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Abstract
The Frenkel-Kontorova (FK) model is a physical model, which can be imagined as a chain of pendulums,
which are coupled to each other. It successfully describes dislocations in solids or in crystals and other
phenomena, thus it is applied in many ways in solid state physics. By various additional assumptions or
modifications of the original approach it results in an extended theory, which is still being studied today.
Here mainly stationary states of the simplest model shall be discussed, which give rise to the notion of a
soliton.
Additionally a transition from the discrete to the continuous form, of the chain of oscillators to a vibrat-
ing string with nonlinear excitation, is treated. The latter moves according to the so-called Sine-Gordon
equation, a well-known soliton equation. A soliton solution describes, among other things, a long-lived
wandering disorder in a crystal.
In another limit transition, a supposed extension of the chain to infinity is criticized, and wrong uses of the
so-called twist map are revealed.
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1 Introduction
This reviw is the slightly expanded ‘paper form’ of a talk given at the Leibniz-Sozietät zu Berlin in February
20231 (in german language).

The following points are covered in this review:

• The basic concepts in which the FK model is embedded.

• The FK model itself is introduced, important are: same or different periodicity of the two potentials,

• minima as ground states and high lying intermediaries as well as transitions over saddle points.

• Properties of excited states will lead us to the notion of a soliton.

• Important applications will be mentioned – examples presented.

• In a second part, two limit processes will be discussed:

• Once the FK model and the vibrating string,

• and the dubious transition to an infinitely ’long’ chain. We polemize here against the misapplication
of the twist map.

*Korrespondierender Autor
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Basic concepts

The theory of dynamic systems models motion or evolution, how a state x changes in the course of time t. If

the process is homogeneous with respect to time, i.e. it depends only on the initial state, but not on the choice

of the initial time, then it is called an autonomous system. The time t can be discrete (integer) or continuous.

The space of states x has a dimension N, i.e. x is a vector. One writes x=(x1,x2, ...,xN)
T . Important

questions in dynamic systems concern their long-term behavior (for example, stability, periodicity, chaos,

and ergodicity) and their control.

Scheme 1: The FK model fits into the following systems of differential equations

Mainly stationary states of the FK potential will be considered in this summary. The second order dynamic
equation is used at the limit transition to the sine-Gordon equation.

2 The FK Model
The model was introduced by
Yakov Il’itch FRENKEL (1894 - 1952),
Prof. for Theoretical Physics at
University Leningrad, and
Tatjana Abramovna KONTOROVA (1911 - 1976). She was the assistant of Frenkel. She submitted a dis-
sertation on the mechanics of plastic deformation of crystals (1938), from which this model originated.
Further works by her exist on intercrystalline layers, on catalysts, solid-state physics, semiconductors, and
on studies of Germanium.
The original works to ‘Frenkel-Kontorova-Model’ where given in 1938/1939.2–6

Yakov Il’itch FRENKEL was born on 10.2.1894, Rostov-am-Don.
1913-1916 he studied at the University of St. Petersburg, after that he was there a research associate, later
professor. From 1921-1952 he belonged to the Physical-Technical Institute in Leningrad.
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Interruptions: 1918-1921 Krim-University Simferopol
1925-1926 Germany
1930-1931 USA
1941-1944 Kasan

He died on 23.1.1952 in Leningrad.
Frenkel was a universal theoretical physicist who was also open to experimentation and techno-
logy. His focus was condensed matter – solids, crystals, metals, liquids. He was one of the
pioneers of quantum theory of the solid and liquid states of matter. In 1924 he proposed a first
quantum theory of electron conductivity in metals, in 1926 the introduction of holes in the crystal
lattice as quasiparticles and description of ’Frenkel defects’ in crystals. In 1931 he introduced the
’excitation quanta’ and in 1936 gave them the name excitons, one of the first quasiparticles. In
1932 he proposed the name ’phonon’ for the 1930 by I.E. Tamm introduced ’sonic quantum’,7 a
quantized elastic wave in crystals. In 1936 and 1939 he developed independently from N. Bohr
and J.A. Wheeler the droplet model of the atomic nucleus and an explanation of nuclear fission
based on it.
He was highly recognized nationally and internationally. In 1929, he was elected a corresponding
member of the Academy of Sciences of the Soviet Union.
During the Stalin era he narrowly survived campaigns against ‘modern physics’.8 He had to justify
himself for many years before state and party committees. In particular, he was pressed to ’take
back’ the books on Wave Mechanics9–11 which he did naturally, if at all, only very half-heartedly
and ambiguously.
FRENKEL published more than 250 articles and more than 30 books, often in many editions.
Books translated into German or English are9–15 and secondary literature.8 The biography was
written by the historian of science Viktor Ya. Frenkel, his son.

