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Abstract

The present paper proposes and tests the workability of a genetic algorithm based search technique for locating the

®rst-order saddle points on the potential energy surfaces of Lennard-Jones clusters with n 6 30. A modi®ed objective

function using gradients only is used to locate the saddle points. The cost e�ectiveness of the proposed method vis-a-vis

that of an earlier formulation, where an explicit determination of Hessian eigenvalues was required, is demonstrated.

The method could be useful in the construction and the analysis of the reaction paths in complex systems. Ó 2000

Elsevier Science B.V. All rights reserved.

1. Introduction

Finding the critical points of Lennard-Jones
(LJ) clusters is a problem which has received little
attention in the recent years. Several workers have
strived to locate critical points, especially the
global minimum of these systems with a host of
techniques. The simple fact as to why these sys-
tems are interesting and challenging to study is
that, as the size of these clusters increases, the
number of critical points increases at an astro-
nomical rate. A concrete example will make things
more convincing. A cluster of moderate size such
as n � 13 is known to possess at least 1328 minima
[1±4], and for a really large cluster with n � 147
the number is 1060, to say nothing of characteriz-

ing the transition states that connect these minima.
Hence, it is clear that locating the global structure
among the myriad possibilities is not an easy task.
A number of excellent applications have come out
over the last decade in this ®eld. Hoare and Pal
[5,6] developed a general growth algorithm, and
used it to generate large numbers of stable struc-
tures (n 6 55). Northby [7] used an e�cient lattice-
based search to ®nd the optimal structure in the
range of 13 6 n 6 147. Genetic Algorithm (GA)
itself has been used in this ®eld by several workers
with encouraging results [8±12]. Wales and Doye
[13] used a ``basin hopping'' technique to arrive at
global minimum energy structures of di�erent
sizes, upto n � 110. They succeeded in ®nding in
some cases structures that had energies lower than
what were previously described as the lowest en-
ergy structures of the clusters concerned.

Other than the global minimum, a ®rst-order
saddle point (SP) is another important structure,
which the topography of a LJ cluster supports
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[14,15]. A saddle point of order 1 is de®ned as a
critical point where only one of the eigenvalues of
the Hessian matrix is negative. Their importance
lies in the fact that the associated structures may
often de®ne the transition state structures on the
minimum energy path of the structural transfor-
mations of the clusters. SPs are in general di�cult
to locate as little can be guessed about their lo-
cation and disposition to start with. In LJ clus-
ters, the problem is sometimes compounded by
the relatively ¯at nature of the potential energy
surface around the saddle points [15]. Neverthe-
less, studies on SPs of LJ clusters have also re-
ceived attention. Wales [14] located SPs in LJ
clusters of various sizes by the eigenvector fol-
lowing method. Quapp [15] located SPs in an Ar4

cluster by a quasi-gradient-only technique. There
has been an extensive study of the SPs of Ar8

cluster by Jensen [16]. The paper reported
an identi®cation of 42 SPs. Simulated annealing
and GA based techniques for locating the SPs
and constructing reaction paths have also been
proposed recently [12,17]. In our previous studies,
the objective function contained information
about the local gradients and curvatures, al-
though the search was based on a stochastic op-
timizer, namely the simulated annealing method
(SAM).

Our purpose in this paper has been to explore
the usefulness of a stochastic all purpose global
optimizer known as GA [18±20] in the SP search,
avoiding diagonalization of the full Hessian all
through the search. Our argument for using a
stochastic method rather than a conventional
deterministic algorithm lies in the topography of
the LJ surface. The presence of a large number of
minima can stall the progress of any deterministic
algorithm when the target of the search is the
global minimum. It is here that stochastic search
algorithms can be quite useful as they are capable
of exploring the search space globally. For a
given starting point, the deterministic algo-
rithm, on the other hand, can search the space
locally.

In the following sections, we give an account of
the methodology proposed, including the opera-
tional details of the algorithm, and then, present
the results of a few applications we have made.

