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Intensities of Hot-Band Transitions: HCN Hot Bands
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A simple vibrational Honl-London-type formula for hot-band intensities is tested by measuring
the intensities of a number of vibrational transitions, including many hot bands, for HCN. This
vibrational intensity formula is based on one- and two-dimensional harmonic oscillator functions
and a nonlinear electric dipole function that is expanded in a Taylor series with respect to the
normal coordinates. It is shown that, when this formula is included, the observed transition
dipoles for the bending hot bands differ by only a few percent from the transition dipoles for the
same quantum number changes from the ground state. Infrared absorption intensity measurements
are given for the transition dipoles for the transitions 01'0-00°0, 02°0-00°0, 03'0-00°0. 04°0-
00°0, 10°0-01"'0, 12°0-00°0, and 20°0-00° and the accompanying hot bands involving the
lower states v, = 1, 2, and 3. This simple model is limited to well-behaved systems, but would
be useful for estimating the intensities of some high-temperature spectra. For HCN the Herman-
Wallis constants that are quadratic in J (or m) are shown to be determined principally by the
effect of /-type resonance. @ 1995 Academic Press, Inc.

INTRODUCTION

A little noted fact of spectroscopy is that the hot bands that accompany a room-
temperature spectrum have nearly the same transition dipole as the same transition
from the ground state, but with simple numerical multipliers that are the vibrational
equivalent of the Honl-London terms. For the most part these terms have been hidden
in rather complicated theoretical papers (7, 2), but in a few cases they have been
explicitly referenced (3-5). The simple form of these multipliers is based on harmonic
oscillator functions and only considers the first significant terms in the electric dipole
function. Except for Ref. (5), the terms for doubly degenerate fundamental modes
have not been subjected to careful experimental verification. This paper presents mea-
surements of the intensities of the bands 01 '0-00°0, 02°0-00°0, 03'0-00°0, 04°0-
00°0, 10°0-01'0, 12°0-00°0, and 20°0-00°0, and their hot bands involving transitions
from the v,, 2v,, and 3», vibrational states. We have found that, at least for HCN, the
simple intensity formula can be applied to the observed intensities to give a transition
dipole that is the same, within a few percent, as that found for the transition from the
ground state.

Prior to this work absorption intensity measurements had been made on the bending
mode of HCN, »,, by Hyde and Hornig (6) and later by Kim and King (7). The
intensities of the 2v, band near 1400 cm™}, the v,—», band near 2600 cm ™!, and the
3v, band near 2113 ¢cm ™! also had been measured by Smith (8). The intensities of
the remaining bands covered by this paper seem not to have been studied. All of the
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HOT-BAND INTENSITIES: HCN 421

previous intensity measurements for these bands were conducted with low-resolution
spectrometers and at high pressures to eliminate saturation problems. Consequently,
only integrated band intensities had been measured for HCN before now. The hot-
band intensities were included in those measurements, but were not individually
measured.

This is the second paper reporting the results of extensive infrared measurements
that we have made on HCN (9). Other papers will report the results of wavenumber
analyses of these bands and will also give the results of intensity and wavenumber
analyses for other bands of HCN and its isotopomers.

EXPERIMENTAL DETAILS

For the present work, Fourier transform spectra were measured on the Bruker
IFS120HR high-resolution spectrometer in Giessen. All of the spectra were measured
with resolutions that gave experimentally measured linewidths that are very close to
the expected linewidth, when both Doppler broadening and pressure broadening are
considered.

The measurements were all made at ambient temperatures which varied between
297 and 299 K, although the variation during the course of a single measurement was
no more than £0.9 K from the average. The effective temperature of each measurement
was taken as the average of the temperatures at the beginning and end of each run.
The temperature was measured by a thermometer attached to the outside of the ab-
sorption cell about halfway between the two end mirrors. Although the temperature
was measured with a precision of 0.1 K, we estimate that the accuracy of the effective
temperature was more like 0.6 to 1.0 K. An uncertainty of 1 K will cause an uncertainty
of 3.5% in the intensity of hot bands from the 3, state at 2100 cm ™',

Except for the measurements in the v, and 2», regions, the absorption cell was a
multireflection White-type cell designed and built in the Giessen laboratory by Keppler
and Rao (/0). That absorption cell was made of stainless steel and had a base length
of 4 m. It was placed between the parallel exit port of the interferometer and the
detector chamber using an optically adapted evacuated transfer optics setup. The v,
measurements were made with shorter cells; one measurement was made in a small
glass absorption cell with a pathlength of 16.5 ¢cm, another was made in a cell with a
length of 27 cm, and the others were made with a glass cell with a pathlength of 300
cm. For the 2v, spectra we made use of a commercially available White-type borosilicate
glass cell (Infrared Analysis Inc., New York) having a baselength of 0.82 m and volume
of about 7 liters. The gold mirrors were adjusted to allow for either 4 passes (giving a
pathlength of 3.28 m) or 16 passes (13.12 m). The measurements given in this paper
were based on pathlengths that varied between 0.165 and 352 m.

