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Abstract: The reaction path is an important concept of theoretical chemistry. We discuss the definition with the help
of diverse projection operators for the intrinsic reaction coordinate (IRC), for the following of the reduced gradient
(RGF) or Newton trajectory (NT), and for the Gradient Extremal (GE). We describe different numerical schemes for the
definitions in the context of string methods. It comes out that Newton trajectories are the best ansatz for a string method.
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Introduction

The concept of the minimum energy path (MEP) or reaction path (RP)
of an adiabatic potential energy surface (PES) is the usual approach to
the theoretical kinetics of larger chemical systems.1,2 It is roughly
defined as a line in coordinate space, which connects two minima by
passing the saddle point (SP) (the transition structure) of a PES. The
energy of the SP is assumed to be the highest value tracing along the
RP. It is the minimal energy a reaction needs to take place.

Reaction theories are based either implicitly (transition state
theory2), or explicitly (variational transition state theory2) on the
knowledge of the RP. These theories require only local informa-
tion about the PES along the RP. They circumvent the dimension
problem for medium-sized or large molecules: it is impossible to
fully calculate their PES.

The starting point is a geometrically defined pathway that may serve
as a reaction path. Geometrically defined means that only properties of
the PES are taken into account, but that no dynamic behavior of the
molecule is taken into consideration. Any parameterization s of the RP
x(s) � (x1(s), . . . , xn(s))T is called the reaction coordinate. How a reaction
path ascends to the SP is an uncertainty of the RP definition. We use here
the intrinsic reaction coordinate (IRC),3 the distinguished or driven coor-
dinate method4,5 in the modern form of reduced gradient following
(RGF),6,7 and the gradient extremal (GE).8 We insist that the search for
an appropriate MEP is not necessarily equivalent to the finding of the
steepest descent (SD) pathway from the SP. It is not obvious that the SD
is the best choice to describe kinetics—in the general case. (In a special
theoretical case, the average of a set of molecular dynamics trajectories
match very close the IRC.9)

All the different forms of an MEP, above, can be defined with
the help of projection operators. This tool is employed in string

methods: the string is divided into a collection of points. They
represent the MEP by a chain.10,11 The proposal to applicate string
methods to Newton trajectories (and also to the GE) is given here
for the first time.

If the points of an initial chain evolve according to the potential
forces of the chemical system, then the problem emerges that we
have to prevent all points from falling to the two minima. There are
different possibilities to handle this: a “homogenization” of the
chain by new points in the dynamically defined reaction path
(DDRP) procedure,12 or the inclusion of spring forces into the
chain, for example, in the nudged elastic band method (NEB).13 A
second problem is the affinity of gradient methods to zigzag. It is
known that the pure string iteration for the IRC suffers from the
problem in an enormous way. We find that the string iteration of
a GE also shows the zigzagging in a mild form. The string iteration
of a Newton trajectory does show the least zigzagging. It is locally
defined by a very simple vector field, and the string method can be
applied without spring forces or homogenization extras.

The described string procedure can be downloaded.14 It is an adaption
of a procedure of Stacho and Ban12 (see also a flow chart there).

Projection Operator

We choose a column vector r for the projection. It has to be a unit
vector; in the contrary case it must be normalized. We additionally
use the transposed vector rT being a row vector. The dimension of
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r is (n � 1) where that of rT is (1 � n). We form the dyadic
product

Dr � r � rT (1)

which is an (n � n) matrix. Dr projects with r:

Drr � �r � rT� � r � r�rT � r� � r (2)

where we use the unit length of r in the scalar product. The
projector that projects orthogonally to r is

Pr � I � Dr. (3)

I is the unit matrix. Application of Pr to a vector, �r, parallel to r
gives

Pr��r� � ��I � r � r�rT � r�� � ��r � r� � 0. (4)

Vectors being orthogonally to r are unchanged by Pr.