After the 2nd world war, the development with the FK model goes on in Germany by the work of
Kochendörfer and Seeger,16 and in England by Frank and van der Merve,17,18 as well as by many
other authors.19 Frenkel himself did not return to this model.

2.1 Introduction of the FK Model
The FK model describes a chain of particles, commonly atoms or molecules, see Fig. 1, which

1. are connected with each other by spring forces, and which

2. are attracted by another force, whose potential is described by a cosine function.

The springs are assumed to be equal, and the attraction into the base potential can be realized in
many models: gravity, as in the pendulum model, or electrostatic or magnetic force.

The parameters of the model are:

• The initial distances of the atoms are ao.

• The ’spring constant’ is k.

• The period of the cosine is as.

Mechanical pendulums, which are still coupled to each other by springs, form a special FK model,
since the pendulums are fixed to their line.20 The general model is displaceable above the base
potential.
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Figure 1: Frenkel-Kontorova Model (after Loi Do et al.21)

The potential for the linear FK chain of atoms x = (x1, ...,xN)
T with xi < xi+1 is

U(x) =Vo

N

∑
i=1

(1− cos(
2π

as
xi))+

k
2

N−1

∑
i=1

(xi+1− xi−ao)
2 . (1)

The first sum describes the ground potential; each xi sits anywhere in some cosine well. The
combination with ‘1-cos’ is used to avoid negative values. The second sum describes the simplest
form of a nearest neighbor relation with a harmonic spring approach. Both a shortening of the
distance (xi+1− xi) below ao, and an extension of this distance beyond ao cause a force.
The boundary points x1 and xN are free (in the considered model).
Many generalizations have already been discussed: Other functions for the base potential,22,23

additively higher powers in the spring formula,24,25 or, in addition to the previous nearest-neighbor
formula, the inclusion of additional neighbor atoms,26,27 which satisfy some weak versions of
ferromagnetism, or using Coulomb forces.28

In addition to free boundary values of linearly arranged FK chains, it is also possible to have cyclic
FK chains that enforce periodic boundary values.29

2.2 Two variants for the periods of the two potentials
• case of distances of atoms ao = as (same period).

The energy for the minimum of the FK chain is zero, because all particles can be at rest in the
ground potential, and all spring forces are also at zero, see Fig. 2.

• Case of different distances of atoms ao 6= as (unequal period).

If the periods do not match, then the energy for the global minimum of the FK chain will be larger
than zero, because not all particles can be in zero of the ground potential. Also possible spring
forces are strained, see Fig. 3.
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Figure 2: FK model whit N=8 and ao = as

In Fig. 3, there 8 atoms are sorted into 10 potential wells. This ground state has an energy larger
than zero. (Some atoms are artifically drawn on the potential walls if they do not sit in zero energy
wells.)

0 2 4 6 8
x

Figure 3: Minimum of the FK model, N=8, ao = 1.25as and k = 10Vo

2.3 Global Minima, Saddle Points and Intermediate Minima
We move to a shorter 5-atom chain. For a0 = 2/3as this does not fit into the sinks of the ground
potential. This results in the stationary points, global minimum (Min), saddle point (SP) of index
1 (SP1) and intermediate minimum (int Min), shown in Fig. 4. The calculation uses common
mathematical optimization methods.30 Note that one already has a 5-dimensional problem at hand.
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Figure 4: Stationary points of the FK model, N=5, ao = 2/3as, as = 2π , k =Vo