Table I indicates the conditions of each measurement. Some entries in Table I may
differ from the conditions given in Ref. (9) due to our recalibration for the present
work. The uncertainty in the measured lengths of the cells is estimated to be in the
range of 0.1% (for the long cells) to 1% (for the short cells). Light sources (globar or
tungsten lamp), beamsplitters (Ge:KBr or Si:CaF,), wedged optical windows (KBr
or CaF,), optical interference filters (typically ~800 cm™! FWHM), and detector
devices (Ge:Cu at 4 K or InSb at 77 K ) were combined to yield optimum instrumental
performance in the different spectral regions.

Some difficulty was experienced with changes in the effective pressure of the HCN
gas in the absorption cell due to a combination of outgassing and adsorption by the
cell walls. Because the high-pressure runs showed smaller variations during the course
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TABLE 1

Summary of Experimental Conditions for the Measurements

Run  limits (cm?) Pressure (Pa) Pathlength (m) Temp. (K) Resolution (cm™)

ZZ 560-9560 2.95 0.165 297.7 0.0018
z 560-960 7.24 0.27 298.6 0.0018
v 560-960 4.39 3.0 297.7 0.0018
U 560-960 18.4 3.0 297.9 0.0018
T 560-960 102. 3.0 298.0 0.0018
AT 1200-1800 167. 13.12 296.7 0.0031
AV 1200-1800 35.5 13.12 296.4 0.0031
AX  1200-1800 218 13.12 297.2 0.0028
AY  1200-1800 117. 3.28 297.2 0.0028
AZ  1200-1800 31.9 3.28 297.5 0.0028
B 1900-2800 9.69 96. 297.4 0.0029
C 1900-2800 31.24 96. 298.6 0.0029
R 1900-2800 490. 240. 208.8 0.0029
AC  2700-3600 100. 192, 298.0 0.0028
H 3800-4900 500. 240. 298.6 0.0086
I 4600-5600 473.3 240. 299.2 0.0098
K 4600-5600 13.2 240. 299.2 0.0098
Q 4600-5600 4.59 240. 298.2 0.0097
Al 5500-7250 205.2 160. 298.0 0.0128
Al 5900-7250 251.1 352. 297.6 0.0128
AK  5900-7250 21.24 352, 297.2 0.0128
S 5550-6790 233.3 240. 299.1 0.0119

* Runs AX, AY, and AZ contained ~95% H'’CN or 4.9% H'>’C“N.

of the measurements, the absolute intensity was estimated from the high-pressure
runs, in most cases. The pressure in the absorption cell was measured by two capacitance
gauges (MKS baratron, full scale 10 mbar). The accuracy of the pressure gauges is
specified to be better than 0.5% of the reading. For each spectral region, the low-
pressure measurements were calibrated by using lines from the high-pressure runs to
estimate the pressure in the low-pressure runs. This estimate of the pressure was in
agreement with the measured pressure, but was more accurate. Because of slow changes
in the sample pressure during the course of a measurement, the absolute intensity
may be in error by 15% or more but the relative intensity measurements of the ratios
of the hot-band intensities divided by the ground state transition intensities are probably
accurate to within 5%.

Several different gas samples were used in these measurements. Each sample was
purified by repeated vacuum distillation. With the exception of Runs AX, AY, and
AZ the samples contained the natural isotopic abundance which may have been slightly
different from the abundance given in Table II, simply because of the natural
variation of the isotopes or small enrichment effects from different chemical and
physical treatments.

THEORY

The integrated absorption intensities (.S;) of individual rovibrational transitions are
given by the equations

Si=ph [ oDy

= (87°/3hc) Lv;(273.15/T)N,(C/ Q,Qr )i F, Su Sk (1)
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and
C =exp(—E"/kT) [l — exp(—hw,/kT)], (2)

where .L is the Loschmidt constant (2.686763 X 10 molecules/m?), T is the tem-
perature (Kelvin}, »; is the wavenumber (or frequency ) of the /th rovibrational tran-
sition, p and / are the pressure and pathlength of the sample, respectively, O, and Qg
are the vibrational and rotational partition functions respectively, S, and Sg are the
vibrational and rotational intensity factors (Sg is usually called the Honl-London
term), F; is a function containing the Herman-Wallis correction terms for the rotational
dependence of the intensity, u; is the transition dipole or dipole derivative for the
transition (given in this paper in units of debye), and N, is the isotopic abundance
for the sample. In Eq. (1) we have included the isotopic abundance because the pressure
is usually given in terms of the total pressure of the sample rather than the partial
pressure of a given isotopic species.

