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The reaction path is an important concept in theoretical chemistry. We discuss different definitions, their
merits as well as their drawbacks: IRC (steepest descent from saddle), reduced gradient following (RGF),
gradient extremals, and some others. Many properties and problems are explained by two-dimensional
figures. This paper is both a review and a pointer to future research. The branching points of RGF
curves are valley-ridge inflection (VRI) points of the potential energy surface. These points may serve as
indicators for bifurcations of the reaction path. The VRI points are calculated with the help of Branin’s
method. All the important features of the potential energy surface are independent of the coordinate
system. Besides the theoretical definitions, we also discuss the numerical use of the methods.
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1. Introduction

The concept of the minimum energy path (MEP) or

reaction path (RP) of an adiabatic potential energy

surface (PES) is the usual approach to the theoret-

ical kinetics of larger chemical systems1–5 (see also

Refs. 6–9). It is roughly defined as the line in the

coordinate space, which connects two minima by pass-

ing the saddle point (SP) (the transition structure)

of a PES following the valley. It is able to describe

pathways of conformational rearrangements too. The

energy of the SP is assumed to be the highest value

tracing along the RP. It is the minimal energy a

reaction needs to take place (see Fig. 1). The PES has

a maximum in one and only one direction. Reaction

theories are based either implicitly (transition state

theory1), or explicitly (variational transition state

theory5) on the knowledge of the RP. These theories

require only local information about the PES along

the RP. They circumvent the dimension problem: it

is impossible to calculate fully the PES which remains
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Fig. 1. 2D model potential energy surface.
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to be a terra incognita. The SP and the minima

form stationary points of the PES where the gradient

vanishes. Roughly speaking, it is only of secondary

interest, how a reaction path ascends to the SP.

This looseness makes a great variety of RP defini-

tions possible. But the mathematical description of an

MEP turned out to be more difficult than expected:6

the definition of the MEP seems to be a never-ending

story!

In Fig. 1 the double minimum, MIN1/MIN2, is

connected by the RP over SP1, where the RP over

SP3 may leave the depicted region. Other ways out

can lead straight forward over SP2, or piecewisely

combined over SP2 and SP4.

The fundamental problem in handling an n-

dimensional hypersurface is the dimension. Usually,

hypersurfaces are to calculate at discrete grid points,

say m, along every one of the n degrees of freedom. A

molecular PES is n = (3Natoms − 6)-dimensional and

needs mn grid points. It is an overwhelming number

for more than N = 4 atoms. The RP concept is a

promising way out, because it reduces the problem

to finding an algorithm for one-dimensional curves —

without knowledge of the whole PES. Any parametri-

zation s of the RP x(s)=(x1(s), . . . , xn(s))T is called

reaction coordinate. Any algorithm which allows one

to determine this pathway in a suitable approxima-

tion should be tested. The search for valley pathways

especially is an important part of the PES analysis; to

date it still offers no satisfying concept for all aspects

of the problem. One underlying problem seems to be

a more principal problem, it concerns many workers

in chemistry: they assume that there is one MEP, and

all of our different methods are methods to calculate

this one MEP. That is not the case. The different

methods like

(i) IRC, or steepest descent from SP,

(ii) distinguished or driven coordinate method,10 or

in other modern form RGF,7,8

(iii) gradient extremal (GE),11–15

(iv) exhaust randomly the pathway,16

(v) the variational path,17

(vi) or any other method of the future,

define and calculate different curves which may well

reflect different aspects of the idea of the MEP, but

they also have different drawbacks. These differences

are the reason for treating other methods than (i) once

and for all. So, the search for an appropriate MEP is

not equivalent to the finding of the steepest descent

(SD) pathway from the SP.6,18,19 Also, the curves

which follow a driven coordinate, or the projected

gradient (RGF) can be used only in certain cases

for the minimum path.7,8 The GE4,11–15 appeared to

represent a suitable ansatz for a minimum path, but,

with its many additional solution curves and turning

points14,20,21 this concept in its general form is not

suited to be used as a routine program for the cal-

culation of such paths. Additionally, older procedures

for the calculation of the GE needed third derivatives

of the PES. Interesting here is the term streambed22

used for the valley-floor GE of the surface, which

follows the direction of the eigenvector to the smallest

positive eigenvalue. The term “streambed leading

downwards to a minimum” is used to characterize the

reaction path in two-dimensional model surfaces,22

but it is used synonymously in any dimension. This

GE leaves the minimum uphill with the gentlest

ascent.

Here, we will explain in more depth that the

combination of the GE concept with the RGF7,8,21

opens a manageable way to follow a valley of the

surface, uphill or downhill. RGF finds a curve where

a selected search direction is equal to the gradient

of the PES, at every curve point. The RGF method

needs gradient and (updates of) the Hessian matrix

of second derivatives of the hypersurface. There are

curves, which pass all stationary points in most cases.

Thus, RGF is an interesting procedure in order to

determine by way of trial all types of stationary

points.7 We modify additionally the RGF method to

intrinsically search the minimum path. This concept

is a proposal of a practicable algorithm for search-

ing minima or SPs of complicated, rugged hyper-

surfaces using explicitely their valley structure. The

valley structure may be of interest by itself as it is

the case in spectroscopy or for the selective choice of

a reactive channel in chemistry. There, it is assumed

that a molecular vibration takes place along the valley

of the potential energy hypersurface, and if such a

vibration is further excited, it may lead to a chemical

reaction.23

All these detailed activities for a simple and exact

calculation of RPs are prerequisites for a number of

dynamical theories to come into operation, including

the famous Reaction Path Hamiltonian.2 The primary
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interest in RPs in chemistry is from the viewpoint

of mechanisms and dynamics. Further, the methods

of direct dynamics5,24,25 need an exact and physical

sensible description of the reaction path.26 One point

of particular interest is that the knowledge of the

reaction pathways may give tools for the interpreta-

tion of infrared spectra of molecules with high excited

vibrations9 and for the prediction of the conditions

of mode selective reactions. This way, the MEP is

the leading line characterizing the reaction channel

in which the trajectories, or, in terms of quantum

mechanics, the wave packets, should move.23

Frequently, RP branching does occur — the

assumed model curve of the RP bifurcates into

two or more branches. The corresponding points

on the RP are the so-called bifurcation or branch-

ing points (BP). The mathematical description of

RP branching is one of those questions which now

requires closer consideration in theoretical chemistry.

Many procedures — although mostly developed in

mathematics — are not yet adapted for use in quan-

tum chemistry though there are a number of recent

studies dealing with aspects of the definition of RPs

and their bifurcation.8,13,14,22,27 The choice of a path

for a chemical reaction is a complex issue. It is

important to state that a BP is a component of the

particular RP definition and, therefore, a bifurca-

tion of the RP will be generally found by the BP of

those particular curves selected to calculate the MEP.

Bifurcations of the path may be caused by symmetry

breaking.28 Then, two or more equivalent pathways

may lead over equivalent transition structures to two

or more equivalent (or chiral) products. An expla-

nation is already given for the emergence of BP

in formaldehyde-like molecules by the second-order

Jahn–Teller effect.29

It is helpful to consider that RP branching is

more often than not connected with the emergence

of a special class of points of the PES, the valley-

ridge inflection (VRI) points.30,31 Usually, VRI points

represent non-stationary points of the PES. The

traditional definition is that a VRI point is that point

in the configuration space where, being orthogonal

to the gradient, at least one main curvature of the

PES becomes zero. The geometrical imagination is

clear (but misleading under the dimension aspect):

the valley-ridge inflection is that place where an

eigenvalue of the Hessian orthogonal to the gradient

direction changes from “+” to “–” through zero, or

vice versa. A valley inflects into a ridge. The occur-

rence of such a VRI point is a sufficient condition

for a region containing an RP bifurcation (if de-

fined in a coordinate independent way, see below).

VRI points can be defined independently of an RP

definition. They are generally not identical with BPs

of different RP definitions, although both are of-

ten adjacent points. “Adjacent” means that no other

point of mathematical interest lies in between. A

particular aspect is the computation of RP branch-

ing using calculations of symmetric VRI points by the

Branin method.8,9,32,33 The VRI points may form a

manifold in the configuration space of the molecule.8

This manifold can have the dimension n − 2, if the

configuration space of the PES has the dimension

n.34,35

A mathematical simple RP definition is the steep-

est descent from SP in mass-weighted coordinates,

resulting in the well-known intrinsic reaction coor-

dinate (IRC) of Fukui.6,18,19,36,37 This pathway is

defined by an autonomous system of differential equa-

tions for a tangent vector along the curve searched for.

Its solution is unique. Therefore, if starting at any

initial point outside an SP, no bifurcation can occur

before reaching the next stationary point. Hence, no

branching of PES valleys will be truly described by

following the IRC, see the discussion in Refs. 38 and

39. However, following an IRC on a symmetric PES,

we may test the curvatures orthogonal to the path,

thus orthogonal to the gradient of the potential —

and so detect a VRI region.40

Gradient extremals (GE) form a second approach

for RP following.4,11–15,20,21 They are more compli-

cated than the IRC, but better fitted to solve the

valley branching problem by the determination of a

GE bifurcation.15 However, other problems arise due

to the occurrence of pairs of turning points (TP) in-

stead of the BP. Such turning points may interrupt the

pathway between minimum and SP. The GE curves

often show some kind of avoided crossing.4,12,13,38,39

The BP indicated by a valley–GE is that point where

the valley usually branches into three valleys21,41 —

and, usually, it does not branch into two valleys and

a ridge in between, as it is assumed at a VRI point.

(Three valleys often mean two “true” valleys to the left

and the right, and a “cirque” in the center. A cirque

is a valley where the main direction of the ascent
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along the valley belongs to the second, or to a higher

eigenvalue. Sometimes this cirque ends at a VRI point

(see an example in Ref. 21) Because there are cases of

missing the BP due to TPs, GE bifurcation is a suffi-

cient but not a necessary condition of the occurrence

of branching along an RP. Nevertheless, the whole TP

region of two related GE curves has to be considered

as a branching region of a valley (or of a ridge). The

BP condition for GEs contains third derivatives of the

PES, and it does not require a singular Hessian.15 This

indicates that in the general case the BPs of GEs are

not the VRI points of the surface, and GE bifurcation

can occur without a nearby VRI point.8

A third approach to the problem of finding the

reaction path branching is quite different. It uses RGF

curves. It deals not only with the direct location of

the VRI points: the zero eigenvalue of the Hessian,

orthogonal to a valley direction, is relatively easy to

detect, at least in symmetric PES regions. There are

some proposals dealing with this task.29,40–42 But VRI

points are fortunately the BPs of RGF curves. RGF

is much simpler to realize in comparison with the GE

following.15,43 RGF needs gradient and (updates of)

the Hessian of the PES. Thus, it is more expensive

than the IRC.

The independence of different definitions of the RP

on the coordinate system was shown for the IRC6 and

for the GE as well.11,44 Since that time, progress in the

understanding of invariance properties has been rather

slow. It should also be noted that the calculation of

VRI points is developed in a coordinate independent

definition.45,46

The review is organized as follows: Sec. 2 repeats

IRC and the mathematical fundamentals of the RGF

method7–9 and the definition of GEs as well as other

methods. We define a modified RGF by the itera-

tive method of the “tangent search”. It has a close

connection to the streambed GE. Further subsections

deal with VRI points. We repeat the so-called global

Newton method, or the Branin method. We discuss

the numerical execution of the methods. Throughout,

the success is demonstrated by some 2D examples. In

Sec. 3, we demonstrate the independence of most of

the used definitions on the coordinate system. We

finally add a discussion. Some of the methods are

implemented as independent modular programs. The

programs can be obtained on request or retrieved.a

2. Theoretical Methods of PES Analysis

There is an arsenal of different methods to follow a

geometrically-defined pathway which may serve as a

reaction path. Geometrically-defined means that only

properties of the PES are taken into account, but

that no dynamical behavior of the molecule is ob-

served. The first pathway is the well-known IRC,36

see also Ref. 6 The favored method used in our labo-

ratory is the so-called “reduced gradient following”,

RGF,7–9 a very effective revival of the old distin-

guished coordinate method.10 Equivalent curves to

RGF are obtained by the global Newton method

(Branin curves32). Branin’s method is additionally

well adapted to calculate exactly symmetric VRI

points.8 A recent development from this lab is the

TASC method21,47,48 which allows one to calculate

valley floor GEs by second-order methods only.