2. Methodology

2.1. The gradient-only scheme

The methodology that we present below has
been adapted to GA. However, the same technique
can be adapted to another stochastic optimizer,
namely the SAM also, with suitable changes. The
energy of an LJ cluster of n atoms is given by
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For locating critical points on the PES of such a
cluster, we start by de®ning an objective function
[12,17]

F � �En ÿ EL�2 �
X3n
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and a ®tness function

f � eÿF : �3�
The objective is to ®nd the absolute minimum of F
or, equivalently, the absolute maximum of f. In
Eq. (2) EL is an estimated lower bound to the en-
ergy which has to be supplied or deduced. This
term is introduced to tune the search to locate a
critical point around EL. EL can be updated at
regular intervals, if needed. The second term is the
gradient norm multiplied by b, the penalty weight
factor. Since F has the dimension of energy
squared, the dimension of b should be length
squared. Its value is set equal to unity at the start
of the search. Later on, as the gradient norm de-
creases to 0:1, b is allowed to increase 10-fold for
every 10-fold decrease in the norm of the gradient
vector. The third term in F is the curvature con-
straint term. The kis in this term are the eigen-
values of the Hessian matrix, pis and gis are
penalty weight factors associated with the curva-
ture constraint. If ki is positive, pi is negative and gi

is positive. If ki is negative, then pi is positive and
gi is negative. It may be mentioned that the six
eigenvalues of the Hessian associated with the
translational and rotational motion of the centre
of mass, should be excluded from the sum in the
curvature constraint term. The pis are chosen to
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avoid exponential under¯ow while the choice of gi

depends on the purpose of the search (seen later).
Thus, for locating a minimum on the PES, the
curvature constraint term is dropped (i.e. to say,
we set gi � 0 for i � 1; 2; . . . ; 3nÿ 6). The simpli-
®ed ®tness function /m is then given by

/m � eÿFm ; �4�
where

Fm � �En ÿ EL�2 �
X3n

i�1

b
oEn

oxi

� �2

�5�

xis in Eq. (5) are the cartesian coordinates of the
space ®xed ri vector. EL is set to a speci®ed value
and /m is maximized till a stationary point around
EL is reached. At this point, the gradient norm
vanishes. It is clear from Eqs. (2) and (3) that /m

will be maximally 1:0 at the stationary point if En is
also equal to the current value of EL. So, the
achievement of a ®tness of 1:0 will signify that a
critical point has been hit, at En � EL and that it is
a minimum.

For locating an SP on the PES, (starting from a
minimum, local or global) the lower bound term
EL is reset (E0L � EL � C;C > 0) in Eq. (2) and the
curvature constraint term in the objective function
(Eq. (2)) is brought back so that the new objective
function �F� reads

F � �En ÿ E0L�2 �
X3n

i�1

b
oEn
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and the new ®tness function / is given by

/ � eÿF: �7�
We may mention here that the summation in the
curvature constraint term in Eq. (6) runs over
3nÿ 6 degrees of freedom implying that the
translational and rotational motions of the centre
of mass have been excluded. A straightforward
application of the GA to the problem of maxi-
mizing / of Eq. (7) is possible. Although we will
not make use of this approach, it would be prof-
itable to look into the salient features of the steps
involved.

First, a new set of con®gurations of the atoms
in the cluster with signi®cant energy variations are

generated for fresh genetic evolution with a view to
maximizing the new ®tness function /. All gis are
set to have values around 0:01 or so, whereas pis
are set equal to 1:0 as long as all the Hessian ei-
genvalues are positive. If during the evolution, a
con®guration is generated in the population that
corresponds to an arrangement of the interacting
atoms for which one of the Hessian eigenvalues
�ki� < 0, the corresponding gi is reset to have a
much higher absolute value (0:1 or so) but with a
negative sign. Since the term gie

ÿpiki

(giki < 0; j piki j� 1), lowers the value of the ob-
jective function �F �, there is an abrupt increase in
the ®tness of the speci®c string. After a few gen-
erations, the population begins to get dominated
by similar strings as the selection process ensures
that strings with a higher ®tness have a higher
multiplicity in the population. If we take care to
exclude strings with more than one negative ei-
genvalues of the Hessian from the population, the
evolution will eventually lead to a ®rst-order sad-
dle point on potential energy surfaces (PES), as
close to E0L as possible. E0L itself is slowly raised by
a prede®ned updating procedure [24].

A glance at the objective function (cf. Eq. (6))
would suggest that, for large systems, the tech-
nique mentioned in the preceeding paragraph
might become costly. If at each step, the Hessian
matrix has to be constructed and diagonalized for
each string, the method might not be as appealing
for larger systems. Hence, we propose to put for-
ward a modi®ed objective function where an ap-
proximate estimate of the ®rst eigenvalue of the
Hessian can be made from the gradients of the
current and the immediately preceeding steps,
thereby avoiding a costly step involving the cal-
culation of eigenvalues of the Hessian. The modi-
®ed method is as follows:

(i) We start by noting that for the searches
leading to an SP of order 1, the full expressionP3nÿ6

i�1 gie
piki is not needed to enforce the curvature

constraint for SP search since, the higher terms do
not contribute much to increase the ®tness value.
So an evaluation of the ®rst eigenvalue would be
enough to guide the search. Of course, since only
the ®rst eigenvalue is needed, one can invoke any
of the few roots technique to get the ®rst eigen-
value after eliminating the six zero eigenvalues
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associated with translation and rotation, which
has to be done carefully. With this simpli®cation,
the curvature constraint term in the objective
function would read c0 � g1ep1k1 , where k1 is the
smallest eigenvalue of the Hessian associated with
non-translational-rotational modes of the LJ
cluster.