Steepest Descent—IRC

The SD from the SP in mass-weighted Cartesian coordinates is a
simple definition of a reaction path, which is well known as the
IRC.3 Using the arc-length s for the curve parameter, a steepest
descent curve x(s) is defined by the system of vector equations in
n dimensions

dx�s�

ds
� �

g�x�s��

�g�x�s��� � �w�s� (5)

where g(x) is the gradient vector of the PES and w(s) depicts the
gradient direction with unit length. Numerically, the SD of the IRC
is started by curve following at an SP of index 1, a step in the
direction of the decomposition vector. It is the eigenvector of the
Hessian matrix with negative eigenvalue. The SD along the gra-
dient, �g, is calculated by discrete steps using the differential eq.
(5) with a step-length factor.

The IRC is frequently used as a synonym for the MEP of the
PES. But it has a serious imperfection: in one’s imagination eq. (5)
permits to ascent from the minimum to the SP by changing �w(s)
by w(s); however, it is not possible for practical use due to the
funnel character of SD near the minimum15 leading to the insta-
bility of an eq. (5) “uphill.”16,17 The IRC eq. (5) explicitly needs
the knowledge of the SP for the calculation of the steepest descent
to the minimum: start at the top and work your way down.

Because the SD follows the gradient of the PES, its tangent is
parallel to the gradient and orthogonal to the equipotential hyper-
surface. Trivially, every SD fulfills the projector eq. (4) where the
tangent t(s) of the curve is used for the construction of the
projector:

Pt � I � t � tT. (6)

If x(s) is the SD curve, then t(s) � w(s) of eq. (5) is the tangent
vector for the projector (6) and we have

�I � w�s� � w�s�T�g�x�s�� � Pw�s�g�x�s�� � 0. (7)

Additionally to eq. (5), we have a second definition of the SD by
the projector eq. (7). There is also an old second method to find the
IRC by this ansatz. Liotard and Penot,10 and Ulitzky and Elber11

have chosen a smooth curve that connects two minima. If it is
outside the IRC, then the eq. (7) is not fulfilled at least in some
points. Because there is one and only one curve that goes through
the SP and is SD. We take a resulting vector p � g� after the
projection with the tangent of the curve

Pt�s���g�x�s��� � p�s�. (8)

The orthogonal part to t of �g (downhill) is used for a numeric
approximation of a better curve. The chain of points is varied along
the p vectors under some iterations, and there is hope for conver-
gence at the IRC. Usually, if successful, the iteration loops find the
IRC without preknowledge of the SP, as it is needed in the SD
method above for (5). The way to locally follow the IRC from a
minimum uphill using eq. (7) is also not possible. If we search for
the tangent of the curve by derivative to the curve parameter of the
projector equation Pwg � 0, we do not get an equation for the
tangent of the curve. By contrast, only a zero operator results
throughout (see the Appendix). Thus, eqs. (7) and (8) need a global
string that connects the basins of two minima.

Figure 1 shows an initial chain of points and the approximated
IRC between the left minimum and the SP for the demonstration of
this method. The surface is a simplified 2D model of the PES of
malonaldehyde.7,18 It represents the H transfer in the O–H–O
fragment. If d1 is the O1–H distance, and d2 is the O2–H distance,

Figure 1. Initial arc of points (see Table 1) and IRC (left) on PES (9)
using the projector (7). The right part of the chain is destroyed by
zigzagging.
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the coordinates used are x � d1 � d2 and y is motion along the
O1–O2 stretch. The PES is

E� x, y� � 2y � y2 � � y � 0.4x2� x2. (9)

The use of the model PES is a reduced model of the full molecular
PES. The dimension of 21 internal degrees of freedom is shorten
to two coordinates only. All couplings between these two coordi-
nates and the other coordinates are neglected. In malonaldehyde
this is questionable because the OH stretches have strong mode
mixing.18

Figure 1 shows the result of iterations of variations along p
vectors to the given initial arc of points. Note that the start chain
was chosen as not fully symmetrically between the minima. The
slight asymmetric points of the initial guess are given in Table 1.
The left result is a fine chain for the IRC from SP. However, the
right-hand side also shows a typical situation: the chain zigzags.
(For the demonstration, the vector field p is iteratively used with-
out homogenization,12 without spring forces,13 or without other
reparameterization schemes.19) On the right string, the projectors
totally puzzle the initial chain. The calculation is made by the step

length factor 0.125 for the vectors p, and at the given picture the
calculation stops by a convergence criterion for the highest point
of the chain, the SP, after k � 13 loops. If one uses another
convergence criterion, for example, the difference between the
points of loop k � 1 and loop k, then the zigzagging may fall into
a quasi stable “trap” after a longer run of loops, or it can diverge
at all. Note that the “good” case on the left-hand side, and the
“bad” case on the right side of the chain are obtained by one and
the same calculation.