2.1. IRC

The steepest descent (SD) from the SP in mass-

weighted Cartesian coordinates49,50 is the simplest

definition of a reaction path, which is well-known as

the intrinsic reaction coordinate (IRC),36,37 but its

definition may go back to Euler. Using the arc-length

s for the curve parameter, a general steepest descent

curve x(s) is defined by the system of vector equations

in n dimensionsb

dx(s)

ds
= −

g(x(s))

|g(x(s))|
(1)

where ∇E(x) = g(x) is the gradient of the PES. The

SD system is a system of differential equations of the

first order allowing an integration constant. Thus, its

solution can start at an arbitrary initial point (where

the gradient is not zero). The path (1) is given by

an autonomous system of differential equations using

aE-mail: quapp@rz.uni-leipzig.de
Web: http://www.mathe.uni-leipzig.de/∼quapp/mrgf.html
bWe shall denote by boldface lower-case letters geometrical vectors in configuration space or column matrices of their Cartesian co-

ordinates; by upper-case letters second order tensors or square matrices of their components. Scalars are often denoted by lower-case

Greek letters.
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the negative normalized gradient of the PES for the

tangent vector of the curve. But the gradient is the

zero vector at stationary points. With the exception

of the stationary points the solution of the differ-

ential equation of the IRC is unique. So, the IRC

cannot bifurcate39 and consequently the IRC method

is not well-adapted to tackle the problem of reaction

path branching. Numerically, the mass-weighted SD

is usually started near an SP of index one a step in

the direction of the decomposition vector. It is the

eigenvector of the Hessian matrix with negative eigen-

value. A variety of numerical methods is available for

solving ordinary differential equations. The SD along

the gradient, −g, is calculated by discretizing the

corresponding differential equation to

xm+1 = xm − l
gm

|gm|
(2)

where m is the step number and l is a steplength

parameter used to damp or accelerate the step, but

see also the more elaborated methods in Refs. 52–54.

Figure 2 shows the IRC between MIN1 and MIN2

for the PES {1}51 of torsional and wagging vibra-

tion modes of methylamine, H3C–NH2, with l =

0.01. (The use of torsion follows the meaning in

spectroscopy.51)

The test surface {1} is

E(x, y) = 44730.4129− 66786.5363 cos(y)

+ 26352.6908 cos(2y) − 3117.3613 cos(4y)

+ 659.3217 cos(6y)

+ 621.9640 sin(3x) sin(y)

− 138.3050 sin(3x) sin(2y)

− 111.5488 cos(8y)+ 41.8227 sin(3x) sin(4y)

− 7.7979 sin(3x) sin(6y) + 9.9258 cos(6x)

− 19.0681 cos(6x) cos(y)

+ 8.7063 cos(6x) cos(2y) .

MIN1 corresponds to the torsion angle (x) of 30◦

and a wagging (y) of −54.54◦ where MIN2 corresponds

to 90◦ and +54.54◦, respectively. The indicated SP is

the inversion barrier at the torsion angle of 60◦ and no

wagging; it is depicted in Fig. 3. The use of model PES

{1} is a reduced model of the full molecular PES. The

dimension of 15 internal degrees of freedom is reduced

to two coordinates. All couplings between these two

coordinates and the other coordinates are neglected.
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Fig. 2. IRC on test surface {1}51 .
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Fig. 3. Methylamine SP: inversion of torsion and wagging.

Usually, we do not propose using a corrector for

the IRC method, because of the self-correcting effect

that any SD finds its pathway downhill. The SD works

well for steep slopes. However, along the bottom of

the valley, it shows a second, a numerical disadvan-

tage, the so-called zigzagging across the valley ground

line.19,55 This happens at the valley-floor if the “true”

IRC follows asymptotically a GE to the minimum. If

working with first-order methods only, it is impossible

to suppress the zigzagging. Equation (1) is a so-called

stiff differential equation and explicit steps (2) can-

not circumvent the problem.56,57 One may avoid the

numerical problems by a quadratic SD. An efficient

second-order algorithm was developed by Sun and

Ruedenberg15,58 for integrating Euler’s steepest des-

cent differential equation, dispelling the stigma of the

latter as a first-order method. (It is implemented59,60
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in the MOLPRO code.) If using this second-order pro-

posal for the IRC,26 one needs the Hessian, and with

such an effort, one should immediately use an original

second-order method like RGF/TASC, see below, or

the Newton-Raphson step.

The IRC is used frequently as synonym for the

MEP of the PES. But it has a third serious imperfec-

tion which is of particular interest here: using Eq. (2),

we cannot switch the direction of the search in order

to go uphill from the minimum to SP by positive

gradient steps.61,62 This does not work! Any small

numerical deviation from the path causes a breakout

of the respective steepest ascent and a failing of

the SP. If looking around in a small neighborhood

of the minimum using only the positive gradient

— we can never know where the next SP of index

one may be. This is shown using Fig. 4 where in

contrast to the former case of Fig. 2, only the SP

region is changed artifically, but the region of the two

minima is not changed. (For model {2}, the last

summand in the formula of the PES51 is modified

to 33.333 cos(6x − π/4) cos(2y).) Clearly, there are

again MEPs along the valleys at y ≈ 1, and at

y ≈ −1. Nobody can know where at these paths

the corresponding IRC from the given SP confluents

asymptotically into the MEP. The IRC calculation

always needs the knowledge of the corresponding SP.

(However, see below the subsections 2.7 and 2.15 for a

“gradient-only” uphill search of SPs in special cases.)

The indicated SPs of Figs. 2 and 4 are transition
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Fig. 4. IRC on test surface {2}.

states of the “side-on” type in a classification by

F. Jensen.63 They are in contrast to the “end of the

valley” type of an SP, or the “top of a valley” type,

which we find on the y ≈ 1, and on the y ≈ −1

pathways.

In the case of two connected SPs of index one,4,64

usually the IRC is not the tool to find the connection.

This is reported in a paper dealing with H2NO.65 If

the pathway is not constrained by symmetries, the

IRC does not follow the way down from the upper SP

to the lower SP, but deviates from the path. Most

steepest descent paths reach a minimum tangentially

to the one eigenvector of the Hessian with the lowest

vibrational frequency.3,66,67

In internal curvilinear coordinates, we have to use

either the co- or the contravariant versions of gradient

and coordinate steps in Eq. (1), which includes the

metric of the curvilinearity (see subsection 3.1 for a

short description). The use of such coordinates makes

the definition of an SD “coordinate invariant”.

2.2. Reduced gradient curves (RGF)

Some twenty years ago, a proposal was made to choose

a driving coordinate along the valley of the minimum,

to go a step in this direction, and to perform an energy

optimization of the residual coordinates.54,68–73 A

combination of the distinguished coordinate method

starting at the SP and steepest descent was also

used.74 However, the methodology of this distin-

guished coordinate method was truly criticized by

some workers, for example by Müller75 and Brown54,

Williams and Maggiora,10 and Cioslowski et al.76

They found concrete samples, where the distinguished

coordinate method fails: it cannot follow the path

over a turning point. Recently, the method was trans-

formed into a new mathematical form.7 It is re-

marked that the former limitations do not stem from

failures of the approximation of a defined curve but

are manifestations of the ill-defined nature of the con-

cept of minimization orthogonal to the distinguished

direction.

The chemically most important features of the

PES are the reactant and the product minimum and

the SP in between. These stationary points of the

PES are characterized by the condition

∇E(x) = 0 , (3)
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when E(x) is the function of the PES, and ∇E(x) = g

is its gradient vector in the configuration space, Rn,

defined by the coordinates x of the molecule where

n = 3N (N = number of atoms) if Cartesian coordi-

nates are used, or n = 3N−6 for internal coordinates.

Thus, n indicates the dimension of the problem: x

and g are vectors of the dimension n. Equation (3)

is valid at stationary points of the PES. But single

components of the gradient can also vanish in other

regions of the PES. Using this property, a curve of

points x is followed which fulfills the n − 1 equations

∂E(x)

∂xi
= 0 , i = 1, . . . , k − 1, k + 1, . . . , n (4)

omitting the kth equation.7,10 This gives the (n − 1)-

dimensional zero vector of the reduced gradient; the

method is subsequently called reduced gradient fol-

lowing (RGF). Equation (4) means that the gradient

points into the direction of the pure xk coordinate.

The concept may be generalized by the challenge that

any selected gradient direction is fixed

g(x)/|g(x)| = r , (5)

where r is the selected unit vector of the search di-

rection. The search direction usually corresponds to

an assumed start direction of a chemical reaction, for

example, to the direction between the two minima of

reactant and product. The “reduction” is realized by a

projection of the gradient onto the (n−1)-dimensional

subspace which is orthogonal to the one-dimensional

subspace spanned by the search direction r. A curve

belongs to the search direction r, if the gradient of the

PES always remains parallel to the direction of r at

every point along the curve x(s)

Pr g(x(s)) = 0 (6)

where Pr projects with the search direction r. This

means Pr r = 0. Employing such a projector, instead

of Eq. (5), one refrains from the use of the very uncom-

fortable differentiation of the absolute value in the de-

nominator (in Ref. 77). The parameter s is a suitable

parameter, e.g. arc-length; though in practical imple-

mentations it is often more convenient to use related

parametrizations which are easier to incorporate: the

parameter is usually not explicitly used. Equation (4)

is a special case of Eq. (6) with the corresponding

(n − 1) × n projector matrix

Pr =



















1 .. 0 0 0 .. 0
. .. . . . .. .

0 .. 1 0 0 .. 0

0 .. 0 0 1 .. 0
. .. . . . .. .

0 .. 0 0 0 .. 1



















row :
.

k − 1

k
.

n − 1

column : 1 k − 1 k k + 1 n

thus, Pr is built by the unit vectors orthogonally to

the search direction, where here again the kth unit

vector is missing. Another possibility to define Pr is

to use the dyadic product in

Pr = In − r rT , (7)

where In is the unit matrix. This Pr is an n×n matrix

of rank n − 1, because r is a column vector, rT is a

row vector, and their dyadic product is a matrix.

Based on the explicit definition, we can follow this

curve along its tangential vector. This is the RGF

method. In contrast to the conventional distinguished

coordinate method,10 a reduced gradient curve passes

possible TPs without jumps.62 RGF uses the deriva-

tion of Eq. (6) to obtain the tangent x′ to the curve

d

d s
[Pr g(x(s))] = Pr

dg(x(s))

d s

= Pr H(x(s))x′(s) = 0 . (8)

The matrix H is the Hessian. The projector Pr does

not depend on the coordinates x or on the curve

parameter. In the general case, the search direction,

r, and the tangent, x′, are different. The algorithm

is realized by the predictor-corrector method.8,78

RGF consequently continues the former method of

a distinguished coordinate (or driving coordinate)

and replaces the energy optimization of the residual

coordinates by the solution of the reduced gradient

system. RGF is a simple but effective procedure in

order to determine all types of stationary points.7

Unlike the usual SD path from a saddle, the reduced

gradient searching for a fixed direction r locally has an

explicit analytical definition. (In Refs. 79 and 80 other

predictor strategies are proposed, while in Ref. 81 two

alternate corrector schemes are applied to RGF. The
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Fig. 5. RGF curves for the torsional transition on surface
{1} with turning points (•).

approach of an “activation and relaxation path”77

resembles the RGF method.)

By the choice of k between 1 and n in Eq. (4) we

obtain n different RGF curves where, in the general

good-natured case, each of them passes each station-

ary point. (Possibly, there are different branches which

are not connected.) In Fig. 5 the bold-faced curves

are those with Ey = 0 while the bold-faced dotted

curves are Ex = 0. Using the more general defini-

tion by a projector, Eq. (6), gives an infinite family

of RGF curves,62 where again, in the general good-

natured case, each of them passes most of the sta-

tionary points. Besides the fat curves in Fig. 5 there

is a family of RGF curves to different gradient direc-

tions which connect the stationary points along the

two horizontal valleys of this PES, at y ≈ −1, and at

y ≈ 1, as well as the ridge region along y ≈ 0 where

SPs of index one and two are connected. We must

recall that the curves of this family usually are not

MEPs (whatever this means). RGF curves are defined

by a constant gradient vector, and they connect the

extrema (see also Fig. 6). Nevertheless, some of the

curves may follow a reaction valley in favourable cases,

at least qualitatively: here two of the Ey = 0 curves in

Fig. 5. The possibility of the MEP calculation then de-

pends on a clever definition of the search direction.82

In Fig. 6 an alternate family of RGF curves is chosen

to explore the pathway over the SP of inversion. To

find the indicated SP, one of the gradient directions of

the family has to be chosen as the search direction for
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Fig. 6. RGF curves over SP on PES {1}, the inversion
barrier of a combined wagging and torsion.

an RGF search, and the respective curve has to follow

from minimum to SP.

The turning point case10,54,62 divides RGF curves

into those which can serve as loose RPs, and others:

if the RGF curve does not contain a TP at the path-

way from minimum up to the SP, it may be used

as an RP. However, if a TP emerges, it will have

an energy higher than the energy of the respective

SP and, hence, this path does not meet the mean-

ing of an RP. In Fig. 5, the MEP from MIN1 to the

saddle at (1.57, –0.95) is accompanied by curvilinear

RGF curves. The two most curvilinear RGF curves

are such curves with a TP. There the tangent of the

curve emerges orthogonally to the search direction r.

Behind the TP, the respective RGF curve follows a

ridge structure, not a valley. That is the reason why

a minimization orthogonal to r fails.