(ii) We have already made our lives simpler.
Further simpli®cation can be achieved by noting
that along a minimum energy path (MEP) to a
®rst-order SP, the eigenvector corresponding to
the negative eigenvalue of the Hessian should
point nearly parallel to the gradient. The particu-
lar eigenvector can therefore be approximated by
the gradient itself. Since only in the redesigned
objective function the ®rst term, g1ep1k1 , in the
curvature constraint remains, only one of
the Hessian eigenvalues (k1) is substituted by the
simple di�erence of gradients

k1new �j grado j ÿ j grad j; �8�

where grado is the local gradient at a second test
point obtained by taking a small step from the
given point towards the nearest saddle along the
direction of the local gradient. Near an SP on an
MEP, k1new should be negative. The curvature
constraint term at the designated point on the
surface then becomes

c00 � g sign�j grado j ÿ j grad j� ep1fjgradojÿjgradjg;

�9�

where g is the positive penalty factor which should
lead the method to an SP. Of course, we cannot
exclude the possibility of obtaining an SP of higher
order. The modi®ed algorithm could gain a sig-
ni®cant computational advantage from two
sources. First, it avoids costly diagonalization of
the Hessian. Second, the negative eigenvalue of
the Hessian is not easily lost once a string with
a negative eigenvalue of Hessian has been identi-
®ed, so that the search remains correctly con-
strained.

Having established our objective function and
our ®tness function, we now describe the stochas-
tic optimizer, GA used by us for exploring the
search space.

2.2. The optimization strategy

For ®nding the critical points of an n-atom LJ
cluster we have to optimize 3n cartesian coordi-
nates. This is achieved by the GAs in the following
manner:

(i) GA creates a pool of probable trial solutions
(the population of size np) to begin with. This is a
fundamental di�erence which the GA has with
other optimization techniques. Most tech-
niques start with a single solution and iteratively
improve it.

(ii) Suppose, we have created m solutions ran-
domly. They are each a string of 3n cartesian
coordinates of the atoms of the cluster. All of
them are not equally ®t. By ®t, we mean the
closeness of the trial solutions to the actual solu-
tion. A measure of this is provided by the value of
the ®tness function de®ned in Eq. (3). So, the ®rst
step, in the GA is a selection step, which ensures
that the relatively better solutions are retained
in the pool and the rest discarded. However, the
size of the solution pool (np) is kept constant,
and hence, the better solutions receive multiple
copies in the post-selection population. This is in
keeping with the Darwinian theory of survival of
the ®ttest.

(iii) The selection operator increases the average
®tness of the solution pool, but does not introduce
new features or variations to it. If we are to
achieve our goal of locating the true solution, ex-
tensive changes must take place in the trial solu-
tions. Two operators are invoked to carry out this
operation: The ®rst is the crossover operator. Let
S1 and S2 be a pair of trial solutions in the pool
where

S1 � x1
1; x

2
1; x

3
1; . . . ; xt

1; x
t�1
1 ; xt�2

1 ; . . . ; x3n
1 ;

S2 � x1
2; x

2
2; x

3
2; . . . ; xt

2; x
t�1
2 ; xt�2

2 ; . . . ; x3n
2 :

We choose a crossover site randomly (say the tth
site) with probability pc � 0:25 or so. After
choosing the crossover site, we exchange infor-
mation between the two solutions S1 and S2

and generate a pair of new solutions S01 and S02
where
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S01 � x1
1; x

2
1; x

3
1; . . . ; xt

1; x
t�10
1 ; xt�20

1 ; . . . ; x3n0
1 ;

S02 � x1
2; x

2
2; x

3
2; . . . ; xt

2; x
t�10
2 ; xt�20

2 ; . . . ; x3n0
2 ;

xr0
1 � fxr

1 � �1ÿ f �xr
2 and

xr0
2 � fxr

2 � �1ÿ f �xr
1 for

r � t � 1; . . . ; 3n; �10�

where 0 < f < 1, and f is allowed to assume values
in the speci®ed range randomly.

Once the solution set is subjected to the cross-
over, the set is ready to undergo the next opera-
tion, called mutation, which introduces only subtle
changes in the strings.