In the global minimum on the left hand side in Fig. 4 there are 5 atoms embedded in 4 sinks. In
the minimum structure, one atom sits on the top of the ground potential. Any change in the chain
leads to a higher energy. The Min structure can be shifted to the right so that one comes out at an
SP1. A calculation for this is described below. The SP1 has a much higher energy than the global
minimum, but its neighboring intermediate minimum has almost the same energy. If one shifts
the chain even further to the right (not shown), one can arrive again at a SP of index 1. This is
mirror-symmetric to the SP of Fig. 4. A further rightward shift leads to a next global minimum,
analogous to the left picture in Fig. 4, but a potential trough of the base potential further.
Fig. 5 shows an energy profile on the 5-dimensional potential energy surface (PES) from the global
minimum, over SP1 and Int-Min and a symmetric SP1 to the next global minimum. It is an upper
way in a high-altitude, nearly flat ‘mountain’ path for the FK model with N=5, ao = 2/3as and
k =Vo. A curve in the coordinate space of the FK chain was determined for this purpose (a Newton
trajectory, see below), which connects the corresponding stationary points, and the energy above
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Figure 5: Energy profil for Fig. 4

the way is plotted from the potential of formula (1). The (green) points ’BBP’ are also explained
below.

3 Solitons
The observation of an almost flat ’mountain path’ leads to the appearance of solitons in the case
of longer chains. Solitons are structures which move through the ground potential similar to a
particle, compare Fig. 6 and 7. Once formed, they need almost no further energy, but are very
stable. The length L of the soliton extends over several troughs and peaks of the ground potential,
but it is independent on the total length of the chain. It depends only on the parameters of the FK
chain, i.e., on the periods of the potentials and on the sizes of the peaks, thus on the magnitudes
V0 and k, the scaling of the potentials. During a ‘wandering’ of the structure through the chain,
at the front always new atoms are lifted, later moved over the next potential hill of the ground
potential, and still later deposited in a more distant potential well of the ground potential. The
structure of the soliton, however, remains the same. The term ‘soliton’ was proposed by Peyrard
and Kruskal.31 It later gave the name to an entire field of research.
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Figure 6: A soliton travels through the potential of a long chain.28

3.1 Instantaneous images of a soliton
In Fig. 7 we have used a 10-atom chain with ao = as. A push has been applied from the left, leading
to the first SP1 on the left, the first image on the upper left side. This requires a considerable
amount of energy to be applied. After that, the structure can relax to an intermediate minimum to
the right. Note that in particular the intermediate minima are stationary, i.e. stable states of the
FK chain. However, once the first SP1 is reached, a soliton, the compressed structure, can move
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through the 10-atom chain until it reaches at the end the valley of the base potential, to which it
further can relax again. A small energy barrier between the saddle points and the intermediate
minima is still present. It is called the Peierls-Nabarro potential.31
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Figure 7: A soliton travels through the potential of a 10-atom chain with a0 = as.

3.2 Soliton formula
Frenkel and Kontorova recognized in 1938 that the model contains the possibility of solitons.
They assumed that there was already a dislocation (this was the name of a soliton at that time).
For ao = as = a the displacement qn of the n− th atom xn is

qn(t) =
2a
π

arctan
[
e±

2π

L (±vt−na)
]
.

L = length of the dislocation (of the soliton),
v = speed at which it travels, and
± shows the direction: dislocation moves to the right or left.
With a = 1, L = 5, v = 1, n = 1 the picture is given for the behavior of the first atom in Fig. 8.
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Figure 8: Graph of a soliton in atom 1.

q1 of x1 wanders from its potential well from its minimum x1 with q1 = 0 to the next at the distance
a = 1, i.e. at the point x1 +1 with q1 = 1. Thereby it overcomes the maximum of the fundamental
potential in the ’center’ of the drawn curve branch, above the number 1 of the first atom. These
energy relations are not recognizable in the description of its path, but they can be traced in Fig. 7.
For further atoms xi with i > 1 the curve is shifted accordingly.
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3.3 First Conclusion
• Without having considered dynamical equations, we can consider the steady states of the

FK potential and develop the notion of a soliton.32–34

• After a given excitation into a high intermediate state the FK chain forms solitons, which
can also be imagined to migrate. However, the motion is slowed down by the Peierls-
Nabarro barrier.