2.3. Short description of the RGF algorithm

In order to get the system of equations for RGF,

we have to define the projector Pr. In our proce-

dure, mrgf,a we calculate (n−1) orthonormal direction

vectors being also orthogonal to the selected search

direction r by using the modified Gram-Schmidt

algorithm.83 Then, the projector Pr is the matrix of

these (n − 1) rows. Equation (8) for RGF becomes

Pr ·H · t = 0, a linear equation for the tangent vec-

tor t. It makes up the predictor step. The system is

solved by QR decomposition.78 The reduced Hessian

Pr ·H is augmented by the tangent vector to an (n×n)
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matrix which is the so-called K matrix.78 The correc-

tor step is applied if the norm of the reduced gradient

Pr · gI is greater than a threshold ε which is given as

a parameter. The subsequent Newton-Raphson step

of the corrector orthogonally to the tangent is realized

by solving a linear equation where the K matrix forms

the left-hand side, and the right-hand side is given by

the reduced gradient augmented by zero in the nth

row. Either the predictor step, or the corrector step

are added to the current z matrix values of the inter-

nal coordinates, and the next loop of the algorithm is

begun.

The RGF is now tested to be an effective tool

in determining the next SP,62,79–81,84–86 on a PES if

starting at a minimum. (It is implemented85,87 in the

COLUMBUS code, also in the TURBOMOL code,88

as well as in the MOLPRO code.59)

We may simply test the passing of a bifurcation

point by comparing the tangent vector of the predic-

tor step with the previous one. If the tangents point

into opposite directions, then a bifurcation point is

passed.78 The test of a TP is the comparison of the

tangent vector of the predictor step with the direction

of the first step r.

Recently, the predictor-corrector method for fol-

lowing a reduced gradient was further accelerated by

a modification allowing an implied corrector step per

predictor but almost without additional costs.89 The

stability and robustness of the RGF method was im-

proved and the new RGF version 3 in addition reduces

the number of gradient and Hessian calculations. We

will explain predictor and corrector steps of RGF with

this most developed version of the algorithm.

The predictor step of RGF is done along the

tangent t = x′(s)/|x′(s)|, thus a solution of (8)

and, orthogonal to this direction, Newton-Raphson-

like steps of the corrector for a point near to curve (6)

are calculated. If the predictor step is done from x1

to x2 by a step p t, the corrector method by Newton-

Raphson-like steps78 starts with the (n−1)×n matrix

equation, for c, to be the step x2 → x3

Pr H(x2) c = −Pr g(x2) , (9)

however, to make the solution unique, the system

is augmented to a full n × n system by adding an

equation with the scalar product

t(x2)
T c = 0 , (10)

enforcing that the corrector step is orthogonal to the

tangent of an RGF curve at x2. Diener and Schaback

proposed35 to avoid the conventional predictor step,

p t with steplength p, and instead to determine a com-

bined step d starting with t at x1 by solving Eq. (10)

not orthogonally to t, however skewly to t with the

scalar product

t(x1)
T d = p

where p is the steplength of the former used predic-

tor step. This results in a new Newton-Raphson like

step by solution of the augmented linear system of

equations

Pr H(x1) d = −Pr g(x1)

t(x1)
T d = p .

(11)

The step vector d is a combined predictor-corrector

step with the component steplength p in the direc-

tion of t which should give a point x4 near x3, being

consequently near the searched curve (RGF, or

TASC — see below) fulfilling also Eq. (6) by

|Pr g(x4)| < ε , (12)

with the threshold ε. In general, only if Eq. (12) is un-

satisfied, do we need to take further corrector steps as

defined by (9) and (10); but generally, the use of steps

d avoids these separate corrector steps c. It holds es-

pecially for a large scaling of ε. The former proposal

in the original RGF was to set ε ≈ (0.01 to 0.1) × p.

Now, ε may be as large as p, or larger. For the original

RGF, the inclusion of the corrector via ε of Eq. (12) is

not to avoid because the predictor alone goes wrong,

if it is not corrected from time to time. The proposed

use of an implied corrector step in every predictor is

an automatic improvement of the predictor direction.

The method shows quite good results by a low effort:

usually around 15 steps of the predictor are needed to

find the SP of a medium molecule. In the general case,

one Hessian must be calculated at the early beginning,

and along the path, updates are used (see Ref. 89).

If RGF is used to find stationary points, then the

coordinate system does not matter so much; however,

RGF curves can also be defined independent of coordi-

nates. In internal curvilinear coordinates, we have the

covariant version of the gradient in Eq. (5) and have

to use for the selected direction r also a covariant vec-

tor. It seems intuitively plain that the projector (7)
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can be defined as a mixed co- and contravariant tensor

by a covariant rcov and a contravariant rT
con. Then the

calculation of condition (6) and steps (8) including

the metric of the curvilinearity is described in subsec-

tions 3.4 below. The use of such a tensor for internal

coordinates again can make the definition of an RGF

“coordinate invariant”.

2.4. Branin’s method to calculate symmetric

VRI points

Natura non facit saltus.

Titus Lucretius Carus

However, nature can make bifurcations. The BP

of a reaction path is an interesting issue in theoret-

ical chemistry.28–31,38–42,90–101 Because the gradient

directions of the PES are uniquely determined, curves

calculated by RGF to different directions r cross if

and only if the gradient vanishes at the crosspoint,

i.e. the crosspoint has to be a stationary point. How-

ever, different branches of the solution of the same

reduced gradient curve with respect to r may also

cross each other. These points are characterized as

the branching points of the reduced gradient curve

being the VRI points of the surface. Thus, the branch-

ing of an RGF curve (symmetric or unsymmetric) is

connected with the emergence of special points of the

PES. Whenever a reduced gradient curve reaches a

VRI point, the curve branches, and at every VRI point

of the PES the solution of a corresponding reduced
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Fig. 7. RGF for PES {1}51 with VRI points (•).

gradient curve branches;8 however, not every RGF

curve has a BP. The path following of those RGF

curves which have a BP allows one to find VRI

points. Usually those curves should have a special

symmetry in configuration space. In Fig. 7 there are

four VRIs indicated by a bullet. The bold-faced, dot-

ted RGF lines in y direction (curves with Ex = 0)

show symmetric VRI points at the crossing with the

y ≈ 0 branch. The other kind, the nonsymmetric

VRI points, are obtained by the central RGF curves

of the thin bundles of curves. The characteristic at-

tribute of every VRI point is the extra zero eigenvalue

of the Hessian. At least one eigenvalue changes its sign

when going along the gradient, where the correspond-

ing eigenvector is orthogonal to the gradient. This

means, a valley changes into a ridge or vice versa. VRI

points are defined independently of the RP definition.

Figure 7 shows that only special RGF curves bifur-

cate. The two other RGF curves of the three-bundle

shown connect two extremal points of the PES of an

index-difference of one: that is the general case. The

special bifurcating RGF curve connects four extremal

points of the PES where the VRI point is the knotty

point in between. If one looks at the two branches of

this special RGF solution, one may observe that one

branch connects two SPs of index one, and the other

branch connects the minimum of index zero with an

SP of index two.

An RGF curve which reflects the symmetry of the

PES, like the RGF in y direction in Fig. 7, may serve

as a good model of an RP for the vibrational excita-

tion along the second mode of the minimum MIN1, the

wagging. The SP in uphill direction is an SP of index

two.102 In front of this SP, the pathway uphill bifur-

cates at the bullet and one branch leads to the indi-

cated SP, a running pass (at the right-hand side, there

is symmetrically also an SP at the left-hand side). In

the contradictory case, it is not to assume that the

special RGF line to the indicated nonsymmetric VRI

point plays any special role for a reaction. It only

marks the border line for the family of RGF curves

which can reach the indicated SP. Those RGF curves

which go uphill along a search direction with more y

parts, more wagging — find the indicated SP of the

inversion (see Fig. 6). The RGF curves with a higher

part of x direction find the other SP of index one in

the MEP valley at the line y ≈ −1, the torsion, a low

pass (see Fig. 5). We may define the “shortest” RGF
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curve of the respective family to be the best model

of the RP to the adjacent SP, note a quite differ-

ent ansatz in subsection 2.8. Or, alternately, one

may choose that special RGF curve which follows

the gradient direction being equivalently to the decay

vector of the SP, to represent the RP. None of these

possible RPs touch at the nonsymmetric VRI point:

the indicated VRI point in Fig. 7 marks the border

line between two families of RGF lines leading to two

different SPs. Also the IRC coming from the respec-

tive SP does not meet the nonsymmetric VRI point.

If one stimulates an excitation at MIN1, where should

one define the valley bifurcation for a decision to reach

one of the two next SPs of index one? Is this BP at

the minimum, or is it placed at the nonsymmetric VRI

point? For the moment, we leave the answer open to

the reader (or, you may jump to the Discussion and

Fig. 13 in Sec. 4 below). I guess that nonsymmetric

VRI points will not play a central role in a theory of

branching of chemical reactions.

An inflection point of an energy profile over an

RGF curve generally is not an extraneous singularity,

in the sense of VRI, because g is not orthogonal to

ezero. The curvature of the energy profile along the

MEP is not relevant for the VRI problem!

Difficult to imagine is a further important possi-

bility. The VRI points may form a manifold in the

configuration space of the molecule. Only for two-

dimensional surfaces are these points isolated points

like in Fig. 7. The PES of a molecule can have a

manifold of VRI points with the dimension up to n−2,

if the configuration space of the PES has the dimen-

sion n.8,34,35 Because, at the VRI point, we have the

two constraints only:

(i) the gradient of the PES is orthogonal to an

eigenvector of the Hessian matrix of the PES,

gT ezero = 0 , and (13)

(ii) the corresponding eigenvalue of ezero is zero.

The RGF approach shows an important analogy

to the mathematical theory of Branin,32 the global

Newton method.34,35 It utilizes the adjoint matrix

A of the Hessian matrix H. This is defined as

((−1)i+jmij)
T where mij is the minor of H obtained

by deletion of the ith row and the jth column from

H, and taking the determinant. If the Hessian is in

two dimensions

H =

(

hxx hxy

hxy hyy

)

, then A =

(

hyy −hxy

−hxy hxx

)

is the adjoint matrix and it satisfies the important

relation

HA =

(

hxxhyy − h2
xy 0

0 hxxhyy − h2
xy

)

= Det(H) I2 ,

where Det(H) is the determinant of H, and I2 is the

2D unit matrix. The adjoint matrix A is used to define

an autonomous system of differential equations for

the curve x(s), where s is a curve parameter:

dx

ds
= ∓A(x) g(x) . (14)

Thus, the tangent of the curve of interest x(s) does

not point in the direction of the gradient, as is the

case when using the IRC. The tangent is the gradient

g of the PES transformed by the adjoint matrix A.

The “+” option is used for searching stationary points

with an odd index (SPs with an odd number of nega-

tive eigenvalues of the Hessian), where the “–” option

searches for stationary points with an even index

(minima, or SPs with an even number of negative

eigenvalues of the Hessian).

The Branin method is a fine tool to find symmet-

ric VRI points as exactly as we need them. Calcula-

tions using the Branin method can be done as follows:

choose by trial and error the steplength parameter, l,

and discretize Branin’s differential equation (14) to

xm+1 = xm ∓ l Amgm (15)

where m is the step number.8,9,32,33,86 Am is the

adjoint matrix of the Hessian and gm is the gradient

at point xm. For example, we used an l value varying

between 0.0004 and 100 for the calculation of VRI

points. In the case of the 4-atomic H2CO, we used

up to l = 100 units of the corresponding coordinate

(Å, rad) for a satisfactory exploration along Branin

pathways.33 There, two-dimensional VRI manifolds

are detected lying in the 3D subspace of symmetry

coordinates of H2CO. The l value depends on matrix

Am as well as on the gradient gm at xm, and some-

times it has to be adapted during the calculation

for a satisfactory exploration along the Branin curve.

The product of adjoint matrix times gradient in (15)
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becomes small near VRI points because at the VRI

the gradient is an eigenvector of A and its eigenvalue

is zero, see subsection 2.13 below. This causes smaller

steps near the VRI, and if the parameter l is appro-

priately chosen, then a good convergence is obtained.

Because of the self-correcting definition, there is no

need for a corrector for the Branin method, because

we are not interested in an exact curve following. In

contrast, we usually search for the exact zero of the

orthogonal eigenvalue of any Branin curve. Thus, the

stopping criterion is the zero of the ridge eigenvalue:

below 1 cm−1, or something else, the algorithm may

stop.

As already remarked, there is no need for an

exact curve following. However, an important con-

dition for the VRI search is the strict symmetry

constraint. When starting anywhere in the coordinate

space, a Branin curve may almost reach the VRI point,

however, usually it turns off bypassing this point.

Indeed, the point where a Branin solution turns off

is often a TP of the corresponding RGF curve. The

occurrence of a TP may suggest the nearby existence

of a VRI point. This is shown in Figs. 2 and 7 in

Ref. 8 for Branin solutions on a 3D hypersurface. To

hold a special symmetry along a path, one should

enforce a symmetrization of the next step in the

Branin method.

The general behavior of Branin solutions is: they

connect stationary points of a different index, or they

end in a VRI point. Stationary points of the PES are

limit points of the solution, because there g = 0.

However, there are further possible limit points, or

fix-points, also in regions with g 6= 0. These are points

where

A(x) g(x) = 0 . (16)

Because of the possible zero vector in Eq. (14), the

bifurcation of solution curves can take place some-

where at the slope of the surface, where g 6= 0.

Equation (16) holds if g is an eigenvector with zero

eigenvalue. There is sufficient evidence that the BP

of a Branin curve is a VRI point.21,47 Points which

satisfy Eq. (16) are named extraneous singularities34

of Eq. (14) because they are possible numerical

perturbations of the search for stationary points.

