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Abstract

The reaction path is an important concept of theoretical chemistry. We employ the definition of the Newton trajectory (NT). An NT

follows a curve where the gradient is always a pointer to a fixed direction. Usually, a whole family of NTs connects two adjacent stationary

points of an index difference of one. We will name such a family a reaction channel. The border between two reaction channels is formed by

singular NTs which cross valley-ridge inflection (VRI) points. Examples are given with the Müller–Brown potential, and the potential

energy surfaces of water and formaldehyde.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The concept of the minimum energy path (MEP) or

reaction path (RP) of an adiabatic potential energy surface

(PES) is the usual approach to the theoretical kinetics of

larger chemical systems [1,2]. It is roughly defined as a line

in coordinate space, which connects two minima by passing

the saddle point (SP), the transition structure of a PES. The

energy of the SP is assumed to be the highest value tracing

along the RP. It is the minimal energy a reaction needs to

take place.

Reaction theories are based either implicitly (transition

state theory), or explicitly (variational transition state theory)

on the knowledge of the RP [2]. These theories require local

information about the PES along the RP only. They

circumvent the dimension problem for medium-sized or

large molecules: it is impossible to fully calculate their PES.

The starting point is a geometrically defined pathway

which may serve as an RP. Geometrically defined means that

only properties of the PES are taken into account, and that no

dynamic behavior of the molecule is taken into consideration.

Any parameterization s of the RP xðsÞ ¼ ðx1ðsÞ;…; xnðsÞÞT is

called reaction coordinate. We use here the distinguished

or driven coordinate method [3,4] in the modern form of RGF

[5,6], also called Newton trajectory (NT).

Usually, in one’s imagination the MEP is situated in a

valley of the PES. But how the RP ascends to the SP is an

uncertainty of the general RP definition. That opens the

possibility to use a full family of similar trajectories to

define a reaction channel: it may be formed by ‘all’ lines of a

special character which connect, for example, the reactant

minimum with one SP of interest.

In this article, we use the definition of Newton

trajectories (NT) [5,6] to define reaction channels [7]. The

older definition of an RP by gradient descent, the intrinsic

reaction coordinate (IRC) of Fukui [8], or more general the

steepest descent (SD), the ‘meta-IRC’ [9], opens the

possibility to divide the configuration space into basins of

attraction, or catchment basins [1,10]. They are defined as

the set of points that will flow to it through gradient descent.

The reaction channels of the NTs defined in this article are

another classification scheme for the configuration space.

Thus, NTs are curves with an alternate property, in

comparison to SD curves.

Since there are different SPs around a minimum, different

reaction channels have to exist. The question emerges, what

are the borders between the channels? The answer is: every

border is formed by NTs leading to valley-ridge inflection

(VRI) points, so-called singular NTs.
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The article is organized as follows. Section 2 repeats

known properties of a PES and its valley-ridge inflection

(VRI) points. With Section 3 the main part begins, it gives

some properties of Newton trajectories known up to date.

Section 4 extends the study of extraneous singularities like

VRIs. Section 5 develops the definition of reaction channels

of a PES and the relation of NTs to that important property.

It finishes with some examples. In Section 6 we give some

conclusions. Appendix A contains the used formulas of the

model PESs.

2. Potential energy surface

The adiabatic PES of the molecular system of obser-

vation is the basis of our treatment. Using the Born–

Oppenheimer approximation, we assume that the movements

of the electrons and of the atom kernels are decoupled. The

PES is the sum of the Coulomb-repulsion of the atom

kernels and the Schrödinger equation of the electrons

HC ¼ EC. The explicit calculation of the energy E is not

of interest, here. We assume the PES is given by a scalar

function of the coordinates of the molecule at every point of

interest:

Definition 1. Let K be an open subset of Rn; and let

x ¼ ðx1;…; xnÞ [ K: The function EðxÞ with K! R is an

n-dimensional potential energy surface (PES). K is the

configuration space of the PES. The derivative G : K! Rn

with

GðxÞ ¼ dEðxÞ ¼
›E

›x1

ðxÞ;…;
›E

›xn

ðxÞ

� �T

is the gradient, and the Hessian matrix HðxÞ [ Rn£n is

HðxÞ ¼ d2EðxÞ ¼
›2E

›xi›xj

ðxÞ

 !n

i;j¼1

The configuration space of a molecule is restricted. We

assume at least a twofold differentiability of the PES for

practical reasons—for the use of the diverse applications.

Definition 2. A point x [ K is nondegenerate if

detHðxÞ – 0: On the contrary case it is degenerate. The

index of a nondegenerate point x [ K is the number of

negative eigenvalues of HðxÞ: We write indðxÞ; as well as

ind2ðxÞ :¼ indðxÞðmod2Þ:

Modulo 2 means the remainder left when indðxÞ is divided

by 2. The value ind2ðxÞ is equivalent to the sign of the

determinant of the Hessian

detHðxÞ . 0 , ind2ðxÞ ¼ 0 and

det HðxÞ , 0 , ind2ðxÞ ¼ 1
ð1Þ

Definition 3. A point x0 [ K with Gðx0Þ ¼ 0 is named

stationary point (StP). EssðKÞ is the set of all stationary

points in K. A nondegenerate stationary point, x0; is:

† minimum if indðx0Þ ¼ 0; or

† maximum if indðx0Þ ¼ n; or

† saddle point of index i if indðx0Þ ¼ i; 0 , i , n:

We assume that no stationary point is degenerate, i.e. that

for all x [ K it holds the regularity condition

kGðxÞkþ ldetHðxÞl . 0: ð2Þ

This convention will frequently occur in the sequel.