There have been a number of different expressions proposed for the Herman-Wallis
function. In this paper, we have followed the lead of Johns and Vander Auwera (/1)
and Watson (/2) and adopted the expression

FC= {1 +ARJ(J + 1) + AL[J(J + 1)]*}? (3)
for the Q-branch transitions and
FPR= {1+ ARm + AL m? + A0%m* )2 (4)

for the P- and R-branch transitions. Here m has the usual meaning of —J" for P-
branch transitions and J” + 1 for the R-branch transitions. Since F is given as the
square of a real function, it can never assume negative values although it can go
through zero at some value of m or J.

The Honl-London terms for A/ = 0 transitions are given by

Sg = (m? — )/ |m|
for P- and R-branch transitions and
Sk = (2J + DP/JJ + D]

for O-branch transitions. For A/ = %1 transitions, they are given by

Sg = 1(Im] = IAl = 1)(Im| — 1Al)/|m|
for P-branch transitions,

Sg = $(Im| + AL+ D)([m]| + [Al)/1m]
for R-branch transitions. and

Sg = Y(J+ 1AL+ 1)(J = 1ADN2T + D/[J(JT + 1)]

TABLE 11

Parameters Used in the Present Analysis

Percent Isotopic abundance for 'H’C“N = 0.98523
Q.(298 K) = 1.0676
for v,v,vy = 000 010 020 030
(298 K) = 140.45 140.11 139.81 139.54




424 MAKIL QUAPP, AND KLEE

for Q-branch transitions. For the above equations / is always /”, and Al = [' — /"

The one term in Eq. (1) that is usually omitted is the S, term because it has the
value 1 for transitions from the ground state. However, for hot bands, it is important
to include the S, term. Our S, term is roughly equivalent to the N2 term of Weber ef
al. (5). For those not familiar with this term, a short derivation for nondegenerate
vibrations is given in Appendix A. Since the form of the contribution to S, is different
for nondegenerate vibrational modes and for doubly degenerate modes, one can write
it as the product of two terms, L5 for the nondegenerate vibrations (v, and »;) and
L, for the degenerate vibrational mode (»,).

We then have for a linear triatomic molecule such as HCN

S, = Lzl
where
Ly = (v, + Av)l(vs + Avy) !/ (v, 1oy A TAv,!) (5)

with both v, and v; taking the smaller of the upper and lower state values.
The L, term takes a different form according to whether Av, is even or odd. When
Av; is even (parallel bands),

Ly =[4(vy + 1+ Av))! [ 3 (v, — [ + Avy))Y/
{[4(v + DI (v = DI L (ALY (6)

where Av, is always positive and v, is the smaller of v5 or v5. When Av; is odd
(perpendicular bands),

L2 = [%(U2+[+ sz - l)]‘[%(vg -1+ sz - 1)]‘[02 + IAl + sz + 1]/
{&l3(v2 + DINE (v = DI 3(Av; — D]P[Av, + 11}, (7)

where Avp, is always positive, v, is the smaller of v5 and v, and g, = 2 except that g,
= 1 if either /' or /" is 0. If v, = v5, then / = /" and A/ = /" — [, otherwise / = /" and
Al=T-1/.

The g, term is only needed for calculating rovibrational intensities. It takes into
account the restriction that, when one / is zero, only one set of transitions to or from
a given vibrational level is allowed, either a Q branch (if the other level is an flevel)
or else P and R branches (if the other level is an e level), and two sets of transitions
are allowed for all other cases. The sum of the line intensities is given by Eq. (7) with
the g, term removed. The g, term is not needed in the absence of strong Q-branch
transitions, i.e., for parallel bands (when Auv, is an even integer). Some workers might
prefer to include the g, in the Honl-London term, Sk, as was done in Ref. (4).

ANALYSIS OF THE DATA

The intensity of each rovibrational line was determined by making a nonlinear
least-squares fit of the line profile. Figure 1 shows an example of a typical line with
the deviations from a least-squares fit indicated as a dashed line. Two different computer
programs were used to determine the line intensities: one was a new version of the
program used to measure the intensities and linewidths of NO (13), and the other
was a program developed by Johns and used extensively in his intensity measurements
on CO, (11, 14), among other studies. Both programs gave nearly identical results
on those lines where a comparison was made, which includes most of the lines of the
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FIG. | An, example of the fit of the line profile for the ((6) line of the 03Y0-022%0 transition of HCN.
The solid line indicates the observed intensity and the dashed line indicates the observed minus calculated
intensity. Note that the intensity scale for the dashed line is three times the scale for the solid line.

v; and 3w, band systems. After comparing the two programs to make certain that they
agreed, the program by Johns was preferred because of the many convenient features
that it offered, including a more accurate allowance for the instrumental lineshape
function for Founer transform spectra.

Most of the measurements reported here were made on spectra for which the trans-
mission at the peak of the absorption line was greater than 30%. If the peak absorption
is too great, the intensity measurement is more sensitive to systematic errors in locating
the zero percent transmission line. Such errors are very hard to estimate in FTS spectra.
Of course, very weak lines have a smaller signal-to-noise ratio, but that source of error
is easy to estimate from the least-squares fit of the line profile.