4 Exitations
We imagine another force vector f=F ( f1, ..., fN)

T of length F , where the N components f1, ..., fN

are fixed. The force acts per component on one atom of the chain. The simplest form for such a
force is a linear approach with the scalar product of force vector f and vector x of the chain. This
gives a new ’effective’ potential

Ue f f (x) =U(x)− fT x (2)

with the original FK potential U(x). Its minimum is given by

0 = ∇xUe f f (x) = gradU(x)− f . (3)

Curves where the gradient always points in the direction of f, with increasing strength F of the
force, are called Newton trajectories (NT), compare the important introductory works.35,36 NT
have been studied in Leipzig for 25 years. They have been proposed for theoretical chemistry both
as a method for SP search, and as a model for chemical reaction pathways themselves. A spe-
cial application is in mechano-chemistry, where chemical reactions are controlled by an external
force.37,38 We also applied the NT to the FK model.30 For each given, fixed direction ( f1, ..., fN)
there is a Newton trajectory. The special property of these curves is that they connect stationary
points of an index difference of 1,39 i.e. for example, they connect minima of index 0 with saddle
points of index 1.
Above in Fig. 5 we started in the global minimum of a 5-chain. A Newton trajectory has connected
all 5 low lying stationary points. Shown is the profile above the NT on the Potetial-Energy-Surface
(PES). The effort of the force F grows from 0 in the minimum to a ’barrier breaking point’ (BBP),
a point at which on the effective potential Ue f f the barrier disappears.40 After that, the length of
the force vector F falls back to zero at the SP. And after that, the same game continues on the
path to the intermediate minimum. Off this shown path there are SP with higher index and higher
energy. But these are generally not of physical interest.

0 10 20 30 40 50 60
x

Figure 9: A maximal saddle point in a 10-atomic chain for a0 = as.

With the existing theory of Newton trajectories we can follow how the excitations propagate
through the FK chain, when a force vector is given and its strength is continuously changed.
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An excitation that pushes all atoms simultaneously and uniformly such as f=F (1,1, ...,1)T , is un-
favorable from the amount because all atoms are pushed up their potential mountain at the same
time, compare Fig. 9. A soliton structure, on the other hand, requires much less energy.

If the force is directed only to the left side of the chain and acts into the chain, like f=F (1,0, ...,0)T ,
we will get a compressed structure, called antikink. On the contrary, a right-attacking force pulling
out of the chain, f=F (0, ...,0,1)T , will produce a stretched chain, called a kink, compare Fig. 10.
On the left in Fig. 10 are 5 atoms distributed on 4 valleys, but on the right hand side, 5 atoms
are stretched over 6 valleys.41 Both kink and antikink are solitons. For example, the stretched
structure could move to the right as a soliton, or the compressed structure to the left, if the chain
would be much longer than N=10. But if both structures move towards each other, then they cancel
each other out.

10 20 30 40 50 60
x

Figure 10: An antikink and a kink in a 10-atomic chain for a0 = as.

5 Applications of the FK Model

5.1 Dislocations in crystals
The problem of dislocations in the lattice of crystals and their possible ’wanderings’ was the
starting point for this model. Kontorova and Frenkel had attempted to treat dislocations in 1938.2–6

This study was continued by Frank and van der Merve,17,18 and Kochendörfer and Seeger.16

The dynamics of vacancies in a polymeric crystal chain has been treated by E. A. Zubova.42

5.2 Sliding processes between surfaces
Braun and Kivshar19,43 Chap. 5, treat in detail this application of the FK model. A kink slides on
the base potential which is formed by the crystal surface or the nearest metal atoms. The substrate
also serves for energy exchange. It plays the role of a termostat.
Gangloff et al. also treat kinks for the study of nanofriction.44,45 They use additional forced motion
for this purpose. Experimentally, they observe these processes at the atomic level.
Quapp and Bofill also propose the FK model for considering of sliding processes.41,46 Using NT,
they calculate for a chain of medium length the saddle points for a sliding process.