RGF Curves

It was proposed to choose a driving coordinate along the valley of
the minimum, to go a step in this direction, and to perform an
energy optimization of the residual coordinates.4 Recently, the
method was transformed into a new mathematical form to
RGF.6,7,20 The concept is that a selected gradient direction is fixed
along the curve x(s)

g�x�s��/�g�x�s��� � r, (10)

where r is the unit vector of the search direction. The search
direction may correspond to an assumed start direction of a chem-
ical reaction. Or, it may be the direction between the two minima
of reactant and product, or the direction between the reactant and
the assumed SP. Because r is chosen to connect two specified
minima the algorithm “knows” where it tries to go.5 The property
(10) is realizable by a projection of the gradient employing Pr of
(3). We pose

Prg�x�s�� � 0. (11)

Pr is a constant n � n matrix of rank n � 1. Based on the explicit
definition, the predictor-corrector method of RGF7 follows a curve
(11) along its tangential vector by the derivative to obtain the
tangent x�

0 �
d

ds
�Prg�x�s��� � Pr

dg�x�s��

ds
� PrH�x�s��x��s�. (12)

The matrix H is the Hessian. The RGF is a simple but effective
procedure to determine all types of stationary points.6 In the
general good-natured case, each RGF curve passes each stationary
point. RGF curves are defined by a constant gradient, and a full
family of them connects the extrema if we vary the search direc-
tion r.17

The projector (11) can be used in a string method at every
initial chain point, without any further derivative. If it is not zero,
choose the downhill direction along

p � �Prg � ��I � r � rT�g. (13)

Figure 2 shows the vector field on PES (9) of the projector to
the direction Ey � 0, thus r � (1, 0)T. From a mathematical point
of view, the vector field looks somehow boring. The projector
simply becomes

Table 1. Initial Chain for IRC Search.

x y

�1.839286214 �2.710162124
�1.771267766 �2.501291195
�1.714866194 �2.344580505
�1.664800455 �2.223209085
�1.596948599 �2.085363350
�1.522961419 �1.925516704
�1.441353970 �1.757721992
�1.349117833 �1.585488505
�1.244156101 �1.413683637
�1.123669832 �1.251082924
�0.980532930 �1.115237478
�0.804408860 �1.038180507
�0.621268733 �1.015200747
�0.449881793 �1.009989716
�0.286323818 �1.007955973
�0.120011417 �1.007468749

0.000000000 �1.070039364
0.151270908 �1.006854061
0.317831491 �1.007351093
0.484680929 �1.008964616
0.656032141 �1.016935968
0.853329044 �1.049476236
1.027395340 �1.151112497
1.163032705 �1.299870840
1.281313150 �1.471439756
1.380362626 �1.641677392
1.465186852 �1.805297074
1.539633438 �1.961756735
1.606065617 �2.112309187
1.661022796 �2.257258251
1.702256171 �2.373750468
1.761229138 �2.513088454
1.838787446 �2.708460277
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Pr � ��ij � rirj�i, j�1,2 � �0 0
0 1�. (14)

The search direction r is that direction that connects the two
minima, and the corresponding zero line of the field is a good
approximation of a reaction path. It is clear that the iterated
application of the projector leads to “straight-forward” moves of
the points of any initial string onto the searched trajectory, if the
step length is chosen moderately enough. The resulting chain
converges to the RGF to direction r with an accuracy as exact as
one poses it (in the 2D case). For Figure 2, we start with the linear
straight chain of points between the minima, and a step length
factor of 0.25. We need six iteration loops for an accuracy for the
sum of the positive differences between all the points of the fifth
and the sixth chain of 0.0125.