Nondegenerate stationary points are isolated [11]. A special

subset of degenerate points can be interpreted to be the

branching points of RPs.

Definition 4. A valley-ridge-inflection point (VRI) is

located where the gradient is orthogonal to a zero

eigenvector of the Hessian [12]. The subset of such points

is ExtðKÞ:

At a VRI, the gradient does not lie in the kernel of the

Hessian, and an augmented Hessian with gradient does not

lift the defect of the rank

ExtðKÞ ¼ {x [ Krank½HðxÞ;GðxÞ� , n}: ð3Þ

The bracket means matrix augmentation: ½HðxÞ;GðxÞ� [
Rn£ðnþ1Þ: Note that a VRI point needs not be symmetric [13].

VRI points are independent of any curve definition.

2.1. Projection operator

It is Sn21 ¼ {x [ Rnlkxk ¼ 1} the unit sphere in Rn:

Elements from S1—the unit circle—are given as angles with

point ð1; 0Þ [ S1 to be 08.

We choose a column vector r [ Sn21 for a projection. It

is a unit vector. The transposed vector rT is a row vector.

The dimension of r is ðn £ 1Þ where that of rT is ð1 £ nÞ: We

form the dyadic product Dr ¼ r·rT which is an ðn £ nÞ

matrix. Dr projects with r

Drr ¼ ðr·rT Þ·r ¼ rðrT ·rÞ ¼ r ð4Þ

where we use the unit length of r in the scalar product. The

projector which projects orthogonally to r is with the unit

matrix I

Pr ¼ I 2Dr: ð5Þ

3. RGF, Newton trajectories

It was proposed to choose a driving coordinate along a

valley, to go a step in this direction, and to perform an

energy optimization of the residual coordinates [3].
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Recently, the method was transformed into a new

mathematical form to RGF [5,6,14]. The concept is that a

selected gradient direction is fixed along the curve xðsÞ

GðxðsÞÞ=kGðxðsÞÞk ¼ r; ð6Þ

where r is the unit vector of the search direction. The search

direction may correspond to an assumed start direction of a

chemical reaction. Or, it may be the direction between the

two minima of reactant and product, or the direction

between the reactant and the assumed SP. The property (6)

is realizable by a projection of the gradient employing Pr of

Eq. (5). We pose

PrGðxðsÞÞ ¼ 0: ð7Þ

Pr is a constant matrix of rank n 2 1: It is the kernel

kerðPrÞ ¼ lin{r}; the linear space of r; and it is the image

ImðPrÞ ¼ lin{r}’; the orthogonal space on r: Pr projects in

direction of lin{r}’:

Definition 5. The map R : Rn £ Sn21 ! Rn21; with

Rðx; rÞ ¼ PrGðxÞ will be called the reduced gradient, and

r [ Sn21 will be called search direction. The equation

Rðx; �rÞ ¼ 0 ð8Þ

is for any fixed �r [ Sn21 the reduced gradient equation to

the search direction �r:

On K\EssðKÞ a differentiable map
�
r : Rn ! Sn21;

�
rðxÞ :¼ GðxÞ=kGðxÞk exists, with Rðx;

�
rðxÞÞ ¼ 0:

Definition 6. The map
�
r is named trajectory map [15]

Based on the explicit definition, the predictor–corrector

method of the reduced gradient following (RGF) [6] traces a

curve (Eq. (7)) along its tangential vector by the derivative

to obtain the tangent x0

0 ¼
d

ds
½PrGðxðsÞÞ� ¼ Pr

dGðxðsÞÞ

ds
¼ PrHðxðsÞÞx0ðsÞ: ð9Þ

The RGF is a simple but effective procedure in order to

determine all types of StPs [5]. In the general good-natured

case, each RGF curve passes each StP. A whole family of

RGF curves connects the extrema if we vary the search

direction r [16], see Fig. 1.

Definition 7. Let r [ Sn21: We will name Newton trajectory

(NT) in K to the direction r the set

TrðKÞ :¼ {x [ KlGðxÞ ¼ rkGðxÞk}: ð10Þ

It is clear that Tr is the set of solutions of Eq.(8). Or, in

other words, it fulfills Eq.(6): the gradient points into

the same direction. For every nonstationary point

x [ K\EssðKÞ the NT is given by the direction of

the gradient. The name NT is coming from another

defining equation of this kind of curves, the so-called

desingularized Newton equation, see Refs. [6,7,13,15],

which is a special form of the well known Newton–

Raphson method.