5.3 Displacement of a Wigner crystal
In the work of the experimenters led by Jui Yin Lin47,48 a system of electrons was observed on
a surface of supercold helium atoms. For this purpose, they had etched out a very narrow strip
in which the helium atoms rested, and on it, so to speak, a one-dimensional chain of electrons is
placed. These push in each case troughs into the surface, and they repel themselves with Coulomb
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force. If one still fixes the edges of the chain, then one can treat with good will the chain of
electrons as a Frenkel-Kontorova model.
In the experiment, the chain had been shifted by a force, and it had been observed, that one needs
approximately the same force for chains of different lengths.
We proposed to understand this experiment by assuming the formation of a soliton.28

5.4 Waves in fields of Josephson junctions
A Josephson junction is a quantum mechanical switching element which consists of two super-
conducting electrodes separated by an insulating barrier. The phase difference between the layers
determines the behavior of these elements. Several such elements can be connected together to
form chains, and even form a circle of them, in which the boundary values then become periodic.
Ustinov considers phase differences in Josephson junction arrays as solitons.49,50

Quapp and Bofill continue consideration of the FK model for Josephson junction arrays.51 Of par-
ticular interest are Shapiro jumps in arrays of Josephson junctions.52 They represent a dissipatively
driven quantum effect. Larsen et al. observed the effect in graphene-based Josephson junctions.53

Quapp and Bofill calculated Lyapunov exponents29,54 for the Langevin equation of the correspond-
ing FK chain. They resulted in the bizarre situation of opposite Lyapunov exponents depending
on the type of the boundary values of the FK chain.

5.5 Propagating Austenite-Martensite phase boundary
Austenite is the face-centered cubic modification (phase) of iron. The austenitic phase occurs
between temperatures 1392°C and 911°C as γ iron. Martensite is a metastable microstructure in
metals, alloys and also non-metals. It appears diffusionless and athermal by a cooperative shear
movement from the parent initial microstructure.55 In this process, the material must be heated
from the temperature of a high-temperature phase (for steel: austenite) below the equilibrium
temperature to a low-temperature phase (for steel: α phase, ferrite).
Alloys with shape memory are of particular interest here, such as nickel-titanium alloys. The latter
materials exhibit these properties of interest already at ambient temperature.56–58 The supercooling
below the equilibrium temperature must be deep enough to provide the necessary driving force for
the athermal phase transformation.
For this purpose, Quapp and Bofill considered an FK problem generalized with respect to the
base potential. The phase boundary was reduced to one layer, and a kind of soliton for the phase
transition was calculated.23 A Langevin solution was used to simulate this transition under a small
external force.

5.6 Waves in DNA molecules and proteins
If regions of the inner bridges in the DNA molecule open up on a short piece of the strand, this
structure can travel through the molecule like a wave.59,60 The process can be attempted to be
described by an FK model.61

Also, the migration of loops in certain proteins, one can try to explain with an FK model.62,63
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6 Limit transitions

6.1 Limit transition to the continuum
We still want to investigate two limit processes for the FK model. On the one hand the transition
from the discrete of the FK model to the continuous string, from the chain of oscillators to a
vibrating string. This string moves according to the Sinus-Gordon equation, a well-known soliton
equation50,64–66

∂ 2φ

∂x2 −
∂ 2φ

∂ t2 = sin φ .

To the continuum limit: Let a chain consist of N atoms. In order to obtain the gradient for a
dynamical consideration according to scheme 1 one has to derivate the energy formula after all N
variables xi.
The potential of the FK chain was given above

U(x) =Vo

N

∑
i=1

(1− cos(
2π

as
xi))+

k
2

N−1

∑
i=1

(xi+1− xi−ao)
2 .

For a single particle xi we have the potential contribution

Vo (1− cos(
2π

as
xi))+

k
2
(xi− xi−1−ao)

2 +
k
2
(xi+1− xi−ao)

2 .