RGF as a method to move forward in the suspected reaction
valley is tested to be an effective tool in determining the next SP,17

if starting at a minimum. Here we find that its use in a string
method is very effective also. Note that the application of the string
method for projector (13) only needs the gradient, but not the
Hessian matrix of the PES.

Figure 3 shows RGFs starting at the left minimum to three
different search directions for r. The middle curve (large dashes)
is again the curve to direction Ey � 0. The full curve is the RGF
to search direction Ex 	 2Ey � 0. It is also a monotonous
increasing curve between the minima and the SP, however, its
suitability for a reaction path is, in the left part, already a border-
line case—if we also have in mind a dynamical behavior. The third
curve is the RGF to search direction Ex � 0.05Ey � 0. (Curve
with small dashes: the direction is much steeper than the valley
directions of the corresponding minima.) The left branch is a curve
with a turning point (TP) for the energy, which turns from ascent
to descent, and there is a whole part of points where the energy is

higher than the energy of the SP. This curve is not a model for a
minimum energy reaction path. The turning point case4,17,21 di-
vides RGFs into those which can serve as loose RPs, and others:
if the RGF does not contain a TP at the pathway from minimum up
to the SP, it may be used as an RP model.22 (However, in any case,
an RGF curve may serve for a predynamical trajectory of a
reaction.23)

Example of the Müller–Brown (MB) PES

We use the MB potential17,21 (see Figure 4) for a second test of
the string method for RGFs. We start with a straight line

Figure 2. RGF to direction r � (1, 0) on PES (9) using the projector
(13). The vector field p directs every string point of an initial chain to
the curve searched for (solid line).

Figure 3. Three RGFs on PES (9) to different directions r. The long
dashed curve is a good reaction path model. Also, the full curve may
serve as an RP model. TP is a turning point; a trajectory with a TP is
not an RP model (see text).

Figure 4. The Müller–Brown potential.21 The energy is cut at 200
units.
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between the two outer minima, M1 and M3, giving the search
direction r. We use the damping factor of 0.125, and a conver-
gence criterion of 0.04 for the convergence of two loops. An
initial chain of 33 points is used to get a continuous approxi-
mation of the path through three minima and two SPs, and the
string method for the RGF to the direction between the two
minima is used. Projector (13) results in the pathway of Figure
5, a way over the known SPs and through the intermediate
minimum, M2. On the right-hand side, the RGF between the
stationary points is near the IRC; however, the left part of the
RGF curve between the deepest minimum, M1, and the SP1 is a
different path, in comparison to the IRC. But it can also be seen
as a model of an RP. The convergence to level 0.04 is slowly
but straight forward. It needs k � 9 loops.

A stronger criterion makes more loops without a qualitative
better result at SP1. However, a weaker criterion results in a
stop of the calculation where the chain is still not near enough
at the SP1. A larger step length factor causes zigzagging near
the minimum M3. The convergence to the RGF curve is very
quickly between the minima M2 and M3. But the convergence
is slowly on the part between minimum M1 and SP1. Because,
that part in the main valley of the minimum M1 goes along a
very oblique direction in comparison to the search direction r.
Calculating that part alone tolerates a very larger step length
factor: using only the first eight points of the initial chain (seen
from M1) and a damping factor of 0.4 then the string method
converges in five loops with a criterion of 0.025. At the other
side, using only the last 14 points of the initial chain and a
factor of 0.08, then the method converges nearly perfect with
four loops, to a criterion of 0.02, against the true RGF curve
between the minima M2 and M3.