Because of the property of the adjoint

H A = Det(H) In , (17)

where In is the n-dimensional unit matrix, we obtain

for the nonsingular case, if H−1 exists, the system

dx

ds
= ∓H−1(x) g(x) Det(H) (18)

instead of Eq. (14). This represents a Newton step

with a damping factor Det(H). Curves satisfying this

expression are called Newton flows. Solution curves

of Eq. (14) have a special character. Considering the

behavior of the gradient g(x(s)) along a solution, x(s),

we obtain with (14) and (17)

dg

ds
= H

dx

ds
= ∓H A g = ∓Det(H) g . (19)

Thus, the gradient g changes proportionally to g.

This means that the direction of g does not change.

It is invariant along the solution. This means, the

differential equation of Branin (14) has the same

solution curve as the RGF Eq. (6). x′(s) is the tangent

to the solution curve of Eq. (6).8 On the other hand,

(n−1) orthogonal directions ei to g can also be chosen

constantly along a solution. Directional derivatives

along these directions of the surface vanish because

the surface is always orthgonal to its gradient.

∂E

∂ei

= 0 , i = 2, . . . , n . (20)

This system of equations leads to the RGF, Eq. (4), if

we use g and ei as basis vectors of a coordinate system

in Eq. (4).

From another point of view, the RGF equation

gives an alternate definition of the Newton flows in

comparison with Eq. (14). The two strategies: RGF

and global Newton method, are slightly different with

respect to their initial conditions: it is appropriate

to detect unknown stationary points, for instance

SPs of index one (transition states) by RGF. The

method starts at a stationary point, e.g. a mini-

mum, and follows an arbitrarily selected direction of

the gradient on the PES. This may be a chemical

interesting direction, a reaction path. On the other

hand, the Branin differential equation, Eq. (14), may

start anywhere on the PES but outside a stationary

point using the gradient direction of that point. So,

the Branin algorithm may easily stop anywhere, and

continue using the gradient of that point.

If the search direction of a Branin curve does not

exactly coincide with the direction of the gradient at
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the next VRI point (which we search for), then the

curve does not meet this VRI point, and we cannot

grasp the VRI point.8 Hence, we have to start at a

point where the gradient has the same direction as

the gradient at the VRI point, see the example of

such a search direction in Ref. 8 This can be realized

for manifolds of VRI points in symmetric subspaces

of the internal coordinates in the configuration space.

Therefore, a systematic search for VRI points is pos-

sible in symmetry hyperplanes of the PES.8,9,33,86 In

this case, along the pathway of a Branin curve, the

eigenvalue of an eigenvector, being orthogonal to the

gradient, converges to zero.

Figure 8 gives an example of two symmetric

VRI points detected by the pure y-direction RGF

line Ex = 0 (the bold-faced dotted curves). The

surface model {3} is again the example of Ref. 51

being artificially modified in the last summand to

600 cos(6x) cos(2y), and an additional summand of

−500 sin(3y) is used (see also Fig. 1). One may

detect two different possibilities for the character of

the VRI points:8,103 on the left-hand col downhill

from SP3 there the valley bifurcates into two valleys

leading to the two equivalent minima, MIN1 and

MIN2. The central fork of this pitchfork bifurcation

downhill is the ridge to SP1. On the right-hand

side, at VRI2, the ridge coming uphill from SP2

bifurcates into two ridges which lead to two saddle

points of index two, to two summits. The central

fork of the pitchfork bifurcation uphill is the valley

to the SP4. Consequently, on the RP between the
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Fig. 8. RGF curves bifurcate at symmetric VRI points on
surface {3}.

SPs 2 and 4, there does not bifurcate any of the given

RP definitions! Not every VRI point is connected with

an RP bifurcation! At least from the point of view of

the MEP definition by RGF curves, IRC, or GE: the

latter two do not bifurcate at VRI2, but the RGF

curve bifurcates into “false” branches.

2.5. Modification of RGF by following

the tangent of the previous predictor

step: TASC

Und ists Gefühl: wer weiß, wie weit es reicht

und was es in dem reinen Raum ergiebt,

in dem ein kleines Mehr von schwer und leicht

Welten bewegt und einen Stern verschiebt.

R. M. Rilke

We modified RGF to search for “true” MEPs.21,47,48

Let E(x) be the function of the PES, and g(x) its

gradient vector in the configuration space, Rn. The

RGF algorithm8 uses a projection of the gradient of

the PES to fulfill the system of equations

Pr g(x(s)) = 0 (21)

of rank n − 1. The projector, Pr, was chosen to

be a constant matrix for RGF: one which enforces the

gradient to point at every curve point, x(s), in the

same direction r. The tangent to this curve, x′(s),

was obtained by a solution of the following system of

linear equations (see (8) above)

Pr Hx′ = 0 . (22)

The simplicity of the RGF method is based on the

constancy of the Pr matrix. Now, the constant search

direction r in Eq. (21) of the RGF method is replaced

by a direction which is changed during the iteration

process. To understand the idea we will look for an

example. The model surface of sample {4} is

E(x, y) = x2 −x3 +
1

4
x4 +

1

2
(x2 −1.7x+0.6)y2 +

1

4
y4 .

In Fig. 9 the valley (the GE — the fat curve)

between the minimum and the SP is shown, as well

as a family of RGF curves (dotted lines). Some of

these RGF curves also connect the minimum and

the SP of index one. Also shown is the x axis GE
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Fig. 9. RGF (dotted lines) and GE on model {4}.

going over the central hill at (1, 0), an SP of index

two,102 and a ridge GE along x ≈ 1. One may

observe an interesting property of the RGF curves:

their search direction, the gradient being orthogo-

nal to the equipotential lines, does not coincide with

their tangent. Usually, the tangent direction points

“nearer” to the searched valley floor line (the GE)

than the search direction itself. We propose to uti-

lize the tangent of the searched curve itself as the new

searched gradient direction in a modified RGF. This

may sound like a vicious circle. But it is iteratively

realizable because the RGF method is separated into

predictor and corrector steps. We allow the projector

to change after the predictor step: the tangent direc-

tion of the previous curve point iteratively becomes

the search direction for the next point of the curve.

The procedure is named the tangent search concept

(TASC) — the task is: find the minimum path!

We define the projector with the unit vector t =

x′(s)/|x′(s)|, the normalized solution of (22)

Pt = In − t tT . (23)

But all calculations of the predictor-corrector

method were done by Eqs. (21) and (22). In the

tangent derivation for (22) we further assume a

“constant” Pt matrix in the current step. Predic-

tor and corrector will work locally to search for an

RGF curve to the gradient direction x′(s)/|x′(s)| = r.

This is an approximation, but it works well and re-

ally accelerates the calculation of the streambed line.

(See subsection 2.15 for a similar idea.) Usually, TASC

changes the corresponding RGF curve after the pre-

dictor step. This results in a self-consistency on the

valley floor GE (its definition: see subsection 2.9).

Details are given in Refs. 21, 47 and 48 TASC is

limited to follow the direction of the smallest eigen-

value. But the method often also works in cases where

TPs of the streambed GE appear. Such regions are

overcome by successive corrector steps.

In general, the TASC curve follows the valley

floor. Using TASC, the diagonalization of the Hessian

to calculate the lowest eigenvector is avoided. The

aspect becomes computationally important for very

large systems.104 In contrast to the well-known

method of eigenvector following,105,106 the TASC

method provides a locally-defined curve, found by a

predictor-corrector scheme. Again, the success results

from the self correction property. So, this pathway

can be calculated as exactly as necessary by diminish-

ing the steplength of the predictor and the threshold

of the corrector.48 In this manner, the path forms a

fine approximation of that MEP following the smallest

ascent starting from the minimum.

There is compelling proof that the method con-

verges to the GE, if appropriate conditions are

fulfilled.48 Reported examples are valley pathways for

H2O,21 and C2H
+
5 ,86 as well as Lennard-Jones clusters

containing up to 55 atoms.21 In the best case there

are needed 15 predictor + 31 corrector steps to climb

uphill in the large 55-cluster a broad valley to the SP

at the top of the valley.21

2.6. Possibility of Hessian update

To calculate the different Hessians for RGF or TASC

path points, the possibility of updating this expen-

sive matrix should be used. There are two proposals:

first we have the Davidon-Fletcher-Powell (DFP) up-

date of the Hessian matrix.4 The update works in the

case when the index of the Hessian at the minimum

changes into the SP index.4,7 Of course, this is the

condition for an update to serve for a search of path-

ways from minimum to SP. The second possibility is

to use Bofill’s update107 which is well accepted in this

field of computations (see an application in Ref. 89)

2.7. Stochastically explored pathways

There is an alternate way to calculate the RP: by

stochastic means. The presence of a huge number of
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minima in a large molecule can stall the progress

of any deterministic algorithm. Stochastic algorithm

based techniques for locating SPs and construct-

ing reaction paths have been proposed recently.108

The objective function of an optimization is chosen

to contain information about local gradients (and

curvatures). It is E(x) the energy function, g(x) the

gradient, and λi is the ith eigenvalue of the Hes-

sian matrix. Usually, stimulated annealing, genetic

algorithms, or other stochastic algorithms try to

search for a minimal value of E(x). Chaudhury and

Bhattacharyya108 defined an objective function

F (x) = [E(x) − EP ]2 +
n
∑

k=1

βk gk(x)2

+
n
∑

i=1

γiExp(piλi) (24)

which allows one to explore the MEP. Here βk, and

γi are penalty weight factors, and the pi = Sign(λi)

are phase factors, and EP is a guessed energy of the

searched minimum, or SP, or of a corresponding RP

point. EP may serve as an estimated lower bound to

the energy which we provide. This locates a critical

point around EP , if it is there. For locating a min-

imum on the PES the curvature constraint term is

dropped.

A glance at the objective function expression (24)

would suggest that for large systems the techniques

mentioned might become costly. If at each step the

Hessian matrix has to be constructed and diagonal-

ized, the method might not be appealing for larger

systems. One may note16 that the full expression of

the curvature term k =
∑n

i=1 γiExp(piλi) in (24) is

not needed to enforce the curvature constraint since

the higher terms do not contribute much in the over-

all expression. So, evaluation of the first eigenvalue is

enough to guide the search (after eliminating the six

zero eigenvalues associated with translation and rota-

tion which has to be done carefully). With this simpli-

fication, the curvature constraint term in the objective

function would still read k′ = η1Exp(p1λ1), where λ1

is the smallest eigenvalue of the Hessian associated

with the vibrational modes of the molecule. Further

simplification can be achieved by noting that along an

MEP to an index one SP, the eigenvector correspond-

ing to the negative eigenvalue of the Hessian should

point nearly parallel to the gradient. The eigenvector

concerned can therefore be approximated by the

gradient itself (see also Fig. 12).

Now since only the first term, η1e
p1λ1 , in the

curvature constraint remains, λ1 is substituted by the

simple difference of gradients

λ1 new ≈ |g(xl)| − |g(x)| (25)

where g(xl) is the local gradient at a second test

point obtained by taking a small step from the given

point along the direction of the local gradient: xl =

x + l g(x). Near an SP on an MEP, λ1 new should

be negative. The curvature constraint term at the

designated point on the surface becomes

k′′ = η sign(|g(xl)| − |g(x)|) ep1{|g(xl)|−|g(x)|} (26)

where now η is the positive penalty factor which

should lead the method to an SP. (One cannot exclude

the possibility of obtaining an SP of a higher index.)

Having established the objective function one now

uses the stochastic optimizer, for example a genetic

algorithm for exploring the search space. Searching

uphill goes on by successive enlargement of the value

of EP , starting at the minimum, by small steps.

Results for the MEPs of LJ cluster with 7 to 30 atoms

are obtained by usually 600 generations of the genetic

algorithm by the so-called gradient-only method (see

Ref. 16).

2.8. Variationally optimized reaction paths

Liotard and Penot proposed early in the eighties

another alternate way, a “line”-variational ansatz.

The idea was to lay a cord over the mountains and put

it down, at both ends, in the hope that the cord will

approximate the SP.109 The method starts with an

approximate path, for example a line between two

minima, and then refines or relaxes the points of the

path until appropriate conditions are met. Stacho and

Ban describe a procedure in which the points of the

initial path are relaxed along the SD step for every

point, and then a redistribution of the resulting points

is done to maintain equal spacing.110 Ayala and

Schlegel refined the approximate path by optimizing

the highest point to the SP and the remaining points

have to satisfy the SD equation,111 (see also Ref. 112).

An important innovation was made independently

with the RP proposal by Elber and Karplus17,113 and
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by Pratt.114 The aim is, for large molecules, not to

use the expensive Hessian matrix: the PES itself is

a barren landscape. Of sole interest are the lowest

critical points. It is proposed to optimize a line integral

S along a set of curve points x(s) again seen as the

reaction path approximation:

S =

∫M2

M1 E(x(s))
√
∑

xi ′ 2ds
∫M2

M1

√
∑

xi ′ 2ds
, (27)

where M1 and M2 are reactant and product of a

reaction, respectively, and S is the functional to be

optimized. The arc-length element of the line integral

in the denominator gives the path length L. To be

able to use such an ansatz in a computer calculation,

Eq. (27) is discretized by

S(x0,xM ;x(s)) ≈
1

L

M
∑

i=1

E(xi)|∆xi| . (28)

x0 and xM are fixed start and end points of the

reaction, and xi are points of the reaction path which

are searched for. The intervals ∆xi are the differ-

ences xi − xi−1. To keep the points approximately

equidistant, restraints are used for the intervals. The

rigid-body translation or rotation of the molecule is

suppressed by a penalty function. Additional forces

are added to prevent the path from becoming kinked.