Since each inner particle has a predecessor and a successor, it occurs twice in the part of the spring
potential. We get as force acting on the i-th atom

∂U(x)
∂xi

= Ṽo sin(
2π

as
xi)− k (xi+1 + xi−1−2xi) . (4)

The first part of the formula is the derivative of the cosine summands, with Ṽo =Vo 2π /as, while
the second part arises because there are always combinations of two atoms in the spring formula.
We put the gradient into a Newtonian equation of motion of scheme 1. With Eq. (4) we obtain the
discrete sine-Gordon equation, which is also used as a synonym for the FK model.26

Now one can increase the number of atoms on a piece of the chain of fixed length and finally
proceed to a continuum. The twofold difference part of the gradient of the potential in equation
(4) then becomes a twofold derivative according to the spatial coordinate φ .

We treat the limit N → ∞ and xi → φ(x), with xi−1 → φ(x− ao), xi+1 → φ(x+ ao), and under
ao→ 0 one has to find the limit value for the ’spring constant’ to be infinity k := 1/a0

2→ ∞.
It results with a twofold difference formula

k (xi+1 + xi−1−2xi) =
1
a0

( 1
ao

(xi+1− xi)−
1
a0

(xi− xi−1)
)
→ ∂ 2φ

∂x2 .

If one applies Newton’s equation of motion

d2φ

dt2 =−grad (U)
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one obtains with the FK-potential the sine-Gordon equation

∂ 2φ

∂x2 −
∂ 2φ

∂ t2 = sin φ ,

the equation of a vibrating string. (The constant V0 is omitted, and as = 2π is set). Under the limit
process also the former Peierls-Nabarro barrier disappears.
A one-soliton solution of this equation is again of the type, as was already found by Frenkel and
Kontorova, the kink soliton (compare Fig. 11)

φ = φ(x, t) = 4 arctan
(

exp
x− x0− vt√

1− v2

)
, |v|< 1 .

x0
-3 -2 -1 1 2 3 4

x

1

2

3

4

5

6

ϕ

Figure 11: Wave soliton of the sine-Gordon equation with x0 = 1.

−→ v

φ(x, t) can be thought of as the angle of a pendulum fixed at x0. After the wave has passed through
the point x0, the pendulum is rotated by 2π back to the same position. Frenkel and Kontorova
arrived at this result using a different approach.

Another important equation in the central trio of soliton equations is the Korteweg-de Vries
equation67

∂φ

∂ t
= 6

∂φ

∂x
+

∂ 3φ

∂x3 ,

a partial differential equation of third order. It describes solitons first observed in water channels
by John Scott Russell in 1834.
As well as there is the nonlinear Schrödinger equation68

i
∂φ

∂ t
+

∂ 2φ

∂x2 ± |φ |
2
φ = 0 .

Both equations have been studied mathematically in many ways. Both allow soliton solutions in
bell curve form.69,70

7 Another limit

7.1 One extends the chain length to infinity
In the 1938 work on the FK model, Kontorova and Frenkel had used ao = as, i.e., equal periods.
Here above we have seen that a soliton is only short. In order not to have to deal with bound-
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ary values of the chain, Kontorova and Frenkel had considered an infinitely long chain.2 For the
ground state of the FK chain, the energy at ao = as is zero, regardless of how long the chain is.

But in reality a0 = as is rare.
We had seen above in Sect. 2.2 that for ao 6= as not all atoms can sit at the bottom of the poten-
tial well. Consequently, these deflected atoms have potential energy, and since also the springs
between them are not always in zero deflection, energy must also be expended here.
This concerns with a hypothetically infinitely long chain consequently infinitely many atoms, so
such a chain would have infinite energy, a physical impossibility.