Higher Dimensional Example

We use the Lennard–Jones (LJ) cluster24 of seven Argon atoms,
LJ7,25–27 for a 21-dimensional example of the string method.
There are two minima, a pentagonal bipyramid at �16.51 energy
units, and a capped octahedron at �15.94 energy units, see Table
2. The search direction r is the direction between the minima. We
start with a straight line guess between the minima: the 3D coor-
dinates ( x, y, z) of atoms 1–7 of the two minima are used in a
linear interpolation. We use the small damping factor of 0.03
corresponding to the PES of the floppy cluster and the higher
dimension of the example. The convergence criterion is 0.015 for
the SP convergence. A chain of 12 points is used, and the string
method for that RGF with projector (13) gets the MEP over the
known SP of �15.44 energy units in k � 10 loops (see Fig. 6).
The geometry of the highest point of the resulting chain is given
for the SP in Table 2. The convergence to level 0.015 is still
straight forward: note that the string method for RGFs is simply an
SD in an (n � 1)-dimensional subspace. This method also suffers
from a mild zigzagging.

The PES of the LJ cluster is used in the full Cartesian coordi-
nates including the possibility of overall translation and rotation of
the cluster. It does not mean any difficulties for the method,
because the downhill steps of the projected gradient use only
nonzero parts of the gradient.

Figure 5. Equipotential lines of the Müller–Brown potential with an
initial chain, as well as with the moves of the string method with
projector (13), after k � 9 loops. Used is the projector to the direction
of the initial chain. The true RGF curve is also shown.

Table 2. Initial, SP, and End Structures of an Isomerization Path
of the LJ7 Cluster.

Atom x y z

Pentagonal Bipyramid
1 3.547759056 �0.003635069 0.000034068
2 0.298321962 0.002161463 1.948768591
3 1.307957380 3.090755211 0.000034060
4 1.296948975 �3.090042125 0.000034077
5 �2.333937427 �1.903134748 0.000034073
6 �2.327119736 1.916808429 0.000034063
7 0.298321962 0.002161453 �1.948700455

Saddle Point
1 3.839573630 0.019621762 1.485070022
2 0.119268950 �0.001017963 2.340390978
3 1.543170865 2.558862317 �0.076665641
4 1.568986775 �2.538584348 �0.083724536
5 �2.174049303 �1.916195926 0.009560972
6 �2.193214033 1.896561464 0.015492854
7 0.052078103 0.005695683 �2.393218203

Capped Octahedron
1 3.786668036 0.037900772 2.552105859
2 �0.016702516 �0.007700255 2.654712299
3 1.791808528 1.925378097 �0.081562280
4 1.837159238 �1.881526182 �0.092408998
5 �1.950108375 �1.921455333 0.017197767
6 �1.995328040 1.874450763 0.028013202
7 �0.146824507 0.006038281 �2.711171021
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Gradient Extremal

Pancı́r̆28 and Basilevsky/Shamov29 formulated local criteria for
describing a valley floor line. Pancı́r̆ determined two conditions
which he assumed to be obviously given: (1) The energy must
increase along all directions perpendicularly to the direction of the
valley floor line; and (2) the curvature of the energy surface along
the direction of the valley must be less than the curvature along
any other direction.

If the norm of the gradient forms a minimum along points of an
equi-potential surface, E(x) � const., that is, along all directions
perpendicular to the gradient,8,29 a point of gentlest ascent of a
valley is found. The measure for the ascent of the function E(x) is
the norm of the gradient vector, the functional

��x� �
1

2
�g�x��2. (15)

Using the normalized gradient w(s) of eq. (5) and defining the
projector

Pw�s� � I � w�s�w�s�T, (16)

the requirement for an extremal value of � is expressed by30,31

Pw�s�
��x�s�� � Pw�s�H�x�s��g�x�s�� � 0. (17)

Setting � � wTHw, it results in the known eigenvector relation

H�x�g�x� � ��x�g�x�. (18)

Curves x(s) defined by (17) or (18) consisting of such points on
consecutive equi-hypersurfaces are termed gradient extremals.8

On a GE, eq. (17) reduces to the trivial Pwg � 0. The GE forms
an isolated curve in the configuration space. It does not form fields
of curves as do the SD lines.

