do not play a significant role. Hence, one can distinguish two

different phases in the reaction: The first one is characterized by the forming of the bond C1C2. The second

one by the forming of bond C1C3 accompanied by a decrease of the bending angle C1C2C3.

On the PES, the energy decreases continuously by 112.2 kcal/mol (∆H = -105.6 kcal/mol; exp. ∆H =

-102 kcal/mol [44,45]) without giving any indication for an intermediate, i.e. the reaction is truly a concerted

(one-step) barrierless reaction. However, the reaction path vector suggests a two-phase reaction mechanism

with the possibility of a hidden intermediate [40] that can be transformed into a real intermediate by
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changing the reaction conditions (replacing H atoms against substituents X; changing C against Y; changing

the environment). A two-phase reaction consisting of an electrophilic and a nucleophilic reaction phase was

originally suggested by Skell and Garner [27] and is confirmed by our findings.

5. Conclusions

The GS method for NTs is well suited for a) detecting a TS of a quasi-barrierless chemical reaction

and b) providing a reasonable downhill starting point for a mechanistic analysis in the case of a barrierless

reaction where the TS corresponds to a high-lying energy plateau. Because the method can work in either

uphill or downhill direction, it will be able to localize the interesting TS region if one starts at the minimum,

which is in contrast to the steepest descent method that can proceed only downhill. In the latter case, the

TS region will be missed without a good starting point.

Application of the GS-NT method to the MCP dissociation to vinylidene and acetylene led to the rapid

identification of a TS representing a small barrier. In the case of the cyclopropane / ethene-methylene system

a barrierless cirque was identified. A center-point in the cirque was used as starting point of the reaction

analysis with the URVA method. It was shown that the reaction, although barrierless, has a two-phase

mechanism, in which the electrophilic phase leading to C1C2 bond formation can be distinguished from the

C1C3 bond formation of the nucleophilic reaction phase. Further investigations are in progress to clarify the

chemical relevance of this observation.

Acknowledgments

EK and DC thank the University of the Pacific for supporting this work. The authors thank Dr. Hyun Joo

for some preliminary calculations.

References

[1] E. Kraka, in Encyclopedia of Computational Chemistry, P.v.R. Schleyer, N.L. Allinger, T. Clark, J.

Gasteiger, P.A. Kollman, H.F. Schaefer III, P.R. Schreiner, Eds., John Wiley, Chichester, UK, 1998,

Vol. 4, p.2437.

[2] B. Peters, A. Heyden, A.T. Bell, A. Chakraborty, J. Chem. Phys. 120 (2004) 7877.

[3] W. Quapp, J. Chem. Phys. 122 (2005) 174106.

[4] S. Maeda, K. Ohno, Chem. Phys. Lett. 404 (2005) 95.

[5] H.B. Schlegel, J. Comput. Chem. 24 (2003) 1514.

16



[6] G. Henkelman, K. Jonsson, J. Chem. Phys. 113 (2000) 9978.

[7] S. A. Trygubenko, D. J. Wales, J. Chem. Phys. 120 (2004) 2082.

[8] W. E, W. Ren, E. Vanden-Eijnden, Phys. Rev. B 66 (2002) 052301.

[9] W. Quapp, J. Computat. Chem. 25 (2004) 1277.
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