Proposition 1. [15] It holds

1. x [ EssðKÞ is equivalent that for all r [ Sn21 it is

x [ TrðKÞ; which is also equivalent that for r; s [
Sn21; and r – s it is x [ Tr and x [ Ts;

2. from x [ K\EssðKÞ it follows that x [ TGðxÞ=kGðxÞk
3. from EssðKÞ – Y it follows that TrðKÞ – Y; for all r [

Sn21:

3.1. Branches and components of Newton trajectories

NTs are smooth, parameterizable curves in nonstationary

points, where the rank of the matrix ›xRðx; rÞ ¼ PrHðxÞ is

n 2 1 (i.e. maximal) [18]. It follows from the implicit

function theorem. The condition is fulfilled if the rank of the

augmented Hessian ½H;G� is maximal.

Definition 8. The set ExtðKÞ of Eq. (3) is the set of

extraneous singularities. All points in K, which are neither

in EssðKÞ nor in ExtðKÞ; are named regular.

The characterization of a nondegenerate point uses

properties of the PES; but the characterization of a regular

point uses properties of Newton trajectories. An inflection

point, where the gradient points in direction of the zero

eigenvector, is degenerate, however, in the general case, it is

Fig. 1. A family of Newton trajectories on Müller–Brown (MB) PES [17].
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a regular point of the corresponding NT. If one takes off the

singular points of an NT, one will get a set of smooth,

parameterizable pieces of curves, see Fig. 2. Any such piece

of a curve will be named a branch. The end points of open

branches are the points of the boundary of K or singular

points. The NT of Fig. 2 is partitioned into three

components: I and II are compact sets in the interior of

K, but III is open in K.

Component I contains two StPs, but component II does

not contain any StP.

Preposition 2. [19] Every compact component of a Newton

trajectory, being disjunct to the boundary of K, contains an

even number or no stationary points.

Caution. The word ‘compact’ in the hypothesis is

crucial! Fig. 3 shows the four NTs which cross the VRI

points of the MB potential; the VRIs themselves are given in

Table 1. The figure top right contains a compact component

of an NT with two StPs, and the figure bottom right has a

compact component of an NT which crosses four StPs.

3.2. Branin’s method

The reduced gradient approach shows an analogy to the

mathematical theory of Branin [20], the global Newton

method [15]. It utilizes the adjoint matrix A of the Hessian

matrix H: This is defined as ðð21ÞiþjmijÞ
T where mij is the

minor of H obtained by deletion of the ith row and the jth

column from H; and taking the determinant. The adjoint

matrix satisfies the relation

HA ¼ detðHÞI; ð11Þ

where detðHÞ is the determinant of H; and I is the unit matrix.

The adjoint matrix A is used to define an autonomous system

of differential equations for the curve xðsÞ; where s is a curve

parameter

dxðsÞ

ds
¼ AðxðsÞÞGðxðsÞÞ: ð12Þ

Proposition 3. [6] Solutions of the Branin Eq. (12) are

branches of Newton trajectories.

4. Extraneous singularities

In this section we add a more detailed treatment to the

Definition 4 of VRI points, see Eq.(3). We use results of

Jongen et al. [15] and Diener [19].

On a 2D PES the VRI points are single, isolated points.

Thus, they form a ‘zero-dimensional manifold’. For an

n-dimensional PES the VRI points can be a manifold of

a dimension up to n 2 2: Such manifolds are found, in

the special case of symmetric VRI points, for the PES of

Fig. 2. A Newton trajectory, its branches and components.

Fig. 3. Singular NTs of the MB PES [17] which cross the VRIs.

Corresponding search directions are 66.8058, 61.968, 30.398, 37.678 (from

top left to bottom right).

Table 1

VRI points on MB-PES, and search direction of NTs

Point Direction x y

VRI1 66.8058 20.75002 0.22586

VRI2 61.968 20.98072 20.04753

VRI3 30.398 0.37250 1.26315

VRI4 37.678 0.54859 0.45930
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water by Hirsch et al. [21], for formaldehyde by Quapp

and Melnikov [22], and for C2Hþ
5 by Quapp and

Heidrich [23].

Note. It is a fundamental property that the VRIs are not

isolated points in higher dimensions. In theoretical

chemistry it is practice to report single VRI points, cf.

Ref. [13] and a legion of references therein. However, in

real molecules, these points are part of the high-dimen-

sional manifold of VRI points. The existence of a full

manifold of VRIs includes the question for the meaning of

special points for an RP branching. Thus, again, it seems

that a single curve as RP definition becomes questionable.

Below, we treat a whole family of NTs for a reaction

channel. Thus, we study the topology of a PES. The

discussion again shows that 2D pictures are often fine

examples, but not enough to understand the high-dimen-

sional PESs of real molecules.

A VRI point in two dimensions is characterized by a

1-dimensional kernel of the reduced Hessian PrHðxÞ:

Thus, there are two tangents to the NT at x: For a general

PES it is possible that the rank of PrHðxÞ further reduces.

Such a VRI point can be the carrier of more than two

tangents. The amount of the rank deficit of PrHðxÞ

produces a k-fold singularity, or a k-fold VRI point. The

maximal dimension of the set of VRI points of a special

multiplicity k decreases with the multiplicity. On the PES

of formaldehyde there are already at least two-fold VRI

points [22].