In Figure 7 we show the GEs (short dashes) for the function of
example (9). The valley-floor GE to the smallest eigenvalue fol-
lows the streambed of the surface, where the GE to the second

eigenvalue follows a ridge or a cirque. The vector field to eq. (17)
is30

p � �Pw�Hg�. (19)

It is also shown. If one uses it for the variation of a chain in a string
method, there are two possibilities: the sign of the vector may
cause that it points to the GE: then the method may converge. Or
the vector goes off the curve: then the method diverges away from
the GE. The application of a string method is more tricky for
projector (19). But it seems possible, at least on some parts of the
GE.

If starting on PES (9) with the straight line connection between
the minima, the convergence happens only in the region of the
interval x � (�1.3, 1.3) around the SP. Also, the ridge being
below the SP is enfolded by the approximation. Points from the
region of the minima are cleared away by the approximation. The
vector field p shifts the end points of the initial chain. The reason
is the projector itself, which projects orthogonally to the gradient,
thus parallel to the equipotential lines. Points besides the valley
floor, at the slope, are not moved downhill. They are moved quasi
parallel to the reaction path.

In the case of Figure 7, we start with the result of the string
method for the RGF of Section 4 given in Figure 2. Also, with such
a good initial guess, the resulting chain is collected around the SP.
The convergence is slow, and the iteration cannot be driven under
every pregiven level of accuracy. The iteration zigzags near the
given picture shown in Figure 7. The step length factor used is

Figure 6. The energy over two chains of Ar7 clusters with LJ7

potential. The higher one is the straight initial guess between the two
minima: a pentagonal bipyramid (left) and a capped octahedron (right)
(see Table 2). The lower chain is the converged result of the string
method with projector (13) after k � 10 loops.

Figure 7. Gradient extremals on PES (9) and an approximated part of
the valley floor GE using the projector (17). The curve represented by
black dots is the initial guess. It is the NT of Figure 2. The vector field
p of the projector �PwHg excludes a global fit of GEs. Local parts of
GEs may be approximated, if the curly field does not turn off. Shown
is the chain over the SP after k � 18 loops. The accuracy cannot be
increased by further loops.
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0.125, and the iteration is stopped after k � 18 loops with a
convergence criterion of 0.05 for the difference of two loops.

An ansatz of a string method with the long known projector
(19) adapts only the valley of the SP region. It is not able to adapt
the streambed of the valley ground GE near the minima. But there
is a dual GE projector that may be used alternately (see Figure 8).

Branin’s Method

The RGF approach shows an analogy to the mathematical theory
of Branin,32 the global Newton method.33 It utilizes the adjoint
matrix A of the Hessian matrix H. This is defined as
((�1)i	jmij)

T, where mij is the minor of H obtained by deletion
of the ith row and the jth column from H, and taking the deter-
minant. The adjoint matrix satisfies the relation

HA � Det�H�I, (20)

where Det(H) is the determinant of H, and I is the unit matrix. The
adjoint matrix A is used to define an autonomous system of
differential equations, similar to (5), for the curve x(s), where s is
a curve parameter

dx
ds

� �A�x�g�x�. (21)

The “	” option is used for searching stationary points with an odd
index (SPs with an odd number of negative eigenvalues of the
Hessian), where the “�” option searches for stationary points with
an even index. Because solutions of a differential equation are
named trajectories, the solutions of (21) are named Newton tra-
jectories (NT). They are the same curves as RGF curves using the
same gradient.7

The TASC Method

The TASC method34 replaces the constant search direction r in eq.
(11) of the predictor–corrector method of RGF by a direction that
is changed during the iteration process: the tangent direction of the
previous curve point iteratively becomes the search direction for
the next point of the curve. The procedure is named the tangent
search concept (TASC). Curiously, the projector with the unit
vector t � x�(s)/�x�(s)�, from eq. (12), is formally the same
projector as the IRC projector in eq. (6)! All calculations of the
predictor–corrector method of TASC were done by eqs. (11) and
(12) with a fixed t. In the tangent derivative for (12) one approx-
imates a “constant” Pt matrix in the current step. Predictor and
corrector will work locally to search for an RGF curve to the
gradient direction t(s) � r. This is an approximation, but it works
and really goes along the streambed line. Usually, TASC changes
the corresponding NT after the predictor step. This results in a
self-consistency on the valley floor GE. Details are given in refs
34–36. There is compelling proof that the method converges to the
GE, if appropriate conditions are fulfilled.36 Additional to the GE
projector (17) we obtain from the proof of the convergence of