The standard non-linear minimization of S is done. It

requires only first derivatives of the PES, which makes

the method suitable for large systems. The number of

points on the path, M , is assumed to be small against

the dimension n. (M is in the order of 10.)

The Euler-Lagrange equations of the first variation

of Eq. (27) are for every curve point of a path which

minimizes S

|x′| , gi − ti
dE

ds
− (E − S)

d

ds
(ti) = 0 , i = 1, . . . , n ,

where t = {t1, . . . , tn} is the unit tangent of the RP.

S is the value of the functional, all other entries in

this equation are local values of the path. If the RP

is assumed to be an SD, then the first two summands

cancel and from the third summand it would follow

that the path has to be a straight line with curvature

zero. Thus, in this special case, the Elber–Karplus

method approximates the SD from SP, but for a curvi-

linear valley, this pathway will also deviate from the

SD. If the SD, coming from a strong side slope, reaches

the valley floor with a “sharp” curvature then the

Elber–Karplus path cuts the corner.115 The connec-

tion of this method with the other RP definitions

of this review is still mathematically mostly not

understood. The method was applied to a conforma-

tional transition of the protein myoglobin with 1531

atoms,17 and it gives pretty good information con-

cerning an MEP which connects two minima. Further

applications are given in Refs.115 and 116 and in refer-

ences therein, as well as in the NEB method (“Nudged

Elastic Band”).117 An elastic band stretching between

the two endpoint configurations is optimized until the

band traces out the MEP using a discrete represen-

tation which is largely decoupled from the motion of

the band.

2.9. Gradient extremal

Panćı̌r118 and Basilevsky/Shamov11 were the first

to formulated local criteria for describing a valley

floor line. Panćı̌r determined two conditions which he

assumed to be obviously given:

(i) The energy must increase along all directions

perpendicularly to the direction of the valley floor

line.

(ii) The curvature of the energy surface along the

direction of the valley must be less than the

curvature along any other direction.

Panćı̌r came to the conclusion that a path satisfying

(i) and (ii) should be a sequence of points where the

gradient, g, is an eigenvector of the Hessian, H.

If the norm of the gradient forms a minimum

along points of an equi-subsurface, E(x) = const.,

i.e. along all directions perpendicular to the gra-

dient,11,12,14,119,120 a point of gentlest ascent of a

valley is found. The measure for the ascent of the

function E(x) is the norm of the gradient vector, the

functional

σ(x) :=
1

2
|g(x)|2 . (29)

The implicit condition E(x) = c may be fulfilled

by the sub-hypersurface x(u, c), where u may be an

(n−1)-dimensional parameter. We treat the paramet-

ric optimization problem with the objective function

σ(x) → Min
x(·, c)

! (30)
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where the nonlinear constraint is E(x) = c. Thus,

objective function and constraint are developed from

the function E itself. We are interested in following

a path of local minima as the parameter increases (if

we do an ascent to the surface) or decreases (if we

go downhill). For almost all values of c one generally

might expect that a local minimum x(c) of problem

(30) depends differentially on c, mainly by virtue of

the implicit function theorem. In the general case,

the determination of a solution curve of a problem

like (30), in dependence of c, needs third deriva-

tives of objective function and constraints,34 however,

compare TASC! Using the normalized gradient

w(u, c) := g(x(u, c))/|g(x(u, c))| (31)

and

Pw(u,c) := I−w(u, c) w(u, c)T , (32)

the requirement for an extremal value of σ is expressed

by

Pw(u,c)∇ σ(x(u, c)) = 0 , (33)

with c = constant. Because of ∇σ(x) = H(x)g(x),

and setting λ := wT Hw, it results in the basic eigen-

vector relation

H(x) g(x) = λ(x)g(x) . (34)

The proportional factor λ(x) is an eigenvalue of the

Hessian matrix, and the gradient is its eigenvec-

tor. Curves x(c) defined by (34) consisting of such

points on consecutive equi-hypersurfaces for differ-

ent sections of increasing or decreasing c are termed

gradient extremals.12 Thus, we define that a point

x belongs to the GE if the gradient of the PES at

that point x is an eigenvector of the Hessian matrix.

However, following a curvilinear curve of consecutive

GE points implies that one actually does not move

in the direction of the gentlest ascent.12,14 The tan-

gent to the GE differs again from its “search direc-

tion” being here the gentlest ascent. The GE Eq. (34)

selects points of the configuration space having an

extreme value of σ(x) with respect to variations on

equi-hypersurfaces. So, if σ(x) has a minimum, the

PES may have a valley-floor GE, however, it may also

have a crest of a ridge. The extrema of σ(x) can also

be maxima or degenerate stationary points.4,14,15 In

Fig. 10 we show the GEs for the test functions of

����� �����

����� �
	��

Fig. 10. Examples with valley GEs (bold-faced curves).

sample {4}, and for

sample {5} : E(x, y) =

x2 − x3 +
1

4
x4 +

1

2
(x2 − 3.0x + 1.25)y2 +

1

4
y4 ,

sample {6} : E(x, y) = (35)

x2 − x3 +
1

4
x4 +

1

2
(x2 − 4.2x + 3.6)y2 +

1

4
y4 ,

sample {7} : E(x, y) =

x2 − x3 +
1

4
x4 +

1

2
(x2 − 4.0x + 3.0)y2 +

1

4
y4 .

The valley-floor GE (fat lines) to the smallest eigen-

value follows the streambed of the surface very well,

where the GE to the second eigenvalue follows a ridge

or a cirque, or quickly deviates from its orthogonal

direction to the valley line (in the cases {6} and {7}).

Thus, GEs to higher eigenvalues are often not well

adapted to follow the line of interesting mountain

formations, or they are misleading. The two lower

examples in Fig. 10 are exceptional in spite of the fact

that a valley line goes (from the left minimum uphill)

over the central SP and then finds a ridge. There is no

valley GE to the two right minima directly from the

central SP. By the way, there is also no direct IRC. But

see subsection 2.2 for a satisfactory path definition in

this case: there is an RGF curve which bifurcates at

the symmetric VRI point.

In Fig. 11 the special RGF curve Ey = 0 is drawn

for example {6}. It may serve as a model for an RP
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Fig. 11. RGF(dotted curve) bifurcates at the VRI.

for a reaction from the left minimum to one of the two

right minima, or vice versa. The pitchfork bifurcation

of the RGF curve well reflects the “quasi invisible”

emergence of the side valleys at the VRI point. To

take such a branching pathway for a model of an RP

seems, on the other hand, still somehow questionable

because a reaction will not take place “around a cor-

ner” of such a bifurcation. (One may observe that the

case {7} of Eq. (35) in Fig. 10 is still more special,

because the central SP itself is the VRI point of the

surface. Note: it is not a monkey SP (see also the

extended treatment in Ref. 31).

One can connect the GE with the steepest descent:

using the arc-length s for the curve parameter, a

general steepest descent curve x(s) is defined by

dx(s)

ds
= −

g(x(s))

|g(x(s))|
=: w(s), . (36)

Its curvature vector is defined by

k :=
d2x

ds2
=

d

ds

dx

ds
. (37)

We quickly find that GEs consist of points where

SD lines have zero curvature15,119,120 (compare also

Fig. 14). Because, with Pw(s) = I − w(s) w(s)T we

have

k = −
Pw(s) Hw(s)

|g|
. (38)

The vector k is perpendicular to the gradient g due

to the action of the projector Pw(s), and its absolute

value is the scalar curvature:

k = (wT HPw H w)1/2/|g| . (39)

It is zero iff Eq. (34) is fulfilled.

The development gives rise to the formulation of

the streambed description of the valley ground GE,

which follows the smallest eigenvalue: if we are on this

gradient extremal, then from the left as well as from

the right-hand side, the SD lines confluent to this

valley line15 (see Discussion in Sec. 4). The GE forms

an isolated curve in the configuration space. It does

not form fields of curves as do the SD lines. But if the

lines of two different families of SD curves confluent

into the GE, from the right as well as from the left, it

can serve as a model of the valley floor.

2.10. The Sun-Ruedenberg approximation

of the GE15

A point showing the shallowest ascent of a valley

is defined by the condition that the gradient is the

eigenvector of the Hessian,11,12 Eq. (34). To follow

the GE is a task which is different from the task for

an SD: the latter always runs downhill, in any point.

But in a general point, there does not exist a GE. To

follow a GE is only useful if we are on such a curve

and will go a next step further. The method of choice

is the predictor-corrector strategy. If x(s) is the GE

with parameter s, then a differentiation of the GE

Eq. (34) to the parameter s gives

(

∂H

∂x
x′

)

· g + H ·

(

∂g

∂x
x′

)

=

(

dλ

ds

)

g + λ

(

∂g

∂x
x′

)

.

Using the matrix ∂H/∂x = T of third derivatives, the

relation is to obtain

(Tx′)g + H2 x′ =
dλ

ds
g + λHx′

for the tangent x′ of the GE equation. If the third

derivative term is not zero, the tangent cannot be

an eigenvector of the Hessian. The tangent differs

from the gradient by a term depending on the third

derivatives.120 Any attempt to follow the GE by

simply stepping along the gradient is incorrect even

in the first-order term. The algorithm of Sun and

Ruedenberg15 constructs the tangent to the GE and

takes a step along the tangent to produce a predic-

tor geometry. Quite analogous to the RGF, or TASC

methods above, at the predictor geometry a correc-

tor step is calculated which brings the point back to

the GE. However, the condition for a GE Eq. (34) is
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already an equation which contains second derivatives

of the PES. Thus, the derivatives for a tangent require

knowledge (of at least one component) of third deriva-

tives of the PES. This is very expensive! It may be

calculated from two Hessians at two slightly displaced

geometries.

We put w = g/|g|, and write the GE equation

0 = (I −wwT)H w/|g| =: f/gTg (40)

using the setting

f = (I −wwT)H g = Pw H g .

Equation (40) is a special case for the value of the

curvature k of SD lines where k = f/gTg. The loci

with k = 0 are crossed by GE curves. The tangent to

f = 0 is given by

df =

n
∑

i=1

(

∂f

∂xi

)

dxi = l
∑

i=1

(

∂f

∂xi

)

ti = 0 (41)

with dx = l t, and t is the unit vector of the tangent

at the GE. If one assumes a new coordinate system,

denoted by y, where the first coordinate is the gradi-

ent direction, and the other form the n− 1 remaining

eigenvectors of the Hessian (with the diagonal entries

εi = λi being the eigenvalues if the point is on the

GE). Let y0 be a point on the GE. The tangent in

y0 can be obtained by the solution of the system of

equations:

n
∑

i=2

Qkit
i = Bkt1 , k = 2, . . . , n (42)

with the new symbolic coefficients

Qki =
∂Hki

∂ y1
|g| + δki εk(εk − ε1) , (43)

and

Bk = −Qk1 = −
∂Hk1

∂ y1
|g| . (44)

The Hki and εi are to calculate in the y coordinate

system. The value t1 in (42) may initially be put to

one, and it is determined by normalization if a solu-

tion of (42) was obtained. Going along the tangent to

point yp, one may leave the GE.

yp = y0 + l t .

Here, l is the steplength. The corrector step c back to

the GE is

ci =

n
∑

k=2

[ST (SST )−1]ik Hk1 |g| , i = 1, . . . , n

with the S matrix

Ski =
∂Hki

∂ y1
|g| + (H2)ki − H11 Hki , k = 2, . . . , n .

On the GE the Ski entries reduce to Qki. There

are (n − 1) equations for n variables t1, . . . , tn which

determine the direction of t. If matrix Q from (43) is

not singular, one has the tangent vector to the GE

t = {1, (Q−1B)2, . . . , (Q
−1B)n}

T t1 , (45)

and t1 again is the factor for the normalization.

Remark. It is clear that the tangent to the GE and

the tangent to an SD path (= g) coincide if

Bk =

(

∂3Ek

∂y2
1∂yk

)

= 0 , for all k . (46)

From the calculation of the matrices Q and B it

is clear that t needs third derivatives of the PES.

However, they are “only” of the kind

∂3Ek

∂yk∂yi∂y1
, i, k = 2, . . . , n , (47)

thus only n(n + 1)/2 such derivatives are necessary.

Per definition, y1 should point to g. One can reduce

in that way the derivatives to one further calculation

of a Hessian, if one searches (Hki) at a point on y1,

that means on w

x̃0 = x0 + l · w (48)

Applications and comparisons of the method are re-

ported by F. Jensen using Ar8 as an LJ cluster, and

H2CO.20,43,63

2.11. GEs and VRI

There is a difference when GE Eq. (34) is compared

to the VRI orthogonality requirement of Eq. (13).