Another hidden source of error is the occasional coincidence of other lines with the
line being measured. Whenever a line was found to be too strong by more than the
estimated error, judged by the fit of the other lines, the intensity of that line was given
a weight of zero in the least-squares fit used to determine the band intensity and the
Herman-Wallis constants. In most cases it was possible to identify an interfering
transition. Such overlaps could only cause a line to appear to be too strong; unusually
weak lines were retained in the fit as they were assumed to be within the range of
experimental error. Whenever nearby transitions might affect the measurement of a
given line, those transitions were included in the least-squares fit of the spectrum,
provided they were not too strong or too close to the line of interest. Lines were not
measured if they were too near to other transitions.

For lines that are pressure broadened, a rather high percentage of the intensity is
in the wings of the line and is rather difficuit to measure. For that reason, it is important
to fit the lineshape to a Voigt profile with the correct pressure-broadened width, The
present measurements take the lineshape into account and also make an allowance
for the small amount of instrumental distortion of the measured lineshape. Other
things, such as signal-to-noise, being equal, the most accurate measurements are those
made at pressures below 100 Pa because the lineshape is close to a Gaussian shape
which has minimal intensity in the wings. The lower-pressure measurements also
avoid the possibility of complications arising from collisional narrowing which was
not included in the lineshape analysis.

Many of the measurements were made at pressures low enough to ignore the pressure
broadening, nevertheless the effect of pressure broadening was estimated for all the



426 MAKI, QUAPP, AND KLEE

measurements by using the self-broadening parameters given by Pine and Looney
(15). When this work was begun, the pressure broadening was determined from the
highest pressure measurements, 500 Pa (3.8 Torr), but the measurements of Pine and
Looney seem to be more accurate, after allowing for a difference in the definition of
the linewidth.

A few of the spectra had asymmetric lineshapes (notably runs H and 1) either
because of improper adjustment of the optics or because of errors in the phase cor-
rection. In those cases only lines with peak absorbances of less than 50% were used
and particular attention was paid to processing each line in the same way and with
the same lineshape, depending on the rotational quantum number, J. With these
precautions the major effect of asymmetric lineshapes will be to produce errors in the
absolute intensity assigned to the transitions. For that reason, we believe that the
absolute values of the transition dipoles for the 4600 cm™! region could be in error
by 20% or more, even though we believe that the relative transition dipoles, comparing
the ground state transitions with the hot bands, are gquite accurate.

In addition to affecting the value determined for the transition dipole of the hot
bands, as discussed ecarlier, the uncertainty in the temperature of the measurements
will affect the value determined for the quadratic Herman-Wallis constants, 4,. We
have shown by trial calculation that as a general rule an uncertainty in the temperature
of =1 K will result in an uncertainty in the 4% term of +0.15 X 107*, This magnitude
of error due to temperature uncertainty is about equal to the statistically determined
uncertainty in most cases. As a general rule one does not expect that the 4% terms
should be affected by temperature uncertainties, but we have found that for some
cases the temperature uncertainty will also affect the 47% terms by 0.5 X 107, which
1s close to the statistically determined uncertainty. To some extent this effect is caused
by an uneven distribution of the measurements between the P and R branches. The
effect of a temperature error will be different for each band, depending on the distri-
bution of the measurements.

RESULTS
Hot-Band Intensities

Table II gives the values for certain parameters that were used in the calculation of
the transition dipoles. The isotopic abundances were taken from Refs. (16-18). The
vibrational partition function was calculated by summing the Boltzmann population
of the vibrational energy levels. The rotational partition functions were calculated by
applying the equations given by McDowell ( /9). The different vibrational states have
slightly different rotational partition functions because of the small differences in the
rotational constants.

Tables 111 and IV give the results of the present intensity measurements. As shown
by the tables, when the L, term is included in the analysis, the transition dipoles are
nearly the same for all the transitions that involve the same quantum number changes.
One can see, however, that there seem to be small changes dependent on the lower
state involved. Small changes would not be surprising because the higher terms in the
dipole moment expansion have been ignored. On the other hand, it is possible that
the apparent differences are experimental artifacts.