Proposition 4. (Index theorem [19]) Let x1 and x2 be

stationary points connected by a regular branch of a

Newton trajectory. Then it holds

ind2ðx1Þ – ind2ðx2Þ: ð13Þ

A regular branch of a Newton trajectory connects an StP of

an odd index and an StP of an even index. The index

theorem has direct practical use, see Fig. 4. If one

numerically follows the branch of an NT, and one connects

StPs of a ‘false’ index by the procedure then one has a tool

to detect the error. An example of such an error can be found

for the molecular fragmentation of C4H10 in Ref. [24] where

in Fig. 6 the pathways between different StPs are given by

NTs. Some connections are drawn between false index

numbers.

At least one change of the index of a regular NT is given

by an inflection point of the energy profile. Every

continuous connection of two StPs has at least one such

inflection point. The extraneous singularity breaks the index

along an NT by a further odd number (by 1), see Fig. 5: a

second change of the index happens at the VRI point. We

find the index transformations 0–2 and 1–10. Around the

VRI point there are regular branches of neighboring NTs

which connect 0–10 and 1–2, or 0–1 and 10 –2, correspond-

ingly. These trajectories are to grasp by a separation of the

center case at the VRI point.

4.1. Phase portraits

The word creation ‘valley-ridge inflection’ point is

coined by the 2D imagination of a valley branching. Such

a singularity has a phase portrait of saddle type, see

Figs. 6 and 7. The imagination in the n-dimensional case is

Fig. 4. Index theorem. The surface shows two adjacent SPs of index one.

There is no regular branch of an NT connecting the SPs. Between the SPs a

VRI point has to exist. The singular NT is shown which leads to the VRI

point and branches there.

Fig. 5. Index theorem. Typical scheme for the relation of StPs with different index surrounding the VRI point of an NT (center). Side parts: neighboring

regular NTs.
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difficult. For 3D there are three different types: center type

and saddle type, and for the transition between both the cusp

type.

4.2. Example: VRI points along an NT on the PES

of formaldehyde

The PES of formaldehyde is calculated with the restricted

Hartree-Fock method (RHF) and STO-3G basis set. There

are many StPs up to SPs of index 3 [5,25]. The example NT

starts with the global minimum and follows the search

direction of the symmetric bending. The NT leads to an SP

of index 3, see Fig. (8) and Table 2 [26].

Along the NT there are two VRI points.

At step 11 of the predictor for the NT of Fig. 8 the

eigenvalue crosses zero which belongs to the change of the

dihedral angle /HaCOHb. The branching breaks the C2v

symmetry to CS symmetry. Along the branches the dihedral

angle changes under mirror symmetry: rHaC ¼ rHbC and /

HaCO ¼ /HbCO. Fig. 9 is a section of the PES of H2CO

with the VRI point. The y ¼ 0 line corresponds to a small

piece of the NT of Fig. 8. It is fixed at 1.1 Å rCHa
¼ rCHb

;

and the dihedral angle varies between 908 and 2708, and it

is used on the y axis in a scaling where the zero

corresponds to the planar symmetry at 1808. We use

angles aHaCO ¼ aHbCO and rCO at: aHCO ¼ 125 2 i·3 or

rCO ¼ 1.2 þ i·0.03, correspondingly, for parameter i

between 0 and 20 being the x axis. Thus, the angles

aHCO vary between 1258 and 658, while at the same time

the CO-distance varies in 1.2 and 1.8 Å.

At step 16 along the calculated NT of Fig. 8 the

eigenvalue crosses zero which belongs to the change of the

antisymmetric angle. It is shown in Fig. 10. The branching

of this VRI point breaks the C2v symmetry to C2 symmetry.

On the branches the dihedral angle is fixed at 1808, but the

angles /HaCO and /HbCO change in opposite directions.

Fig. 10 shows the region around the VRI point. The distance

rCH is fixed at 1.1 Å, and the x axis is the symmetric change

of the angle aHCO and the distance rCO like in Fig. 9. The

dihedral angle is fixed at 1808. y axis is the symmetry

change of angle aHCO in degree. The y ¼ 0 line corresponds

to a small piece of the NT of Fig. 8.

Figs. 9 and 10 are 2D sections of the 6-dimensional PES of

formaldehyde, and that is why they allow only a restricted

overview of the full PES. Especially, the trend of the changes

of aHCO and rCO is linearized. It is not fully the region which

is covered by the curvilinear NT of Fig. 8. But the pictures

give a good insight into the ‘instability’ of the C2v symmetry

in this region of the PES. Note that along the curve in Fig. 8

the energy strongly monotonously increases from the global

minimum left-above to the SP of index 3 ‘right-below’.

Fig. 7. Phase portraits of NTs around extraneous singularities. From left to

right: center type, cusp type and saddle type.

Fig. 6. Phase portraits of Newton trajectories.

Fig. 8. Newton trajectory on PES of H2CO (RHF STO-3G). The path is

given in reduced configuration space with x ¼ rCO, y ¼ rHC, z ¼ /HCO

and with C2v symmetry. The NT goes from global minimum (top) to an SP

of index 3 (bottom).