TASC36 that points on a GE fulfill a further projector equation.
Using the normalized Newton tangent of eq. (21) of an NT

a�s� �
A�x�s��g�x�s��

�A�x�s��g�x�s��� (22)

and defining the projector

Pa�s� � I � a�s�a�s�T, (23)

the GE fulfills the alternate projection equation36

Pa�s�g�x�s�� � 0. (24)

The reason is that the matrices H and A have the same eigenvec-
tors. If g is an eigenvector of H then it is also an eigenvector of A
and eq. (24) reduces to Pwg � 0 again.

An Alternate GE String Method

Figure 8 shows the vector field of projector (24) on the PES (9).
The zero lines are, analogous to Figure 7, the GEs. However,
outside the GEs the fields are different. So, the vector fields Pag
and PwHg can be understood to be dual tasks for a GE calculation.
In Figure 8 it is demonstrated that the projector Pa is better adapted
to a string method. The valley GE leading through the minima, and
over the SP, is throughout an attractor for �Pag; however, the
cirque GEs from the minima, as well as the ridge GEs from the SP
are repellors of the field. An enfolding of “false” GEs as in Section
5 is probably not, using the dual projector. But the repellor prop-

Figure 8. Gradient extremals on PES (9) and an approximated part of
the valley floor GE using the projector (24). The curve represented by
black dots is the initial chain. The vector field p of the projector �Pag
is adapted to the search of the entire valley floor GE. The converged
result is reached after k � 9 loops.
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erty of the ridge GE over the SP may cause a small drawback of
this projector version: chain points may be moved away from the
SP. The chain can be diluted at the SP.

With the same damping factor of 0.125 of Section 5 we obtain
the valley floor GE in Figure 8 after k � 9 loops. The convergence
is straight forward. The convergence criterion used is the very fine
value of 0.005 for the difference of the two last chains. Note that
a damping factor for p is always needed. The pure gradient
projection may be too large for a useful numeric variation of the
chain. It is a question of experience to select the best damping
factor.

A change of the sign used in the projectors Pa and Pw changes
the index of the GEs that we may search for. In Figure 7 the plus
sign can be used for the calculation of the cirque GE through the
minima, if a good initial chain is taken before. In Figure 8, the plus
sign can be used for calculation of the ridge GE only, also after
taking a good initial chain.

A combination of the two projectors Pag and PwHg in a
twofold calculation can be the following: determine by Pag the
global valley floor over the SP, and refine the SP region by PwHg.

Discussion

The different types of algorithms for locating SPs are based on
four methods: RP methods, grid search, conjugate gradients, and
quasi-Newton techniques.37 We use the first method: we search
reaction paths. Per definition, an RP leads over the SP, and we
obtain automatically the SP if we are able to calculate the whole
RP by a chain of points. In this article we try to construct the RP
by a string method consisting in to define a guess curve divided in
segments. We have given a general, unified view to IRC, NT, and
GE by projector operators that refine the guess chain into the RP.

Note that no dynamical behavior of the molecule is used.
However, using the RP Hamiltonian method for IRC38 or NTs,23

it is possible to study nuclear dynamics with the “sole” restriction
to move the system along the RP. Normally, with this type of
constraint, one recovers many important molecular dynamic ef-
fects. The reformulation of the RP Hamiltonian has demonstrated
the advantage to evaluate, first, an RP and second, to compute a
constrained dynamics on this path.23

The calculation of the IRC can only go on if one uses a globally
given string. The trivial equation Pwg � 0 holds in every point of
the configuration space. The equation alone cannot be a help for
the finding of the pathway across the SP. If combined with the
tangent of any curve, the projector can serve as a search tool of the
IRC. However, in the numerical realization, the procedure suffers
from strong zigzagging. This is due to the instability of the
“direction that is adjusted on the fly” (see also the Appendix).