The present treatment also ignores the effects of any interactions among different
vibrational states. Coriolis interactions should not affect the vibrational transition
dipole, but purely vibrational interactions, sometimes called Fermi resonances, will
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TABLE 11

Vibrational Transition Dipoles and Herman~Wallis Constants
for Some Perpendicular Bands of H'*)C'*N

Transition Vo L, [ul A AT A2 Calc. A3
viviivi-vivitvi  (em™) debye® x10* x10* x10¢ x10¢

01'0-00% 711.980 1 0.189(1)° 6.73(36) 0.26(3) -0.19(2) -0.00(0)
02°0-01'0 699.434 1 0.183(5) 18.87(19) 4.98(2) -5.35(2) -5.30(2)
02*0-01'0 714550 1 0.189(4) 11.3(3) -4.83(2)  4.11(2) 3.81(6)
02%0-01'0 714550 1 0.183(4) 9.17(46) 0.26(3) 0.05(3) 0.00(0)
03 0-02% 702.037 2 0.150(2) -4.1(12)  4.20(14) -2.56(3) -2.594(4)
03'0-02%0 686.921 0.5 0.188(1) 12.3) -1.5(2) -4.16(18)  -3.67(1)
03''0-02% 686.921 0.5 0.18%1) 26.1(18)  4.06(15) 5.17(10)  5.25(7)
03*0-02%0 717.231 1.5 0.196(1) 17.3(18)  -0.89(15) 1.36(15) 1.08(1)
03*0-02%0 717.231 1.5 0.19%D 15.(3) -1.30(18)  0.90(21) 1.364(8)

04°0-03'0  689.509 2 0.185(3) 82(12)  -7.94(4)
04%0-03'0  704.725 1.5 0.196(5) 6.3(17)  6.7(2)
0470-03'0  704.725 1.5 0.188(7) -1.4(26)  -1.186(9)
0490—03°0 720021 2 0.201(5) 2.1(19)  0.852(2)
03'0-00°0 2113.450 1 0.003263(1) 47.4(2) 0.06(2) -0.30¢4) -0.23(d)
04°0-01'0  2090.979 2  0.00320(1) 8.1122)  -8.19(2)

0420-01'0 2106196 1.5 0.00330(2) -22.0(16) -9.37(16) 6.92(16)  7.93(29)
0470-01'0  2106.196 1.5 0.00327(1) -43.9(20) 0.54(11) 0.0834) -0.04(1)
05'0-02°0 2083701 6 0.00323(2) -53.(3) 233) -2.3(9) 2.60(2)
05%0-020 2068.584 1.5 0.00316(5) -28.(12) -3.6(12) -5.2(7) -4.629)
05"0-02%0 2068.584 1.5 0.00307(4) -52.(11) 5.88) 6.3(23)  2.3(2)
05%0—02%0  2099.143 0.00324(3)  -16.(6) 2.865) 2107 2.04D
05%0—-02%0  2099.143 0.00326(4) -20.9)  -2.7(6)  2.907)  3.20(6)

3
3
10°0—01'0  2599.497 1 0.0226(1) -40.4(1)  0.66(1) 0.33(1)  0.00(0)
1'0-02°0  2592.749 1 0.0226(1) -68.3(14) 5.20(12) -4.74(10) -5.25(2)
11%0-020  2577.632 1 0.0232(1) -37.8(9)  —4.55(10) 0.64(10) -0.001(1)
110-0220  2577.632 1 0.0232(1) -43.19)  0.798) 4.28(24)  3.35(15)
12°0-03'0  2570.859 2 0.0228(1) -46.98)  2.1I(11) -2.72(11) -2.692(4)
12%0-03'0  2585.758 0.5 0.0220(1) -50.7(24) -7.76(23) 6.31(19)  5.35(6)
12%0-03'0  2585.758 0.5 0.0218(1) -60.827) 4.22(36) -4.60(30) -3.58(1)
12%0-030  2555.447 1.5 0.02332) -80.(10) -3.1¢6)  1.7(20) 1.33(1)
12%0-03°0  2555.447 1.5 0.0236(2) -57.(7) 2.3(5)  0.6(16) 1.09(2)

* 1 debye = 3.335 6410 Cm. .

® The uncertainty in the last digits is given in parentheses. The uncertainty was determined from a
least squares fit of the individual line intensities in a given band and do not reflect absolute
uncertainties in the intensities.

clearly have an effect on the intensity through a mixing of the vibrational states. Such
vibrational mixing will be different for the levels involved in the hot-band transitions.
HCN was chosen for this study because its vibrational states can be fairly well described
without invoking the strong Fermi resonance that plagues so many simple molecules
such as CO;. It is quite clear that Egs. (6) and (7) can not be applied to CO, or N,O
unless the effects of Fermi resonance are taken into account.

Herman-Wallis Constants

Tables III and 1V also give the Herman-Wallis terms for the different transitions.
For the vibrationally degenerate levels that are split into e and [levels, the vibrational
transition dipole is expected to be the same, while the Herman-Wallis constants will
generally be different because the /-type resonance will redistribute the intensity of
the high-J rotational transitions and will affect the ¢ and flevels differently. This was
shown 1n earlier work on HCN (20) and Watson has given expressions for the con-
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TABLE IV

Vibrational Transition Dipoles and Herman-Wallis Constants
for Some Parallel Bands of H'?)C"*N

Transition ¥ L, |u] A AR A3
vivifvi-vivitve  (em™) debye* x10¢ x 10 x 10!