Consequently, to consider infinite chains with different periodicity is not meaningful.
What was only a simplification of the consideration in the case of equal periodicity for Frenkel
and Kontorova, now in the general case of different, not matching periodicities will become a
nonsensical error for many users. So why one does consider infinite chains at all? We want to

explain the reason.
We are looking for equilibrium states of the potential with equation (4), for gradient equal to zero.
This gives a coupled system of equations

∂U(x)
∂xi

= Ṽo sin(
2π

as
xi)− k (xi+1 + xi−1−2xi) = 0 (5)

for all i in the chain, not for each of the two edge atoms. Thus, for atoms within the chain, the
equilibrium formula does not contain the original distance ao. However, this ao remains in the two
corresponding boundary equations for x1, x2 and xN−1, xN .
The system is a coupled one. One cannot simply evaluate individual equations without considering
the others. This is a mathematical triviality which, however, must be remembered here.

7.2 The Fascination of the ‘Twist’ Transformation
If one sets for a pair of consecutive particles

Pi = (xi, xi−1)

then one obtains for the (N− 2) coupled equations ’inside’ the chain a transformation, T , which
repeats from equation to equation. With equation (5)

(xi+1, xi) = Pi+1 = T Pi = (Ṽo sin(
2π

as
xi)− k (xi−1−2xi), xi) .

Since the sine function is periodic, one can still consider all values xi modulo as and one obtains
for ui = xi mod(as) a 2-dimensional ’twist’ transformation, which is repeated again and again.
One obtains, for example, a Fig. 12 of the results of a ‘twist map’.
Since this transformation is also area conserving, it has been used for a long time again and again
to formulate statements about the FK model. But almost all statements about it unfortunately
become wrong, if one considers a finite chain.72

Where is the error in thinking?
The error is at the beginning of the chain. There is no way to know which equilibrium position
will be reached for the two ‘first’ atoms, if one calculates a minimum. The supposed way out of
many researchers was to move the ‘beginning’ to −∞. But there nobody can start the calculation.
So one somewhere starts and assumed that with this beginning an optimal structure will result later.
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Figure 12: The points are repeated mappings with the twist map; the Mi are arbitrary
starting points (after S. Aubry71)

An example of a flawed consideration is a ’theorem’ by Baesens and MacKay,73 in which the
existence of limit cycles in a finite chain is asserted. This would imply that there is a relation of
the type (for example, 3ao = 2as)

ui+3 = ui +2as .

However, for a chain of finite length, there always holds72

ui+3 = ui +2as + εi

with a from particle to particle changing value of εi. At N = 500 we have found the smallest εi

with ε244 ≈ 2×10−11.72 The free edge values at the beginning and at the end of the chain destroy
a fixed cycle.

0 50 100 150 200 250
u . . . 1500 1520 1540 1560 1580 1600

u . . . 1850 1900 1950 2000 2050
u

Figure 13: A left piece, a middle piece and a right piece of a chain with 500 atoms.

The center in Fig. 13 is an enlarged piece with the regular pattern representing the rational relation
to as sorting three atoms in two wells. At the left edge of the chain, the influence of the free
boundary values can be clearly seen. In the middle, a quasi-cycle has set in. Of course, the ε

differences smaller than 10−2 cannot be resolved in the graphical representation. However, if a
real limit cycle would result here, then at the right edge cannot again boundary values occur, which
break out of the cycle.
We have recalculated this with the twist map. The structure of Fig. 13 was optimized, and with the
so obtained ’correct’ values x1 and x2 for a minimum structure, the twist map was started. Indeed,
an analogous picture to Fig. 13 was obtained. Also the twist map finds the right ‘output’ at the
correct start.
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7.3 Outlook
We have been criticizing such false theories for years, but so far with moderate success.30,72,74,75

The draft of a corresponding commentary75 was not accepted with a specious justification of
Phys. Rev. A.
The sources for the twist map of the FK model have been quoted more than 1000 times; as far as
we know only with small additions, never really negative. We have not yet been able to see that
the authors in question now take our point of view.
According to Max Planck, new ideas do not prevail in research by convincing the followers of the
old ideas. It is rather in such a way that the representatives of the old theory have to leave in order
to make room for the new one.
Here, however, it is curiously reversed: It is enough to use the so to say ancient methods for the
determination of stationary points to get along on the complicated potential-energy-surfaces of the
FK model, supplemented possibly by the use of Newton trajectories. The ‘wrong’ detour via the
twist map is not necessary.
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