Table 2

Two stationary points on PES of H2CO connected by an NT [5]

Index Energy (a.u.) Symmetry rCO (Å) rCH(Å) aHCO (deg.)

0 2112.3544 C2v 1.217 1.101 122.74

3 2112.0122 C2v 1.770 1.095 65.44
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5. Newton channels

With Proposition 1 every StP is on all NTs.

Definition 9. We will say two stationary points are

adjacent if they are connected by a regular branch of

an NT.

Now, we look for all branches which start at a fixed StP,

A: Which part of that family connects A with other StPs? To

any branch beginning at A belongs a direction r [ Sn21:

Thus, since we fix A; we can turn the point of view to Sn21; if

we identify the directions r with their corresponding

branches by the help of the trajectory map
�
r ¼ G=kGk of

Definition 6. We put A for the initial point of all branches,

and identify the search directions of all these NTs with all

points of Sn21: Every branch has three possible kinds of final

point: (i) an StP with an index difference of 1 to A; or (ii) a

VRI point, or (iii) a point of the border of the configuration

space. The VRI points can form pieces of a manifold of a

dimension up to ðn 2 2Þ: Branches which meet the VRI

points are singular branches. They form a 1-codimensional

submanifold on Sn21: It divides the into a disjunct system of

open sets. All points of one of the sets correspond to NTs

which lead to the same StP, say B; or to the border of K:

The border of the sets of Sn21 is formed only from singular

directions.

Definition 10. Regular branches of different Newton

trajectories will be named equivalent if they can be

Fig. 9. PES section of H2CO with VRI. y axis is dihedral angle, x axis is change of rCO and the symmetric aHCO, see text. At VRI point the valley branches

uphill and breaks the C2v symmetry to CS symmetry.

Fig. 10. PES section of H2CO with VRI. y axis is deviation of the symmetry of the angles aHCO, x axis is parameter with rCO and aHCO, see text. At VRI point

the valley branches and breaks the C2v symmetry to C2 symmetry.
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transformed from one to the other without meeting a

singular branch, where the transformation is a continu-

ous variation of the search direction. The corresponding

equivalence class is the Newton channel.

Caution. The word ‘regular’ in the definition is crucial!

The Newton channels starting in one StP are divided by

walls formed by singular branches. The walls are ‘thin’

because they have a lower dimension. If the volume of Sn21

is 1 then the sum of the volumina of all sets of regular

trajectories is 1, however, the volume of the partitions

between the sets is zero. The walls are a separatrix and there

is a disconnection of the sets formed by the regular NTs. An

NT starting at a point that is strictly on a wall will never

leave the border (by definition). The walls lie in the closure

of their corresponding channels. The StP, to which a

channel leads, has to belong to the wall of the channel as

well, thus, to the component of connection of the singular

NTs forming the wall. Singular NTs usually lead to at least

three StPs because they bifurcate at a VRI point.

We interpret the Newton channels as approximations of

reaction channels. Fig. 11 is a model of the region around

reactant A for reactions A ! P1 over the transition structure

B and A ! P2 over the transition structure C, taking place

from the same reactant A to the product systems P1 and P2,

and so on. To every reaction belongs one reaction channel,

and the channels are divided by thin walls. Pathways going

on in the walls meet a bifurcation from which branches lead

aside to the two transition structures. Thus, the singular NTs

of the wall between B and C belong to both SPs. A pathway

of the wall can be calculated: if a regular NT to direction r0

leads from minimum A to SP B, and if a further regular NT

to direction r1 leads from minimum A to SP C, then there

exist a l [ ð0; 1Þ; such that rl ¼ Rl=kRlk belongs to a

singular NT, and Rl ¼ lr0 þ ð1 2 lÞr1 is a convex

combination of r0 and r1; see Fig. 11. One may use an

interval inclusion to find the singular direction rl: However,

numerically following a singular NT is difficult near its VRI

point, because the numerical methods break down [13] (see

also Fig. 17 below).

To every point of the PES belongs an NT. Thus, it is

possible to divide the PES into Newton channels, totally.

All channels are partitioned by thin walls of singular

branches of NTs. Theoretically, there can be channels

without StPs. Theoretically, the system of channels needs

not be simply connected. However, this does not seem to

be of interest for chemical applications. All about 50

StPs of Ref. [5] for formaldehyde are adjacent, in any

kind vice versa, in a net of points. They are calculated

by following all the branches beginning from every StP

into the 12 coordinate directions. It emerges that we can

connect the StPs of a PES by Newton channels in form

of a graph [28].

6. Conclusion

A PES can be represented as a Newton graph: vertices

are the StPs, edges are the Newton channels. With the index

theorem it follows that a Newton graph cannot contain

circles with an odd number of edges. Further, Newton

graphs do not have loops (edges connecting one vertex with

itself).

To any Newton channel belongs the volume of the

induced tangents [7]. We can assign to every edge a weight

by the volume of the Newton channel. It is the measure of

the set of directions of Sn21; the NTs of which have branches

in this Newton channel. The theoretical case of closed

channels is not of interest for reaction theories.