02°0-00°0  1411.413
03'0-01'0  1401.471
030-01'0  1401.471
04°0-02°0  1391.555
0420-02°0  1391.646
04%0-0220  1391.646

04°0—-000  2802.959
050-01'0  2783.135
050010 2783.135

12°0-00°0  4684.310
13'0-01'0  4654.893
13"0-01'0  4654.893
14°0-02°  4625.549
14%0-02°0  4625.381

20°0-00°0  6519.610
210-01'0  6480.784
21"0-01'0  6480.784
22°0-02°  6441.535
22%0-02%0  6442.097
22%0-02°0  6442.097
20°1-00°1  6488.736

0.0496(2)* -18.3(10)  0.1(1)

0.04712)  -12.7(8) 0.40(7) 13.4(10)
0.0475(4)  -26.2(11)  0.33(11) -5.2(9)
0.0489(2) -20.5(8)  -0.36(8)

0.0486(2)  -23.6(13)  0.36(10)

0.0488(2) -21.4(10) -0.01(11)

0.000570(5) -323.(16) [0.0
0.000561(2) -87.(8)° [0.0}
0.000565(3) -81.(4) [0.0]

0.000795(5) 87.6(11) -0.80(9)
0.000784(3) 98.5(15) -1.33(11)
0.000786(4) 74.9(17) -1.35(13)
0.000788(7) 96.9(74) -2.1(7)
0.000781(12) 85.9(68) -1.4(9)

0.00881(12) -4.8(4) 0.73(13)
0.00889(4)  -4.1(6) 0.68(8)  3.8(6)
0.00901(4)  -5.2(4) 0.45(6)  0.9(5)
0.00892(14) -4.520) -0.09(18)
0.00886(15) -3.9(12)  0.45(12)
0.00888(12) -2.8(9)  0.22(9)

0.0087(3) [4.01¢ [0.0]

—_ et s e WA RN WL — WWEA NN

* | debye = 3.335 64x10% Cm.

® The uncertainty in the last digits is given in parentheses. The uncertainty was determined from a
least squares fit of the individual line intensities in a given band and do not reflect absolute
uncertainties in the intensities.

¢ For 05"0—01'90, A}® = -2.740.3 %10 was needed in order to allow for the effect of resonance
with 2i,+»;.

4 Values enclosed in square brackets were fixed.

tributions of /-type resonance to the Herman-Wallis terms (217). Figure 2 shows a
plot of the measured transition dipole for the 11'0-02°) and 11'0-0220 transitions
when the Herman-Wallis term is left out. Alternatively one could consider the y-axis
to represent the combined term |uF'/?|.

Maki et al. (20) showed that /-type resonance causes the high-J transitions of the
P and R branch of 02°1-01'¢0 to be stronger than the high-J transitions of the P and
R branch of 022¢1-01'<0, whereas the P- and R-branch transitions of 022/1-01/0
are unaffected. The Q-branch transitions show just the opposite effect. The same prin-
ciple applies to the 020-010 transitions shown in Fig. 3 as well as the 110-020 tran-
sitions shown in Fig. 2.

Watson (2/) has given a simpler formula for characterizing this effect. When the
Fermi resonant terms are eliminated from Watson’s formula, one has for 02°0-01'0
AY = —A5R = —g/A, where g is the normal /-type resonance constant (0.007483
cm™') and A is the separation of the 0220 and 02°0 states (15.116 cm™'). The same
numbers but with opposite sign apply to the 022°0~01'0 transitions. Watson’s formula
predicts that the quadratic Herman-Wallis constant will be 0.000495 with the appro-
priate sign. This is very close to the values given in Table III. The same arguments
with the same signs will apply to the 11'0-02°0 and 11'0-022¢0 transitions. In
both these cases one would have expected the Herman-Wallis quadratic terms to
be zero for the transitions involving the 022/0 state. To the extent that those terms
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FIG. 2. The transition dipole for the 110-02% transitions (O), for the { [*0-02?%) transitions (X}, and
for the 11Y0-02%0 transitions (+) as determined by applying Eq. (1) with F; fixed at the value 1.0: that is
to say, no Herman-Wallis constants were applied to the data.

are not zero, they must represent some other effect that probably will also apply
to the 0220 state.

In both of the examples cited above the sum of the 45% terms does not equal zero,
but rather comes close to the value found for the A5® term for transitions involving
the 02270 state. This residual contribution to the Herman—Wallis constant must come
from some other interaction, most likely a Coriolis interaction with more distant
energy levels.