The VRI point satisfies the necessary condition of

orthogonality of the two vectors included in its

definition Eq. (13) for an eigenvector ezero of H with

zero eigenvalue and for the gradient g. A VRI point

is simultaneously the bifurcation point of the two
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branches of an RGF curve. In the GE definition (34)

the gradient has to be an eigenvector itself, while in

Eq. (13) it only has to be orthogonal to a special other

eigenvector. Thus, the gradient need not be an eigen-

vector at a VRI point (in more than 2 dimensions).

Equation (34) forms a system of n equations of

rank n − 1 with n unknown variables x1, . . . , xn. For

curve tracing, we need therefore n − 1 independent

equations. From the extremal definition of GE, it

follows that the n − 1 directional derivatives have to

vanish:

GEi(x) :=
∂σ

∂ ei

= 0 , i = 2, . . . , n . (49)

In Eq. (49), analogous i directional derivatives or-

thogonal to the gradient of E(x) are used, as well as

in Eq. (20), but now the gradient is an eigenvector,

and the ei also may be eigenvectors.

Despite the computational problems, GEs are

often used to describe valley ground pathways and

their branching. However, BPs of a GE are in general

not identical with the VRI points of the PES.8,14 On

the other hand, if a GE meets a symmetric VRI point,

then the gradient is an eigenvector of H by condition

(34) of the GE. If the side branches of the correspond-

ing RGF curve describe valleys, then they may serve

seriously for the RP branches which emerge from the

VRI point (see Figs. 8 and 11).

2.12. GEs and TASC

If we change the projector of RGF after every pre-

dictor step with the tangent direction of the previ-

ous curve point, from Eq. (22), so that t iteratively

becomes the search direction (23) then the proce-

dure is the TAngent Search Concept, TASC. An RGF

curve crosses the GE (see Fig. 9) if its tangent t is

parallel to the gradient of the PES. On the GE, on

the other hand, the gradient is an eigenvector of the

Hessian. If the tangent of an RGF curve coincides

with the gradient, then Eq. (22) is fulfilled. Thus, in

the limiting case for “infinitely small” predictor steps

the numerical TASC procedure should lead to a GE.

To verify this, we define a variable projector by the

dyadic product

PAg = I −
(Ag)(Ag)T

|Ag|2
. (50)

A point x where the gradient g(x) fulfills

PAg g = 0 = g −Ag
(gT Ag)

|Ag|2
(51)

belongs to a gradient extremal.

Proof. Instead of RGF ansatz (51), we use the equiv-

alent Branin Eq. (14). The projector of the original

RGF was Pr to the search direction, r. We replace

the constant direction (for a predictor step) by the di-

rection of the tangent, x′ in (23). If we search for a

solution curve of (21) with direction A g, thus (50),

this becomes Eq. (51). Multiplication by H from the

left-hand side is with Eq. (17)

H g = Det(H) I g
(gT Ag)

|Ag|2
. (52)

Det(H) I is commutative with all other terms and can

change its place into the product (gT Ag), and then

we can replace it back to A H. Thus, the expression

on the right-hand side, without one g, is a scalar. If

we denote it by λ, we obtain the known eigenvector

equation (34), which is the equation of the GE.12 With

v := Ag the eigenvalue becomes14

λ =
vT Hv

|v|2
. (53)

2.13. The action of TASC

If the predictor steplength is not “zero”, the resulting

curve of TASC approximates the valley floor. We find

TASC works well along the direction of the eigenvector

with the smallest (absolute) eigenvalue. Of course, the

best proof is the numerical success of the method.21

To see it theoretically with sufficient evidence, we

again use the equivalent Branin differential Eq. (14)

which has the same solution as the method of RGF. If

e1, . . . , en are the eigenvectors of H with eigenvalues

λ1, . . . , λn then they are also the eigenvectors of A but

with the eigenvalues µi =
∏

k 6=i λk. This is due to the

equation

H ei = λi ei , (54)

and, by multiplication with the adjoint matrix, we get

A H ei = Det(H) ei = λi A ei , (55)
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with the basic property

Det(H) =

n
∏

k=1

λk . (56)

If a point of the solution curve of the RGF method

with the search direction r is reached, the gradient of

Eq. (14) points in the same direction. Expressing r

by the eigenvectors

r =

n
∑

i=1

ri ei (57)

we obtain the relation for the tangent direction of an

RGF = Branin curve

x′ = A r =
n
∑

i=1

ri





∏

k 6=i

λk



 ei . (58)

Let λ1 be the smallest (absolute) eigenvalue and r1 6=

0. The e1 component of the preceding search direc-

tion r is enforced, if in the next step, the new direc-

tion x′ of (58) is used in Eqs. (21) and (22). Thus, if

the new search direction is the tangent of the former

RGF curve, this direction is now turned nearer to the

e1 eigenvector direction of the Hessian. The action is

the greater the larger the differences of the eigenvalues

λ2, . . . , λn are against λ1. The rate of convergence of

an initial direction against the valley floor depends on

the ratio of the extremal eigenvalues of H, but it is

also dependent on the entire matrix spectrum.

Remarks. Formula (58) allows the eigenvector fol-

lowing along the eigenvector of the smallest eigen-

value λ1, which is automatically realized by TASC.

Under this procedure, the calculation of the first eigen-

vector is not necessary. In contrast, we may use the

product14,15,119

λ1 = gT Hg/|g|2 (59)

to guess the smallest eigenvalue on a TASC pathway,

and the gradient is the corresponding eigenvector; see

also the equivalent formula (53). It is necessary for

the use of (59) that we have calculated exactly the

streambed line, by small predictor steps and a small

threshold of the corrector.

If in expansion (57) the r1 becomes exactly r1 =

0 then the action of the eigenvector weighting for

the smallest λ1 does not work. (For example, if in

the course of a TASC search the direction e1 be-

comes orthogonal to a symmetry plane where TASC

searches.)

2.14. Perspectives of TASC

TASC is a direct direction method: it follows straight

forward the ground line of the streambed of a hyper-

surface, downhill or uphill, if such a streambed exists.

The workability of the TASC algorithm to follow the

streambed GE is demonstrated.21,86,89 Tests are done

on highly coupled problems with strong nonlinearity.

The method performs well in practice. For minimum

optimization, one can start at any point in the catch-

ment region of a minimum and follow the gradient

down the slope to the streambed, the “minimum

path”. Then it is to follow this path in the direc-

tion of the smallest eigenvector by TASC. The proce-

dure is a potent method for studying the streambed

of a multidimensional hypersurface. The streambed

is calculable as exactly as we need it. The success of

TASC is based on the tracing of the minimum path,

which we geometrically understand as the valley floor

GE. TASC with projector (23) does not follow other

normal modes along cirques or cliffs: the proof in the

previous subsection shows that the valley direction to

the smallest eigenvalue is followed.

There are other well-known methods of eigen-

vector-following for the search of SPs.105,106 The

methods are more likely to “jump” over the PES than

follow a leading line. They are successful, and their

success uses to some extent the accident. The success

is demonstrated for high-dimensional LJ clusters with

an overwhelming number of minima and SPs.106

2.15. A gradient-only search for the SP:

IRC uphill?

The direct inversion of the IRC search direction, to go

uphill, is (numerically) impossible6,62 — there is no

hope following the “good” path upward from either

reactant or product. In this subsection we report on

algorithms which allow one to go uphill along a valley

bottom in the direction of the weakest ascent. If an

SP is at the top of the valley then it might be found.

The energy profile over the reaction path should be

a “valley floor” of the PES leading through the point

of highest energy, the SP of index one. There are two
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methods proposed for a “gradient-only” scheme: a

minimization of an equation including the gradient,120

and a controlled zigzagging procedure.61

Schlegel detected120 that leaving the GE along

the gradient direction in a GE point x0 does not

change the direction of the gradient, in first-order (see

Fig. 12). If again we put w = g/|g|, and do a step

x1 = x0 + l w0, then we can develop the gradient in

x1 to

g1 = g0 + H0 (x1 − x0) + O(l2)

= g0 +
l

|g0|
H0 g0 + O(l2)

and using the GE equation this gives

= (1 + λl/|g0|)g0 + O(l2) .

Thus, g1 is parallel to g0. This can be rewritten in

an equation

g1 − (g1
T g0)g0/|g0|

2 = 0 .

The zero search of this equation can be done by

standard methods if a steplength l is set. It seems,

however, that it will require evaluations of many

points which make this procedure less attractive than

the tangent-based algorithms described above.

Quite an analogous idea was proposed in Ref. 61

We should realize that the direction of the scaled

gradient vector of the point x0 pointing to x1 does

not agree with the direction of the gradient vector in

x1, in the general case. However, on the GE this may

happen (see Fig. 12). In the points x0, x0l, and x0r

the gradients are drawn. In points x1, x1l, and x1r

the negative gradients are used. In case of the fall in

either of the two directions g(x0) = −g(x1), we as-

sume that we are on a valley pathway. Controlling for

coincidence in the two gradients is achieved by means

of the scalar product of the normalized vectors. A

point x belongs to a q-minimum energy path (qMEP)

if the vector equation holds

g(x)/|g(x)| = g(xq)/|g(xq)| , (60)

where

xq = x + q g(x)/|g(x)| ,

and q > 0 is a steplength parameter for an up-

hill search. In comparison to Eq. (5), this is an

x_0

x_0l

x_0r

x_1

x_1l

x_1r

Fig. 12. Scheme of gradient vectors on and near the valley
floor. −g(x1l) and −g(x1r) are used for corrector steps.

intensification. (The definition is also satisfied by

points on a “q-ridge”.)

The definition (60) contains a local characteriza-

tion of certain points x. Thus, the definition does not

need an initial condition of the pathway, as opposed

to the IRC, which does need an SP.18,36 The definition

compares differences of gradient vectors. However,

it does not use higher derivations, as it is necessary

using the local definition of GEs.12,15,121 If q is suffi-

ciently small, and if the point x fulfills the condition

of Eq. (60) then we are near the so-called asymptotic

steepest descent path,22 a line defined by the conflu-

ence of many SD lines from the right and from the

left-hand side into the streambed of the valley ground.

The valley floor may be curvilinear. The qMEP will

follow its curvature. Points next to the qMEP are

shown in Fig. 12. Gradients at these points have a

characteristic pattern. If the point xl0 is to the “left”

of the qMEP, then the negative gradient of xl1 points

a step to the right. And vice versa, if the point xr0

is displaced to the “right” then the negative gradient

of xr1 points to the left. Thus, these negative gradi-

ents may be used as corrector steps. They work in a

procedure to follow the qMEP.

With two parameters: steplength l = q, and

tolerance ε, the algorithm works well if ε is two or

more powers of ten smaller than q. Results are given

in Ref. 61 for small test cases; they show the theo-

retical possibility to work with such an algorithm,

but they also show analogous problems like the SD
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itself: the strategy has a strong affinity to zigzag-

ging along the pathway. To suppress this, we have

to use very small steps q and very restrictive cor-

rector thresholds. The algorithm needs at least 1800

steps to go uphill in an LJ-cluster of Ar4 from tetra-

hedron minimum to diamond SP. The procedure is

a local working predictor-corrector algorithm using

“controlled” zigzagging of gradient steps uphill along

the qMEP. The algorithm is very simple. It works

in any coordinate system, in Cartesian or internal

coordinates. All degrees of freedom are automati-

cally taken into account. The algorithm will not be

disturbed by zero eigenvalues because it does not need

a matrix inversion. The algorithm needs a high num-

ber of steps to find the exact localization of the SP in

comparison with methods of second order. Thus, as

all other gradient methods do, the proposed method

suffers from slow convergence to the stationary

point.122 It is well-known that this may be greatly

improved by incorporating a method of higher

order.123 However, if the Hessian of the PES is avail-

able, we do not need any first order method at all.

In the limit for q → zero, the qMEP will con-

verge to the GE. If the GE does not form a pathway

between a minimum and a nearby SP, however, if it is

separated by TPs which hide the valley structure of

the PES, then the difference between a qMEP with a

non-zero q-value and this GE is that the qMEP can

bridge the gap between the TPs and goes up to a SP

of the potential.61

3. Invariance of Definitions from the

Coordinate System

Reaction paths are a widely used concept in theoret-

ical chemistry. Properties of such paths should be

independent of the coordinate system employed. If

this were not the case then we would obtain differ-

ent dynamic and thermodynamic properties from dif-

ferent coordinates. This seems like a trivial point, and

we are sorry to belabor it. It is evident that the invari-

ance problem, which has been solved mathematically

a long time ago (report6), again and again penetrates

the discussions in this field.45,46,124,125

The geometrical arrangement of the atoms of a

molecule in the space R3 can be computed in a definite

mathematical way and used to obtain the electronic

energy of exactly this shape of the molecule. If we

change the molecular structure, we will get a differ-

ent energy. Thus, the potential energy surface (PES)

emerges as the result of computations as a hypersur-

face over the configuration space of the molecule. The

geometry of every molecular structure clearly corre-

sponds to a particular molecular electronic energy,

and these energies are independent of the kind of

coordinates in the configuration space of the molecule.