In this kind we can assign many NTs, or few NTs to a

region of the PES! It is not trivial because to every point of

the PES belongs one NT. The ‘density’ of NTs differs from

region to region. The trajectory map
�
r of Definition 6 is a

diffeomorphism of an open subset of an equipotential

surface E�x; around a point �x; into Sn21; if the pseudo-

convexity index

j : K\EssðKÞ! R; jðxÞ :¼
GðxÞT AðxÞGðxÞ

GðxÞT GðxÞ
: ð14Þ

is not zero on this subset [7,29]. If the volume of the image

of E�x is small then less NTs meet E�x: If the volume of the

image of E�x is large then more NTs meet E�x: All this

description may seem rather baroque, given that most points

are not on walls.

(However note, the imagination of volume in higher

dimensions is treacherous. Most of the volume of a higher-

dimensional hypersphere is associated with the surface [30].

Thus, most of the configuration space in a large chemical

system must lie near the equipotential surface of the

corresponding potential energy, cf. [31]. Or, if we think in

terms of the singular ‘walls’, most of the ‘space of all NTs’

in Sn21 will lie near the walls which partition the regular

sets. This happens at least on the pieces where the singular

Fig. 11. Scheme of S2 for the Newton channels on Sn21 starting at the StP

A. The representation is opened like a map of the world in Mercator

projection [27]. Points B to E depict the sets of different search directions

belonging to the Newton channel, respectively. Every Newton channel

leads to one StP (B, C, D or E). If A is minimum then the points B to E will

be SPs of index one.
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NT goes parallel to a valley floor. However, the situation

may be something more complicated than in the case of

descent lines, cf. [32], because at a VRI point, where the

singular NT bifurcates, the curvature of the equipotential

level of interest is exact zero. There the ‘density of the NTs’

in relation to Sn21 is very small.)

It may be a conclusion that we can define an RP as the

region of the PES where the density of NTs is high and the

PES forms a valley. The definition will be useful at least in

the cases where the SP is on the top of the valley, and where

the RP does not bifurcate, cf. [33]. In these cases the

imagination of a reaction channel is well adapted to reality.

6.1. Example Müller–Brown potential

It is possible to fully study the 2D PES [17] with NTs.

One may numerically follow an NT along its branches. We

begin at the global minimum M1 in all directions ðr [
½21808; 1808Þ or r [ ½08; 3608ÞÞ; correspondingly. Figs. 1

and 3 give some examples. In Fig. 1 the distance of the

search directions from one trajectory to the next is always

equal. It can be observed that the trajectories concentrate in

valleys, and on ridges. It can be seen that the more NTs lead

through a region the more the equipotential surfaces are

curved. This effect will grow dramatically in higher

dimensions [30,32]. Exactly this effect is also used in the

TASC method [34], the tangent search concept of a gradient

extremal (GE): the GE following is replaced by an

approximate following of the valley family of NTs which

go parallel along the valley floor.

Now we treat the Newton trajectories to all search

directions in the interval ½0; 1808Þ; K ¼ ð21:6; 1:1Þ £

ð20:4; 2:3Þ: Four NTs meet singular points (see Figs. 3

and 12 and Table 1).The other NTs belong to four sets of the

topological equivalence classes of regular NTs. The singular

branches of MB potential are the walls (here lines) of

the Newton channels. The classes of regular branches,

which connect two stationary points, respectively, are

shown summarily in Fig. 12. Newton channels are depicted

by K1 to K8, where especially the channels K7 and K8 lead

from a minimum to the border of K: The largeness of a

Newton channel is the size of the class of regular NTs, see

Table 3. The sum of all channels beginning in one StP is 1

(3608, in the 2D case). The Newton channels of Müller-

Brown potential are given in Table 4.

In Fig. 13 four representatives are shown, respectively.

Class 1 is best suited for the search of StPs. It connects all

StPs with one line, one connected component. Class 1 has a

measure of 143.68 from 1808, see Table 3. Fig. 14 depicts

the qualitative development of NTs depending on the search

direction. A representative of every regular set is shown,

and these are divided by the special, singular NTs, see also

Table 3. All VRI points of K are included.

Figs. 12 and 15 show, that the Müller–Brown potential is

separated into an internal and an outer region of NTs,

correspondingly. The outer region itself is again separated

into two parts. It is covered with regular trajectories only

from the minima M1 and M3. Starting at minimum M2, two

Newton channels lead only to the SPs S12 and S23. Starting

Fig. 12. Singular branches of Newton trajectories on Müller–Brown

potential dividing the configuration space in channels.