(iv) We de®ne a mutation probability pm

(0:01±0:05). For each variable in the solution set,
we generate a random number r between 0 and 1.
If pm > r, then that particular variable is selected
for mutation. Suppose xn

k (nth variable in the kth
solution) has been selected for mutation. After
mutation it becomes

xn0
k � xn

k � �ÿ1�lrD; �11�

where l is a random integer, r is a random number
and D is a mutation amplitude that itself can be
either drawn from a Gaussian distribution or se-
lected randomly from a speci®ed range.

The action of these three operators selection,
crossover and mutation complete one generation
in a GA. The transformed solution set is again
subjected to the same sequence of GA operations
and the process is iterated till a maximization of
®tness is achieved to the extent possible.

3. Results and discussions

All the calculations have been carried out on
Argon clusters using typical LJ parameters for
argon [21], with r � 3:4 �A and � � 1:0 kJ/mol.
The systems investigated are (Arn) with
n � 7; 8; 15; 20; 30. First the global minimum en-
ergy structures of these clusters were found out by
starting from a randomly generated set of argon
coordinates and then invoking GA for locating the
minima. To be speci®c, the cartesian coordinates
xi; yi; zi of each argon atom were allowed to have
values in the range of 0 6 x; y; z 6 14 �A randomly,

in the starting population pool. The results agree
well with those existing in the literature [13]. We
omit details of the optimization procedure as the
technique of locating the global minimum energy
structure is well established [12].

Once the global minimum is located, we start
looking for the ®rst-order saddle point of (hope-
fully) the lowest height starting from the global
minimum. A new set of strings are generated for
creating the initial population for the SP search by
perturbing the coordinates of the global minimum
energy structure by �0:1�A, randomly. Fig. 1. dis-
plays a typical example, of the ®tness distribution
in the starting population pool used in the search
for SP in the Ar20 cluster. Here we note that the
®tness here refers to the ®tness computed without
the inclusion of the curvature constraint. The ®t-
ness values of the individual strings would get re-
duced drastically if curvature constraints are
introduced (all kis > 0). A single point crossover is
used with pc � 0:25, while mutation probability pm

is taken to be 0:05. The intensity �D� of mutation is
randomly chosen from an interval l1 6 D 6 l2,
where l1 � 0:05 and l2 � 0:20. The E0L in the ob-
jective function (Eq. (6)) is raised a little bit so that
the objective function drives the structure out of
the attractive basin. The ®tness is then sought to
be maximized. In the process, the gradient term is
lowered as much as it can be around the new E0L.
If, a string with one negative eigenvalue of the

Fig. 1. Fitness distribution in the starting population for saddle

point search in a Ar20 cluster.
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Hessian is generated, the corresponding g is set to
a large negative value (from �0:01 toÿ 0:1)
causing abrupt decrease in the objective function
and a concomitant increase in the ®tness function.
The curvature constraint term in the objective
function therefore forces the search to proceed
along the direction of the eigenvector with nega-
tive eigenvalue. When it is seen that the gradient
norm cannot be lowered further, E0L is further in-
creased, and the search steps are executed. The
process is carried on till a SP of order 1 has been
reached. So to say, this process creates an ap-
proximation to the minimum energy path.

The energies at the global minimum, SP and the
lowest eigenvalue of the Hessian of a number of
clusters at the saddle point are given in Table 1.

For Ar15, Ar20 and Ar30, the SP search was
initiated from the globally minimum energy ge-
ometry in each case. E0L was slowly updated and in
each the search converged to the ®rst-order SP
reported in Table 1. Ar7 and Ar8 behave somewhat
di�erently. In the case of Ar7, the search converged
to a higher energy saddle of order 1 when E0L was
updated at the standard rate (1% of current E0L
after every 100 generations). However, on reduc-
ing the rate of upward revision of E0L, the search
could be forced to converge to the lower saddle at
E � ÿ15:444. For Ar8, the search from the global
minimum converged to the SP at E � ÿ18:806
although a lower saddle has been reported in the
literature [23]. This happened irrespective of the
updating rate used for E0L. This lower saddle could
be reached only if the search was initiated from a
di�erent local minimum, rather away from the
global minimum.

Figs. 2(a)±(c), 3(a),(b), 4(a),(b), 5(a),(b) and
6(a),(b) depict the structures at the global minima

Table 1

The global minimum energy (in �), SP energy (in �) and the only negative Hessian eigenvalue at the saddle point for Arn systems

n Energy (global) Energy (saddle) First Hessian eigenvalue (saddle)

7 ÿ16.505 ÿ15.444 (ÿ14.596)a ÿ0.8654

8 ÿ19.821 ÿ18.806 (ÿ19.281)b ÿ0.8198

15 ÿ52.322 ÿ48.798 ÿ0.8603

20 ÿ77.177 ÿ73.980 ÿ0.8662

30 ÿ128.286 ÿ123.864 ÿ9.0965

a A higher saddle point, also accessible from the global minimum.
b A lower energy ®rst-order SP [23] on the PES which could not be reached from the global minimum.