Analogically, we can go the next step: we define by

a pure mathematical concept a “pathway” of chang-

ing the molecular structure from one special point of

its configuration space to another point. A definite

energy of the molecule belongs to any point along

this hypothetical pathway. From a mathematical point

of view, it is clear that we can define this pathway

as being independent of the choice of coordinates in

the configuration space of the molecular system.126

Perhaps, some confusion concerning the invariance

problem124 comes from the fact that the usual con-

cepts for defining reaction paths use the properties

of the PES in a concrete coordinate system. But a

change in the coordinate system by means of a definite

transformation formula can always be compensated

for by changing the method for the computation of the

reaction path by an inverse transformation formula.

What is the original pathway? In general, this is, and

remains, a question of convention. It depends on the

purpose of the investigation. For instance, a mass-

weighted Cartesian system is well suited, if we search

for chemical reaction pathways. It is an isoinertial

system, and it is useful for dynamic calculations as a

natural continuation of the spectroscopic treatments

of vibrations and force constants.127

In a reaction, each atom describes its own path-

way in the 3D Cartesian space, and the total move-

ment of N atoms of the molecular system defines the

migration of a point in the configuration space R3N ,

say by coordinates yi, i = 1, . . . , 3N = n + 6. One

needs coordinate invariance for the mass-weighted in-

ternal coordinates xk = xk(yi) throughout. They

are given by a z matrix. The PES E(x1, . . . , xn)

is a scalar depending on the coordinates xi of the

molecule. The coordinates are assumed as the con-

travariant vector x = (x1, . . . , xn)T . Each derivation

of E(x) to xi, with i = 1, . . . , n, yields a component

of a vector, termed the gradient vector of E. ∂E/∂xi

takes the ith place in the gradient g = (g1, . . . , gn)T
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which is a covariant vector.6,37 The corresponding B

matrix127 is

B =

(

∂xk

∂yi

)

, k = 1, . . . , n , i = 1, . . . , n + 6 ,

(61)

with n rows and (n + 6) columns. It serves as a linear

transformation

gC = BT gI (62)

for the change of the gradients in Cartesian or internal

coordinates, and

HC = BT HIB + Γ (63)

for the change of the Hessians. The Γ term comes out

of the chain rule to

(Γij) =

(

∑

k

(gI)k
∂2xk

∂yi∂yj

)

. (64)

Explicit derivatives of the B matrix to the Cartesian

coordinates are given in Ref. 129 The backtransfor-

mation to the gradient gI of (62) can go on by first

a multiplication from the left-hand side with B and

then with the use of the inverse of the regular (BBT )

matrix:

(BBT )−1 BgC = gI . (65)

The transformation matrix on the left-hand side is

the “left inverse” of BT ; it is called the pseudoinverse

matrix B+. It is also an (n × n + 6) matrix. The

contravariant metric tensor G−1 = (gij) is calculated

point by point along the pathway of an MEP taking

BBT where the usual metric tensor G = (gij) forms

its inverse matrix. (There is a misprint in Ref. 9) The

pseudoinverse is B+ = GB. The gradient gC and

the Hessian matrix HC are calculated in Cartesian

coordinates by most quantum chemical programs, for

example we use the Gamess-UK.128 However, at any

point they are transformed to their internal version

by B+ gC = gI and B+ HC (B+)T = HI (where we

ignore the Γ term in (63) for the Hessian, because it

is usually small, cf. also the subsection 3.2).

3.1. Path of steepest descent

We assume a curve x(s) = (x1(s), . . . , xn(s)) in the

configuration space Rn where the tangent vector of

x(s) should point at any value of the parameter s in

the direction of the negative gradient vector of E. The

curve x(s) is described by contravariant coordinates,

xi(s), being themselves simple functions of s. Thus,

their derivatives to s are dxi/ds (also contravariant

coordinates). It is only permitted to compare objects

of the same covariant or contravariant character. We

have to use the contravariant form of the gradient

vector6 which includes the metric tensor on the

right-hand side

dxi

ds
= −

n
∑

j=1

gijgj = −gi , i = 1, . . . , n . (66)

Both sides of Eq. (66) are contravariant vectors and

change according to the same rule. Mathematically,

a solution of Eq. (66) yields a curve invariant from

the actual coordinate system. When making the often

used (but questionable) ansatz

dxi

ds
= −gi , i = 1, . . . , n (67)

one deals with two different kinds of vectors on

both sides of the equation. Thus, we could not ex-

pect similar behavior on both sides of the equation

under coordinate transformations. We can compute a

solution curve of Eq. (67) by analytical formulas, if

possible, or by numeric methods. However, a compu-

tation using this equation would make the curve of

Eq. (67) (the SD of E in the actual coordinates) to

a non-invariant line; see Refs. 3 and 4 for examples,

and Ref. 6 for an extended analysis of the problem.

For an example in this review see subsection 3.5.

Equation (66) can be utilized to calculate an RP

provided the SP of the PES is found beforehand. This

“intrinsic” SD path (IRC)36 leads to the next

minimum. However, in general, it does not always

follow the “valley floor” line (see Figs. 2 and 4 —

compare also Fig. 4 of Ref. 14). The reason is that

the valley floor often represents an asymptote of all

gradient curves descending to the reaction valley from

its side slopes.27 We need a criterion that allows one

to distinguish the floor line points of a valley from

all other points. This may be found in the GE

equation.11,12,103,118

3.2. Gradient extremal

For a valley floor, the ansatz of a defining curve re-

sults from the idea that the gradient norm of the

PES, is proved along an equipotential level, should be
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minimal. In Cartesian coordinates, this leads to the

equation

HCgC = λgC , (68)

where H is the Hessian matrix, g is the gradient

vector, and λ is an eigenvalue of the Hessian ma-

trix. The character of the system of Eq. (68) is dif-

ferent from that of the system of Eq. (66). The SD

system can be fitted to arbitrary starting points where

the gradient is not zero. We can draw a family of

gradient lines over a region of the configuration space.

In contrast, Eq. (68) has isolated solution curves,

in the general case. They do not form a field of

neighboring lines.121 To develop (68) in a coordinate

independent shape, we first study the behavior of

gradient and Hessian matrix under a transformation.

The gradient g = (g1, . . . , gn)T is a covariant

vector. Correspondingly, we get its contravariant

components by

gi =

n
∑

j=1

gijgj , (69)

(compare Eq. (66)). A derivation of g to any xk gives a

two-dimensional field of combinations of ∂2E/∂xi∂xk

with i and k. It is usually arranged in the so-called

Hessian matrix. In general, co- or contravariant cha-

racteristics cannot be assigned to the partial deriva-

tives of this matrix under a coordinate transformation,

because there are mixed terms resulting from the

application of the chain rule44 (see Eq. (62)). The

new terms are connected with the coordinate system

and can be compressed in special symbols in the pure

internal coordinate space. The matrix

(Hij) =

(

∂2E

∂xi∂xj
−

n
∑

k

∂E

∂xk
Γk

ij

)

, i, j = 1, . . . , n

(70)

with

Γk
ij =

1

2

n
∑

l

gkl

(

∂gjl

∂xi
+

∂gil

∂xj
−

∂gij

∂xk

)

and
n
∑

l

gklglm = δk
m ,

shows the character of a two-fold covariant tensor.

The functions Γk
ij are the Christoffel symbols (E. B.

Christoffel, 1829–1900)130 (see textbooks in dif-

ferential geometry). In the Cartesian coordinates,

the metric elements, gij , are all constants, the

Christoffel symbols are zero, and H reduces to

the second-order partial derivatives only. This sim-

ple matrix can be the initial matrix for a general

definition of the Hessian tensor, in the general case of

curvilinear coordinates,131,132 which we develop with

Eq. (70). Note, in the internal molecular coordinates,

the Christoffel symbols are connected with the Γ term

of Eq. (63) by

(Γk
ij) = B+

(

∂2xk

∂yi∂yj

)

(B+)T , k = 1, . . . , n . (71)

The n + 6 rows of the matrix Eq. (68) become, if

we assume that the used coordinates are the incipient

ones,
∑

j

(Hij − λδij)gj = 0 , i = 1, . . . , n + 6 . (72)

If we assume the Hessian to be of two-fold covariant

character corresponding to Eq. (70), we can transform

Eq. (72) from yi coordinates onto the new coordinates

xi. We get

0 =
∑

k,l

∑

j

(

H ′
kl

∂xk

∂yi

∂xl

∂yj
− λδij

)

(

∑

m

g′m
∂xm

∂yj

)

=
∑

l,m,k

(H ′
kl g′lm g′m − λg′k)

∂xk

∂yi
= 0 ,

i = 1, . . . , n + 6 .

One needs ∂xk/∂yi 6= 0, thus the transformation

should not be singular. We get the general, invariant

gradient extremal equation11

n
∑

l,m

Hkl glm gm = λ gk , k = 1, . . . , n . (73)

Again, it follows from the tensor character of this

equation that any solution curve is invariant under

coordinate transformations.

3.3. Eigenvectors of Hessian in

internal coordinates

Sometimes the Hessian is needed, in equations like

(73), in the mixed character HIG
−1. The Hessian

may be symbolically given as (G−1/2)T HI G−1/2

for the frequency analysis,9 using the Cholesky

decomposition83 of (gij) into a product of a lower and
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an upper triangular matrix:

(gij) = (gij)1/2 · ((gij)1/2)T .

The eigenvalues of the internal Hessian matrix com-

bined with both factors (gij)1/2 correspond to the

eigenvalues of the Cartesian Hessian HC where,

additionally, the so-called zero eigenvalues of trans-

lation and rotation emerge. To expand this a little,

the ansatz (73) is used for a covariant eigenvector e

of HI G−1. We may imagine the following operation:

split the inverse matrix of the metric, G−1, into one

lower and one upper tridiagonal matrix

(glm) = LLT =







L11 ·· 0

·· ·· ··

Ln1 ·· Lnn













L11 ·· L1n

·· ·· ··

0 ·· Lnn







which means for the elements

glm =
n
∑

k=1

Llk Lkm =
n
∑

k=1

Llk Lmk . (74)

The calculation of L starts with L11 =
√

g11 and

obtains by iteration the further Llm.

The eigenvector equation (73) being now

H ·G−1 · e = (H · L) · (LT · e) = λe (75)

gives, if multiplied with LT from the left,

(LT · H · L) · (LT · e) = λ (LT · e) . (76)

The matrix (LT · H · L) remains symmetric and has

the real eigenvector (LT ·e) and the real eigenvalue λ.

Vice versa, it holds for the eigenvector

L · (LT · e) = (L · LT ) · e =

(

n
∑

m=1

glmem

)

= (el)

(77)

which are the contravariant components of the “eigen-

vector” (LT · e), and which covariant version was

the starting point in (73). Using the inverse rule to

Eq. (69) one may obtain em =
∑

gmle
l.

3.4. The invariance of RGF and of

Branin’s equation

For the definition of RGFs using the projector (7) in

Eq. (6), we have to start with a covariant vector r for

the search direction because we will compare it with

the covariant gradient. We then have to use for the

transpose rT the contravariant form, in the projector

Pr := I− rrT. It has to be recalculated at new curve

points because the metric (slowly) changes from point

to point. The dyadic product makes Pr is a mixed

tensor with one covariant and one contravariant index.

Pr is applicable to the covariant gradient in Eq. (6),

as well as to the two-fold covariant Hessian in Eq. (8),

but it does not change the character of its argument

after application. Then an RGF calculation is invari-

ant under coordinate transformation. For TASC, the

search direction r is replaced by the covariant tangent

vector. The predictor-corrector method works with

Pr = Pt as long as the GE to follow is the GE with

the smallest (absolute) eigenvalue of the PES.21

RGFs are defined by Eqs. (6) and (8). However,

they are also solutions of the differential equation of

Branin (14) using the adjoint matrix A. The property

holds

H A = Det(H) I . (78)

We have with Eq. (70) that H should be used as a

two-fold covariant tensor. To fulfil Eq. (78) under any

coordinate transformation: giving a “constant” ma-

trix on the right-hand side, the matrix A has to be

a two-fold contravariant tensor. Thus, in Eq. (14),

the matrix A shifts the covariance of g, and saves the

contravariant character of x′. In contrast to the SD

Eq. (66), no additional use of the metric is needed.

3.5. Coordinate independence of VRI points

We describe an example of an independent definition

of VRI points on a 2D test surface.45,46 The (x, y) sys-

tem may be a Cartesian system. The function of the

surface is f(x, y) = −x (1 + y2). There is the matrix

of second derivatives

(

fxx fxy

fyx fyy

)

=

(

0 −2y

−2y −2x

)

, (79)

thus the point (0,0) is a VRI point of the surface.125

A nonlinear coordinate transformation x(u, v) = u −

v2/2, y(u, v) = v giving the transformed function

f(x(u, v), y(u, v)) = F (u, v) = (v2/2−u)(1 + v2), and

the matrix of second derivatives of this function at

u = v = 0 can be used. The components of the gradi-

ent of f(x, y) are fx = −1 − y2, fy = −2xy, and the
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incipient SD equations may be

x′ = −fx , y′ = −fy . (80)

In a local understanding of the coordinate transforma-

tion, we use the linearized part of the transformation

in the usual B matrix scheme127

(

du

dv

)

=

(

ux(x, y) uy(x, y)

vx(x, y) vy(x, y)

)(

dx

dy

)

=

(

1 y

0 1

)(

dx

dy

)

. (81)

To define the SD in a coordinate invariant calcu-

lation, we use the chain rule fx = Fu ux + Fv vx,

fy = Fu uy + Fv vy, and we use the transformed

components Fu = −1 − v2, Fv = v(1 − 2u + 2v2).