1. One way out is the DDRP method.12 It uses for the string
variation the simpler “projector” P � I applied to �g. It needs
a “homogenization” of the chain. It has a high grade of reli-
ability but also has a higher amount of calculation. A plus of the
method is that it moves (or fixes) the start and the end point of
the string into the two minima of reactant and product.

2. A second remedy is a higher order organization of the string
smoothing by an essentially nonoscillatory scheme.19 It also

works, but again, it has a higher amount of organization of the
chain points on the string.

3. The NEB method13 also stabilizes the zigzagging by an higher
amount of the use of spring forces. Their weighting and other
problems emerge,39 (see also ref. 27 and further references
therein).

If one simplifies the “variable” tangent projector of the IRC
search to a constant projector defined by a constant search direc-
tion r, for example, by the (normalized) direction between the two
minima, there results a projector that leads to a Newton trajectory,
locally point by point. Every point of an initial string over the PES
is moved locally and independently from the other points of the
string, to its final place on the Newton trajectory. Like the IRC,
most of the Newton trajectories can serve as model of a reaction
path.22 Thus, the calculation of Newton trajectories may be a
serious alternate to the IRC using the string method. The definition
of the projector is simpler than that of the IRC, the convergence of
the string method is quicker than that of the IRC and with quite
less zigzagging, and the saddle point is located on all Newton
trajectories, with more safety than the SP on the special IRC line,
in comparison to all other steepest descent lines.17 The “global”
action character of the projector Pr allows a piece-wise use of the
strings at any part of the trajectory: a finer chain can be used to
localize any part, for example the SP, with a smaller point distance.
The application of the string method for NTs needs only the
calculation of the gradient, point by point, but not the Hessian
matrix.

The string treatment can also be tested for projectors of the
Gradient Extremal; however, the vector fields of those projectors
usually do not lead to a successful variation of an initial string to
the “next” GE. Usually, some obstacles remain. There are regions
and GEs to special indices where the method works well, without
the tremendous third derivatives of the previous GE method.30,31

But there are also regions where the variation of the initial chain
clears away the points from the next GE. Additionally disturbing
is the crossing of n GEs at the SP, if n is the dimension of the PES,
which usually does not allow that the resulting string connects two
minima. It is possible that the resulting “string” of an iteration of
the GE also folds around a ridge GE that belongs to the SP. The
use of the dual projector (24) can avoid the problem. In all, GEs
are calculable by the string method, but its use needs a higher
amount of organization and scrupulousness. The shift of the sign of
the two projectors and their dual use allow the calculation of
individual pieces of GEs. Because of a mild zigzagging, often only
coarse approximations are possible. To employ the projector (24)
one needs the Hessian matrix “only,” and its transcription to the
adjoint matrix; however, one does not need third derivatives to
calculate a GE.30
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Appendix

We show the impossibility to use the gradient projector uphill for
the tangent in a predictor step. With the normalized gradient of eq.
(5) and the projector of eq. (16) we start with the trivial relation,
which holds for all curves of steepest descent

Pw�s�g�x�s�� � 0. (25)

Also, the tangent to the steepest descent is the gradient itself. If one
formally searches for the tangent to such a curve by the derivative
to the curve parameter, one gets

dPw�s�g�x�s��

ds
� �

i�1

n
�Pw�s�g�x�s��

�xi

dxi

ds
, (26)

but every partial derivative of the sum is zero

�Pw�s�g�x�s��

�xi
� Pw

�g
�xi

�
�w
�xi

wTg � w
�wT

�xi
g � 0 (27)

using the relation30

Pwdg � �g�dw, (28)

as well as

Pw
T � Pw and d�gT�Pw � �g�d�wT�. (29)

Thus, the derivative to the curve parameter s in eq. (25)
becomes singular at every regular point of the configuration space,
and a predictor step along the tangent becomes undefined. Every
direction of a “tangent”-predictor goes to a next point that fulfills
eq. (25). The IRC cannot be defined locally. An equation like (12)
does not exist for it.
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