Fig. 2. (a) Structure at the global minimum of Ar7 cluster. (b)

Structure at the higher saddle point SP2, of Ar7 cluster. (c)

Structure at the lower saddle point SP1, of Ar7 cluster.
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and the SPs for Ar7, Ar8, Ar15, Ar20 and Ar30

clusters, respectively. The convergence of the al-
gorithm to the SP of the lowest height is generally
fast, but not guaranteed, specially when the num-
ber of such points on the given PES is large and
more than one of them are accessible from the
stationary point from where the SP search is ini-
tiated. This di�culty is not intrinsic to the present
method, but is shared by many. This aspect has
been discussed by Quapp and Heidrich [22]. In our
case, only a very slow rate of annealing (the rate at
which E0L is updated) can perhaps ensure that the
MEP passes through the ®rst-order SP of the
lowest height. Thus, unless annealing is done very
slowly, the MEP starting from the global mini-
mum in Ar7 ends up in the higher SP (SP2, Fig.
2(b)) while slow annealing leads to the lower one
(SP1, Fig. 2(c)).

Fig. 7(a) depicts the evolution of energy of an
Ar20 cluster with the number of generations using
the gradient-only scheme. The search starts from
the global minimum and the desired SP is reached
in about 600 generations. The working population

contained 25 trial solutions and the entire
search was accomplished in 20 min of the CPU
time on a 200 MHz Pentium. For comparing the
performance of the present algorithm with that of
the method proposed earlier [11], where explicit
evaluation of all the Hessian eigenvalues was
needed, we carried out a calculation for tracing
the same SP with the previous method. The
search took 800 generations to locate the saddle
point (Fig. 7(b)). The time consumed was 50 min
of the CPU on the 200 MHz Pentium. However,
in the second case also (full Hessian case), the
best string appeared in the population at around
600th generation. The evolution was allowed to
continue for another 200 generations to ensure
that there was no further scope for improvement.
The economy achieved in the computation time
can be accounted for by the fact that the present

Fig. 3. (a) Structure at the global minimum of Ar8 cluster. (b)

Structure at the saddle point of Ar8 cluster.

Fig. 4. (a) Structure at the global minimum of Ar15 cluster. (b)

Structure at the saddle point of Ar15 cluster.
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algorithm does not require the diagonalization of
the full Hessian during the evolution. A com-
parison of the lowest eigenvalue of the Hessian
during evolution in the present scheme with that
in the unmodi®ed GA based algorithm, shows
that the negative eigenvalue is not lost more fre-
quently in the previous method as speculated
earlier. It may be noted that the ®tness in the
present method is calculated using only the neg-
ative eigenvalue of the Hessian in the curvature
constraint term. That makes the ®tness appear to
improve faster.

We have also located an SP of order 1 for the
Ar30 system by using the gradient only scheme.
Here also the population size was kept ®xed at 25.
The saddle point was located in about 4000 gen-
erations and the search took about 1 h CPU time
on a 200 MHz Pentium Machine. The use of the
gradient information only for constructing the
objective function and hence the ®tness function,
clearly improves the e�cacy of the GA based
search for the saddle points on the complex PES.
The same basic technique would be equally appli-
cable to the SAM based algorithm proposed earlier

Fig. 5. (a) Structure at the global minimum of Ar20 cluster. (b)

Structure at the saddle point of Ar20 cluster.

Fig. 6. (a) Structure at the global minimum of Ar30 cluster. (b)

Structure at the saddle point of Ar30 cluster.
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[24], but it converges slowly when the cluster size is
large. For clusters upto n � 10, the two strategies
work more or less with equal facility.

4. Conclusions

We have demonstrated the workability of a new
GA based scheme for ®nding saddle points of LJ
clusters containing upto 30 atoms. The evaluation
of the relevant Hessian eigenvalue from the gra-

dient information coupled with the GA based
stochastic search makes it a potent method for
studying these multidimensional and extremely ¯at
surfaces.
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Fig. 7. (a) The evolution of energy with generations during

saddle point search using the gradient dominated scheme for

Ar20 clusters. (b) The evolution of energy with generations when

the SP search is carried out with explicit evaluation of eigen-

values of the Hessian matrix in a Ar20 cluster.
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