Table 3

Intervals, size and ratio of 3608 of classes of regular NTs, ti; on Müller–

Brown potential in Fig. 13. (Cf. also Fig. 3 and Ref. [14])

ti Interval ðrmin; rmaxÞ Dr Dr/3608

1 (66.8058,30.398) 143.68 0.399

2 (30.398,37.678) 7.38 0.020

3 (37.678,61.968) 24.38 0.068

4 (61.968,66.8058) 4.88 0.013

Table 4

Newton channels on MB potential. Region and size are seen from the

corresponding minimum. Classes are from Table 3

Start Classes Region Size

K1 M1 t1 (2113.1958,30.398) 0.399

K5 M1 t4 (2118.048, 2 113.1958) 0.013

K7 M1 t1 þ 2t2 þ 2t3 þ t4 (30.398,241.968) 0.588

K2 M2 t1 þ t2 þ 2t3 þ 2t4 (37.678,241.968) 0.567

K3 M2 t1 þ t2 (2118.048,37.678) 0.434

K4 M3 t1 þ t2 þ 2t3 þ t4 (37.678,246.8058) 0.581

K6 M3 t2 (30.398,37.678) 0.020

K8 M3 t1 þ t4 (2113.1958,30.398) 0.399
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at the minima M1 and M3 a main channel leads to direction

of M2 (K1 with 39.9% of all branches, or K4 with 56.8% of

all branches). Side channels (K5 with 1.3%, or K6 with 2%)

‘jump over’ the central minimum M2.

6.2. Example H2O

The example is the MP2/6-31G** PES of water, see

Fig. 16 and also Fig. 8b of Ref. [21]. It is depicted by A the

global minimum of H2O, by B the dissociation to O þ H2,

by C the dissociation to O þ H þ H, by D the linear saddle

point H–O–H and by E or E0 the dissociations to

OHa þ Hb, or OHb þ Ha. Newton channels belong to

regular trajectories A ! D; A ! E; and A ! E0; which

have to be partitioned by singular directions on their

representation on S2(H2O) (i.e. S2(A)). The singular

directions which divide the channels to E and E0 are the

symmetric search directions with r(OHa) ¼ r(OHb).

Assigned to these directions is the symmetric manifold of

VRI points which is reported in Ref. [21], and there it is

depicted by VRI1 in Fig. 8b. But there has to be a wall

between the channels D and E, or D and E0 also, see Fig. 16

right.

In this wall a further 1-dimensional VRI manifold lies

which crosses the symmetry plane at r(OHa) ¼

r(OHb) < 1.2 Å and a(HOH) < 1408. We try to find this

wall. We use a family of NTs from minimum A, see Fig. 17.

One part of the NTs goes to the linear SP, D, it belongs to

Newton channel A ! D: The other part of the NTs leads to

dissociation OH þ H, it belongs to channel A ! Eðor E0Þ:

One calculated line with marked path points leaps from the

branch in channel A ! E to another branch of the same

Newton trajectory which belongs to a channel to structure

D. (It is an intrinsic numerical problem under the following

of NTs near an extraneous singularity that the calculated

series of points can leap.) The dashed circle marks the

approximate place of the VRI point, which is crossed by the

singular NT. There the marked NT bifurcates. One branch

goes to D and another branch goes to E.
Fig. 14. Scheme of consecutive regular and singular NTs on Müller–Brown

potential. Bullets are stationary points.

Fig. 13. Representatives of the 4 classes of regular NTs, see Table 3.

Fig. 15. Graph of Newton channels (arcs are pointer to SPs), and singular

Newton trajectories on Müller–Brown potential. Vertices are minima

and SPs.
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The family of NTs shows the existence of a non-

symmetric VRI manifold. It belongs to the singular

directions which separate the Newton channels to D and

to E, or E0. These directions are depicted in a schematic

representation in Fig. 16 right as a horizontal line. The

nonsymmetric VRI manifold was not reported in the former

Ref. [21].

6.3. The last example

It is again H2CO, see Fig. 8 above. Now we treat the 2D

section of S5 which forms all possibilities for NTs from the

global minimum of formaldehyde (Fig. 18). The search

directions of the NTs for the restricted case of two

dimensions are the changes of the angles /(HCO) and the

dihedral angle. The end points of the NTs are StPs with

numbering of Ref. [5]. c axis is the part of the dihedral angle

of the search direction, w axis is the ratio of /(HaCO) to

/(HbCO). It holds for the parts of the search direction:

/(HCOH) ¼ sin(c), /(HaCO) ¼ cos(c)cos(w) and /(Hb

CO) ¼ cos(c)sin(w). On the w axis the part of the change of

the dihedral angle is zero, i.e., the C2 symmetry is hold,

while on w ¼ 1:25p (in Fig. 18 there the c axis is depicted),

the search direction is fixed to the angle symmetry C2

(thus, the direction of the gradient). The calculated NT for

ðw;cÞ ¼ ð1:25p; 0Þ is already reported, see Fig. 8. Only this

one NT (with respect to S2 , S5) leads to StP of index 3,

T1; at the cross of the axes. The region w , 1:25p and

c . 0 is part of the Newton channel leading from global

minimum to the saddle of index 1, F2: To c , 0 belongs a

channel which leads to the opto-isomer of F2: Every NT

belonging to this 2D region with c . 0 leads to F2: The

NTs in the channel do not have singularities. NTs belonging

to the 1D region of the search direction c ¼ 0 and w , 1:25

Fig. 16. Left: Newton trajectories (bullets) in configuration space of the water molecule. The full line is the symmetric VRI manifold [21]. Right: section of

S2(A) of configurations to which the corresponding Newton trajectories lead.