They belong to the covariant gradient vector. We in-

clude these terms in Eqs. (80) and we multiply the

Eqs. (80) either (i) by ux and uy, correspondingly,

and add both, or (ii) by vx and vy and add again both.

There is

u′ = ux x′ + uy y′ = −Fu g11 − Fv g12 in case (i)

v′ = vx , x′ + vy y′ = −Fu g21 − Fv g22 in case (ii)

with the metric symbols g11 = ux ux + uy uy, g12 =

g21 = ux vx+uy vy , and g22 = vx vx+vy vy. We obtain

the components of the contravariant gradient vector,

which is defined by

F u = g11Fu + g12Fv , and

F v = g21Fu + g22Fv .
(82)

The contravariant inverse metric tensor gij is

(gij) =

(

1 + v2 v

v 1

)

. (83)

We find

F u = −1 + v2(v2 − 2u − 1) , and

F v = v(−2u + v2) .
(84)

The contravariant gradient vector is the right-hand

side of a coordinate invariant steepest descent

equation

du(s)

ds
= −

F u

|F u|
,

dv(s)

ds
= −

F v

|F v|
. (85)

It has the same solution as in the original SD equation

in the Cartesian coordinates (x, y). The reason is

that this gradient vector has tensor character.6,131

The long known conclusion is: the pathway of SD is

invariant from a coordinate system (if we calculate it

in the coordinate invariant form of Eq. (85), but see

in contrast Eq. (67) above).

In order to study the Hessian matrix, the next

derivation of the gradient to u or v results in a

combination of second derivations. The invariance

problem is trivial for stationary points because the

gradient is zero at those points. Invariance problems

arise from a non-vanishing gradient. The additional

terms are connected with the new coordinate system

and can be compressed in special symbols. The matrix

becomes44 in the case of the (u, v) system

H11 =
∂2F

∂u∂u
−

∂F

∂u
Γ1

11 −
∂F

∂v
Γ2

11 ,

H12 = H21 =
∂2F

∂u∂v
−

∂F

∂u
Γ1

12 −
∂F

∂v
Γ2

12 , (86)

H22 =
∂2F

∂v∂v
−

∂F

∂u
Γ1

22 −
∂F

∂v
Γ2

22 .

This matrix (Hij) shows the character of a two-fold

covariant tensor. In order to calculate the last term

H22, for example, we have to calculate the so-called

Christoffel symbols44,130,132

Γ1
22 =

1

2
g11

(

2
∂g21

∂v
−

∂g22

∂u

)

+
1

2
g12 ∂g22

∂v
= −1 ,

Γ2
22 =

1

2
g21

(

2
∂g21

∂v
−

∂g22

∂u

)

+
1

2
g22 ∂g22

∂v
= 0 .

(87)

It is also Γ1
11 = Γ2

11 = Γ1
12 = Γ2

12 = 0. Here, we have to

use the covariant metric tensor gij which is the inverse

of the gij . It is

G = (gij) =

(

1 −v

−v 1 + v2

)

. (88)

In non-curvilinear Cartesian coordinates, the metric

elements gij are constant, the Christoffel symbols

are zero, and (Hij) reduces to the second partial

derivatives of Eq. (87) only. For a general defini-

tion of the Hessian tensor in curvilinear coordinates

we fully need Eq. (87).44,130,132 For the example holds

H11 = 0, H12 = H21 = −2v, and H22 = 5v2 − 2u,
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and it is H22 = 0 for u = v = 0. The valley-

ridge-inflection point has not moved in the invariantly

defined Hessian. It comes out of the tensor character

of this matrix that its zero attribute is invariant under

coordinate transformations.

4. Discussion

There are demonstrations of the workability of the

new algorithms, RGF, Branin, TASC, for following

loose RP definitions, or the streambed GE as exactly

as one needs it, to find a corresponding SP of index

one. TASC can find an SP lying on the top of the

streambed GE. One has to start at a given minimum

into the direction of the “smallest” eigenvector, or into

an assumed reaction direction. (Alternately, we may

also start at an SP and go down.) The tangent search

concept (TASC) is a modified RGF method compa-

rable in its effort with the RGF method.7–9 Only

the projector matrix, Pt, has to be recalculated after

every predictor step. The additional numeric effort

is next to nothing. The TASC procedure is a potent

method for studying the streambeds of multidimen-

sional surfaces. It allows one to go really uphill a val-

ley floor, “like so many salmon swimming upstream ”.

Its success is based on the numerical tracing of the

MEP which we mathematically understand as the

valley floor GE. This success results from the self cor-

rection of the modified RGF method: the tangents of

RGF solutions to different directions are “contractive”

in the sense that they are always a “better” guess than

a constant RGF direction, to search for the streambed

line. The original RGF7,8 already forms an effective

tool to find SPs where the choice of the search direc-

tion, thus of the “loose RP” is quite arbitrary. But

RGF can diverge more or less from the MEP even if it

starts in eigenvector direction. The choice of the ac-

tual tangent in TASC now overcomes (and restricts)

the arbitrariness of the direction choice used in the

RGF method.

The solution of TASC is, after some initial itera-

tions, uniquely defined by the PES, actually a numeric

approximation of the valley floor GE. But this is

also its “fault”: its special mathematical working

mechanism restricts TASC to GE pathways where

the valley direction represents the smallest (abso-

lute) eigenvalue. The complexity of all possible GEs

(compare Figs. 10 and 13) is automatically ruled

out by TASC to the valley floor GEs being those

GEs which are frequently of first chemical interest.

Researchers often wish to find the streambed in the

conformational space of dihedral angles which repre-

sent the weakest modes in a molecule.133 For example,

in the up-to-date discussed folding-unfolding prob-

lem of proteins, it is assumed that mainly the weak

dihedral variables are involved.73,134

Next to the problem of defining a suitable curve for

the reaction path of chemistry is the possibility of RP

branching. The corresponding points are the so-called

bifurcation or branching points (BP). Bifurcations of

the path may be caused by symmetry breaking.28

Then, two equivalent pathways may lead over equiva-

lent transition structures to two or more equivalent (or

chiral) products. We assume here that symmetric RP

branching is connected with the emergence of a special

class of points of the PES, the symmetric valley-ridge

inflection (VRI) points.30,31 The method of following

a reduced gradient as well as the Branin method8 have

succeeded in computing such VRI points.

We find manifolds of VRI points: in higher di-

mensional PES applications, as is the usual case in

theoretical chemistry, a whole manifold of VRI points

does exist.8,9,33 This revises the older view of the

problem, which suggested obtaining an isolated, well-

defined VRI point. The “manifold character” may be

compared with the MEP always to be understood as

a curve. The case raises the question of the signif-

icance of high-dimensional manifolds of VRI points.

Which points on the VRI manifold correspond to

the chemical concept of reaction path branching? To

answer this question we need a criterion allowing us

to decide whether a VRI point is located on an MEP

or not. The IRC is not defined locally and so it is

unsuitable for such a task. In contrast, if a symmet-

ric VRI point fulfills the conditions of a gradient ex-

tremal and the eigenvalues of the Hessian indicate

an end of a cirque, this VRI point is located on an

MEP and so this VRI point is the branching point

of that reaction path. The branches are the RGF

curves of the VRI point. Usually, the GE itself does

not bifurcate at the crossing of the VRI line,21 it only

changes its characterization. The IRC does not play

a role in the branching task: it does not bifurcate,

any where.
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In 1870, James Clerk Maxwell135 gave a discussion

of the so-called lines of slope on the earth surface:

On Lines of Slope

“Lines drawn so as to be everywhere at right angles

to the contour-lines are called lines of slope. At every

point of such a line there is an upward and a down-

ward direction. If we follow the upward direction we

shall in general reach a summit, and if we follow the

downward direction we shall in general reach a bot-

tom. In particular cases, however, we may reach a pass

or a bar.”

On Hills and Dales

“Hence each point of the /../ surface has a line of

slope, which begins at a certain summit and ends in a

certain bottom. Districts whose lines of slope run into

the same bottom are called Basins or Dales. Those

whose lines of slope come from the same summit may

be called, for want of a better name, hills. Hence the

whole earth may be naturally divided into Basins or

Dales, and also, by an independent division, into hills,

each point of the surface belonging to a certain dale

and also to a certain hill.”

On Watersheds and Watercourses

“Dales are divided from each other by Watersheds,

and Hills by Watercourses. To draw these lines, be-

gin at a pass or a bar. Here the ground is level, so

that we cannot begin to draw a line of slope; but if

we draw a very small closed curve round this point,

it will have highest and lowest points, the number of

maxima being equal to the number of minima, and

each one more than the index number of the pass or

bar. From each maximum point draw a line of slope

upwards till it reaches a summit. This will be a line of

Watershed. From each minimum point draw a line of

slope downwards till it reaches a bottom. This will be

a line of Watercourse. Lines of Watershed are the only

lines of slope which do not reach a bottom, and lines

of Watercourse are the only lines of slope which do not

reach a summit. All other lines of slope diverge from

some summit and converge to some bottom, remain-

ing throughout their course in the district belonging

to that summit and that bottom, which is bounded

by two watersheds and two watercourses.

In the pure theory of surfaces there is no method

of determining a line of watershed or a line of wa-

tercourse, except by first finding a pass or a bar and

drawing the line of slope from that point. / . . . /”

0 0.5 1 1.5 2
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Fig. 13. PES {1}51 with GEs and a TP of the valley GE
through SP. The TP characterizes the “closure” of the
SP col.

The watercourse is, in our frame, the IRC of

Fukui. It is a differential equation with the initial

value “near” the SP, no local description of this curve

is known. The formula for the SD line from SP is still

open, for the problem coming from a time two cen-

turies ago! And it could be undetectable, at all. To

compare it with RGF: there is the differential equation

with the same solution like RGF, the Branin equa-

tion. The initial condition for Branin is also the gra-

dient direction of the initial point. The differential

equation of Branin is quite analogous to that of the

SD. However, in contrast to the SD, there was found

the second definition for Branin solutions: the simple

algebraic formula (6) which allows a local decision for

every point.

There is the second type of curves: the valley-

floor-GE. It is a supplement to Maxwell’s proce-

dure as long as the valley-floor-GE exists. (Then it

can be calculated by TASC.) But also if the val-

ley ends, if it is a “blind” valley, the GE can give

us a more accurate means to detect the end. A

GE of the PES {1} is a suitable example show-

ing how the definition of these curves works (see

Fig. 13). The glen of Min1 is a deep, long, and

straight valley. The col of the marked SP opens to

this main valley and an SD path goes downhill along

the slope perpendicular to the contour lines of the

floor (see Fig. 2). At the valley floor, it joins the floor

line. However, we cannot decide at which point the

lines cross, because this is an asymptotic“junction”.

The GE curve, on the other hand, shows a totally
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Fig. 14. PES of sample {4}96 with GE. Steepest descent
paths cross the GE, or is confluent to it.

different behavior. It also runs along the col of the

SP. But then it turns sideways and goes uphill. The

behavior is a consequence of the GE definition to

indicate a valley floor line: the col of SP ends at

the slope to the broad main valley of Min1. In other

words, the valley is a “blind” one. Thus, the GE has

to end, too. The final point is the TP of the GE. The

curve continues as a so-called flank line of the poten-

tial. One may additionally note that the TP of the

GE of Fig. 13 is not the VRI point of the surface (see

Fig. 7), although the VRI point (in the 2D case) has to

lie on the GE. The gradient is orthogonal to the zero

eigenvector. Thus, it is itself an eigenvector in a 2D

configuration space. The “closure” of the col valley is

not detectable by SD. It is indicated only by the GE.

In Fig. 14 one may finally look at the connection of

GE and SD lines: the latter confluent asymptotically

into a valley floor, however, they also cross the GE in

the curvilinear case. (An instructive example is given

in Fig. 9 in Ref. 22.) The SD lines may again devi-

ate from the GE. The crossing point of GE and SD

line is the point where the curvature of the SD line is

zero.15,120 The SD from SP is the IRC. GEs and RGF

curves (see Fig. 9) form a tool that, in comparison

to the IRC treatment only, significantly broadens the

possibilities to explore a PES. However, even GEs and

RGF cannot answer the ultimate question:

“What is the ‘true’ MEP?”

— in the general case.
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List of Abbreviations

(Why is “abbreviation” such a long word?)
BP – bifurcation point (of a curve)
EV – eigenvector
GE – gradient extremal
g – gradient (of the PES)
H – Hessian (of the PES)
IRC – intrinsic reaction coordinate
LJ – (cluster of) Lennard-Jones (particles)
MEP – minimum energy path
MIN – Minimum (of PES)
PES – potential energy hypersurface
RGF – (method of) reduced gradient following
RP – reaction path
SD – (method of) steepest descent
SP – saddle point (of PES)
TASC – (method of) tangent search concept
VRI – valley-ridge-inflection point (of PES)
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M. Kollwitz, K. May, C. Ochsenfeld, H. Öhm, A.
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