The situation is slightly more complicated for the transitions involving the 04°0
and 0420 states because the /-type resonance also involves the third state, 0440, although
that state is more distant and therefore it affects the other two states only weakly. As
a first approximation one can apply Watson’s formula to get 4 = —4%f = —q/A =
—0.00105 (for 04°0-01'0) because the effective value for the /-type resonance constant,
g, is twice as large for 4»,. Another complication that affects our ability to measure
the transition dipole and Herman-Wallis constants for transitions involving the 04°0
level is the Coriolis interaction with the 01'1 state as described by Maki et al. (20).
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FIG. 3. Square of the transition dipole (in units of debye?) for the P- and R-branch transitions of the
022¢0-01'<0 band of HCN. The solid line indicates the values calculated without any Herman-Wallis terms.
but with the /-type resonance taken into account. The circles (O} indicate the measured values of u*F; see
Eq. (1).
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For the unperturbed transitions, 04290-01'0, the Herman-Wallis terms given in Table
III are in fair agreement with the value 0.00105 but more exact intensity calculations
show that higher-order terms are needed to get better agreement.

The effect of /-type resonance is also important for determining the quadratic Her-
man-Wallis terms in many of the other transitions given in Tables Il and IV, but
when both the upper and lower states are involved in the /-type resonance, Watson’s
simple formula does not apply.

We have used an exact calculation of the /-type resonance interaction to obtain the
intensities and effective Herman~Wallis constants for the O-branch transitions for all
the perpendicular transitions measured in this work. This calculation takes into account
the mixing of the different states by using the eigenvectors from the /-type resonance
calculation to determine the intensity of each transition. Trial fits of these calculated
transition intensities to find effective Herman~Wallis constants shows that the fits are
somewhat sensitive to the range of J-values used in the fits, as well as the maximum
power of J(J + 1) used in the fit. As an example, when the calculated intensities for
the 04290-01"/0 transitions are fit to a Herman-Wallis function, Eq. {3), that involves
only the A% term, the value of that term is 7.93 X 10 * and the calculated intensities
are only fit with two-digit accuracy, but when both the 4% and 4% terms are used
then A€ = 10.7 X 107* and all the calculated intensities are fit with four-digit accuracy.

In order to obtain a fair comparison between the calculated and measured Herman-
Wallis constants, we used the calculated transition intensities for the same range of
J-values as were measured and we fit them in the program used to fit the measured
values. The values of 4 determined from these calculated intensities are given in the
last column of Table III for comparison with the measured values. The calculated
transition intensities were not fit perfectly by the single Herman-Wallis constant,
A%, and the uncertainties obtained from these fits of the calculated intensities reflect
the need for adding higher-order effective Herman-Wallis terms.

Figure 3 gives a convincing demonstration of the accuracy of the /-type resonance
calculation in matching the observed m-dependence of the intensity. In Fig. 3 the
entire m-dependence shown by the solid curve is given by the /-type resonance and
was calculated by the same program that gave the calculated 4% values in the last
column of Table III.

Some of the intensity measurements given in Table 1l involve transitions that begin
in rather high energy levels even though all the measurements were made at room
temperature. For the very highest energy levels in each set of measurements, the lines
were very weak due to the unfavorable Boltzmann population factor and so in some
cases only the Q-branch intensities were measured because they are generally twice as
strong as the P- and R-branch lines. In those cases of high lower-state energy levels,
the measured transitions only extended to J = 12 to 15, J-levels slightly above the
intensity maximum, Consequently, the uncertainty in the Herman-Wallis constant
is rather large.

Error Limits

The uncertainties given in Tables 11l and 1V are the uncertainties given by the least-
squares fit of the measured linestrengths and do not reflect any uncertainty in the
temperature or in the pressure-path length product used in the analysis.

The temperature uncertainty will add an uncertainty of £0.5 X 107 to the A4{%
terms and an uncertainty of about +0.2 X 10 ~*to the other Herman-Wallis constants.
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The temperature uncertainty will also add an uncertainty of about 2% to the transition
dipoles for the hot bands originating from the 3», levels, about 1.2% to the transition
dipoles for the hot bands originating from the 2», levels, and less than 1% to the
uncertainties for the other transitions.

The pressure uncertainty does not affect the determination of the Herman-Wallis
constants but dominates the uncertainty in the absolute values for the transition dipoles.
The ratios of the hot-band transition dipoles to the ground state transition dipoles are
probably accurate to within about 3%. In many cases that means that the measured
change in the transition dipoles with lower state energy is not significant. The absolute
uncertainties in the transition dipoles are quite large, about 10% in the best case and
20% for the 4800 cm™! region.

DISCUSSION

By looking at a number of different hot bands illustrating most of the different cases
possible through Av, = 4, we have shown that Eqgs. (6) and (7) are necessary for
understanding the intensity of hot bands. If the L, term is left out of the analysis, the
transition dipole of many hot bands would appear to be quite different from the
ground state transition dipole. For example, the intensity of the 05'0-02°0 transitions
would appear to be too great by a factor of 6 (compared to the intensity of transitions
from the ground state, after correcting for the Boltzmann population ) and the intensity
of the 13'0-01'0 transitions would seem to be too great by a factor of 2.