Fig. 17. A family of Newton trajectories from global minimum (A) of the MP2/ 6-31G**-PES of water. The family bifurcates into trajectories to dissociation

OH þ H (E) and to linear SP H–O–H (D). The dashed circle marks the region of the VRI point.
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p lead to the SP of index 2, S2: All these trajectories meet a

VRI point, from which branches start again. These branches

break the C2 symmetry to C1 symmetry and go to F2 or F0
2:

6.4. Remark

There are two propositions which seem very general.

One is the index theorem that the change of the index along

a regular branch between two stationary points is odd. We

assume that the odd number is always 1. We do not know

any example where a regular branch (a branch without VRI

points) connects a minimum and an SP of index 3. The given

special NT of H2CO of Fig. 8 crosses two VRI points, and

the NT indicates that by an index change of 3. The other

statement is that singular points are at least a manifold of

dimension n 2 2: Up to n ¼ 4 it holds exactly n 2 2 for the

dimension of the VRI manifold (or there is no singularity). It

would be of interest to precise more deeply the propositions

for the application in the analysis of PESs by Newton

channels.

7. Discussion and conclusion

The mathematical definition of a reaction channel is a

general imagination which one may have about the division

of the topology of the PES into diverse regions. We

discussed the topology between the curves of interest here,

the NTs, and the PES. The peculiarity of our ansatz is that its

mathematical part is considered not as a game with

deductive reasoning and symbols, but as a part of natural

science, especially of chemistry, i.e. as an experimental

treatment [35]. The aim of our visualizations is to support

analysis and interpretation of reaction pathways. Chemists

have a long tradition in inventing and applying models for

the analysis of molecular transformations taking place in a

reaction. The development of new ideas, definitions, and

methods for modeling an RP critically depends on

visualization as an effective way to gain understanding of

a problem.

For a long time the IRC was the model of choice of

theoretical chemistry. It is simple, and it can be compared

with a dynamical model of an RP [36]. The pre-dynamical

allegory of the IRC for a chemical reaction path uses a

simple imagination. The system point of the reaction moves

along the negative gradient without inertia. Thus, only the

forces of the PES act. These forces are the gradient [37]. (Of

course, the pre-dynamical picture of the IRC only works

downhill.) The general treatment of steepest descent lines

are the tool to treat catchment regions [10]. It is a

topological division of the PES. Catchment regions of

minima are the ‘passive’ result of the relaxation of the

molecular system.

RGF is also a pre-dynamical allegory for a chemical

reaction path. But another simplification is used. We assume

that along the RP a force always acts into the same direction,

and the force holds the trajectory on a path where the

negative gradient of the PES is in equilibrium with the

acting force, cf. [24]. The imagination gives the NTs. How

useful is the simplification for real processes? It is open, like

it is for the IRC. The NT picture may have direct

implications for the attainability of an adjacent SP if one

changes the direction of the acting force, for example, if one

Fig. 18. Section of a Newton channel on H2CO seen from the global minimum. Structures are the stationary points which are found if the NTs are followed

along the given search directions r in the sectional coordinate system. It holds r ¼ ð0; 0; 0; cosðcÞcosðwÞ; cosðcÞsinðwÞ; sinðcÞÞ:
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jumps from excitation of one normal mode to another

normal mode [38].

The Newton trajectories can be used for another division

of the configuration space, namely, into reaction channels.

A large size of a channel gives the possibility to turn the

driving force, the gradient, into very different directions.

Thus, the Newton channels are understandable as the

‘active’ directions for the progress of a reaction from a

given minimum. It seems to be a further possibility for an

application of the NTs.

If one compares a Newton channel with the idea of the

MEP a problem emerges. Not all NTs can be understood as

MEPs [33,29], because in most cases a part of the NTs

crosses a turning point (TP) before the SP. There the energy

is usually higher than the energy of the SP, and so the

definition of an MEP for these NTs has failed. The

equipotential surface of the SP energy is the highest level,

which is permitted for an MEP. The matter is developed in

another paper of these authors [29]. Cutting the Newton

channel by the TP criterion and putting the TP-free NTs into

the ‘good’ part automatically also gives the valley structure

of the PES from minimum to SP [29].
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Appendix A. List of model surfaces

The Müller–Brown potential [17] is used in Figs. 1, 3,

12–14. It is

Eðx;yÞ¼
X4

i¼1

Aiexpðaiðx2x0
i ÞÞ

2þbiðx2x0
i Þðy2y0

i Þþciðy2y0
i Þ

2

with

A ¼ ð2200;2100;2170;215Þ

a ¼ ð21;21;26:5; 0:7Þ

b ¼ ð0; 0; 11; 0:6Þ

c ¼ ð210;210;26:5; 0:7Þ

x0 ¼ ð1; 0;20:5;21

y0 ¼ ð0; 0:5; 1:5; 1Þ:

In Fig. 4 is used the potential [13]

Eðx; yÞ ¼ 0:5ðxy2 2 yx2 2 x þ 2yÞ þ 0:033ðx4 þ y4Þ:
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