The present measurements show that, when the L, term is included in the analysis,
the transition dipole is only changed by a few percent in going from transitions from
the ground state to transitions from other low lying vibrational states. Considering
that most other rovibrational constants ( such as B, or AB, ) and even the dipole moment
itself change by a few percent, such small changes in the transition dipole are not
unexpected, provided strong resonances are absent.

For those bands that are not strongly affected by vibrational or Fermi resonances,
the L,;L, terms are essential if one wishes to predict high temperature spectra from
low temperature measurements. Such terms are also essential if one wishes to under-
stand the changes in the transition dipole as a function of the lower state involved in
a transition.

This work demonstrates the importance of /-type resonance in determining the
Herman-Wallis effect. In the case of HCN, where vibrational resonances are weak
enough to be ignored, both 4% and 4% are primarily determined by the effect of /-
type resonance. Consequently, a program for calculating intensities of transitions that
includes the effects of /-type resonance in the calculation will give very good agreement
with the observed spectrum of HCN even if no additional Herman-Wallis contribution
is included. This is easily seen in Fig. 3 where the calculated intensity matches the
measured intensity even though no Herman-Wallis terms were used in the calculation
of the intensity. However, the /-type resonance does not contribute significantly to
the A4 term which must come from other weak resonances.

APPENDIX A

This derivation of Egs. (5)—(7) follows the notation and expressions used in Section
3-5 of Ref. (22), to which the reader should refer. If the electric dipole is expanded
as a power series in the normal coordinates, one has

#= o+ 2 wnOn + 2 2 am@nOm + 2 2 20 tamiPnQmQr + higher terms, (Al)

a om n m [
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where u is a vector quantity and u,, = /90, pm = 0°1/3Q,80,,, etc. Now assume
that the vibrational wave function ¢, is a product of harmonic oscillator functions,
then the intensity of a given absorption band is proportional to the square of

f ¢:’#¢v”d‘rv = Mo f \b:"l/v”dTv + Z Hy f w:’Qn’#v”dTv

+ Z z Mrm f ‘p:"Qan\bu”dTu + oo (AZ)

The right-hand side of Eq. (A2) can be replaced by product wavefunctions in the
normal coordinates for which the nonvanishing nondegenerate terms may be found
in Appendix III of Ref. (22).

To evaluate the L5 term in Eq. (5), we only need to consider the nondegenerate
vibrations. First we drop the term in gy, because it does not contribute to the infrared
absorption, and if we only use the two nondegenerate vibrational fundamentals, v,
and »3, then Eq. (A2) becomes

f Viupedr, = u‘[H f Hf(Qs)%u(Q;)in] f VE(0) O 01)dOs

i#1

[ M,(Q,-)W(Q,.)d@] [ vr(on0w0ndo;

+ M3[
i#3

+M1|[Hf¢3’(Qi)¢u"(Qi)dQ1]flﬁ:'(Ql)Q%%"(Ql)dQl

i#1

1 f w:f<Qi)¢v,f(Qf)dQ,»} f VE(0) Orter(01)dO,

+ ﬂlS[
i#1.3

II f YE(Q W (0:)dO;

i#3

X f V() QW (05)dQs + Mss[

Xftﬁ?‘f(Qs)Q%ybu'f(Qz)dQs + higher terms.  (A3)

If only the first nonvanishing term is considered, then the right-hand side of Eq.
(A3) becomes proportional to

(v, + 1)1/2, forv, = v, + 1
[(v, + (v, +2)]'/2, for v, - v; + 2
[(v, + 1) (v, + 2)(v, + 3)]"2, forv, = v, +3
etc.
or
[(v + Avy)!/v 1%

To normalize this term so that the factor is always 1 if v; = 0, it is necessary to divide
by Av, .

The intensity of a given transition is proportional to the square of Eq. (A2).
Consequently, the ratio of the intensity of the hot-band transition from the vi-
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brationally excited state, (v;, v3), to the intensity from the ground state will be
given by

(Ul + Avl)!(v3 + AU3)!/(AU]!U[!AU3!U3!), (A4)

which is the same as Eq. (5) given earlier. The extension to molecules with more
nondegenerate vibrations is obvious.

The L, term, Eqgs. (6) and (7), can be derived in the same way by making use of
the equations for doubly degenerate modes, such as those given in the paper by Moffitt
and Liehr (23). Alternatively, one can use ladder operators (sometimes called raising
and lowering operators) for doubly degenerate vibrations ( 24).

The limitations of this approach are the assumption that the higher-order terms
may be ignored and the assumption that a real vibrational state can be described by
harmonic oscillator wavefunctions according to a unique vibrational assignment. In
real life, each vibrational state will be a mixture of several vibrational states, even
though one assignment can describe the major contribution to the true vibrational
state. These limitations will probably become more important as one goes to the
higher vibrational states or to higher hot bands.
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